成都石室天府中学数学有理数单元培优测试卷
- 格式:doc
- 大小:863.50 KB
- 文档页数:14
成都石室天府中学数学三角形填空选择单元培优测试卷一、八年级数学三角形填空题(难)1.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠: 1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=________________.【答案】20202α 【解析】【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知21211112222a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】解:∵∠ABC 与∠ACD 的平分线交于点A 1,∴11118022A ACD ACB ABC ∠=︒-∠-∠-∠ 1118018022ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠()() 1122a A =∠=, 同理可得221122a A A ∠=∠=, …∴2020A ∠=20202α. 故答案为:20202α. 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.2.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.【答案】2b-2a【解析】【分析】【详解】根据三角形的三边关系得:a ﹣b ﹣c <0,c +a ﹣b >0,∴原式=﹣(a ﹣b ﹣c )﹣(a +c ﹣b )=﹣a +b +c ﹣a ﹣c +b =2b ﹣2a .故答案为2b ﹣2a【点睛】本题考查了绝对值得化简和三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边;一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数,据此解答即可.3.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.【答案】30°【解析】【分析】设较小的锐角是x ,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x ,则另一个锐角是2x ,由题意得,x +2x =90°,解得x =30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.4.已知ABC 中,90A ∠=,角平分线BE 、CF 交于点O ,则BOC ∠= ______ .【答案】135【解析】解:∵∠A =90°,∴∠ABC +∠ACB =90°,∵角平分线BE 、CF 交于点O ,∴∠OBC +∠OCB =45°,∴∠BOC =180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.5.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.【答案】2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=26.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.【答案】45°【解析】【分析】根据正多边形的外角度数等于外角和除以边数可得.【详解】∵硬币边缘镌刻的正多边形是正八边形,∴它的外角的度数等于360÷8=45°.故答案为45°.【点睛】本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.7.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了____次;(2)一共走了_____米.【答案】11120【解析】∵360÷30=12,∴他需要走12−1=11次才会回到原来的起点,即一共走了12×10=120米.故答案为11,120.8.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_____度.【答案】45【解析】【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.【详解】∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,CAD FBDBDF ADCBF AC∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为45.【点睛】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.9.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=______.【答案】80°.【解析】【分析】根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.【详解】∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为80°.【点睛】本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.10.三角形三边长分别为 3,1﹣2a,8,则 a 的取值范围是 _______.【答案】﹣5<a<﹣2.【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求a的取值范围,再将a的取值范围在数轴上表示出来即可.【详解】由三角形三边关系定理得8-3<1-2a<8+3,即-5<a<-2.即a的取值范围是-5<a<-2.【点睛】本题考查的知识点是三角形三边关系,在数轴上表示不等式的解集,解一元一次不等式组,解题关键是根据三角形三边关系定理列出不等式.二、八年级数学三角形选择题(难)11.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°【答案】D【解析】【分析】当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180°【详解】】解:图1中,当△ABC内只有1个点时,可分割成3个互不重叠的小三角形;图2中,当△ABC内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC内有n个点(P1,P2,…,P n)时,可以把△ABC分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°.【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.12.如图,在△ABC中,点D是BC边上的一点,E,F分别是AD,BE的中点,连结CE,CF,若S△CEF=5,则△ABC的面积为()A.15 B.20 C.25 D.30【答案】B【解析】【分析】根据题意,利用中线分的三角形的两个图形面积相等,便可找到答案【详解】解:根据等底同高的三角形面积相等,可得∵F是BE的中点,S△CFE=S△CFB=5,∴S△CEB=S△CEF+S△CBF=10,∵E是AD的中点,∴S△AEB=S△DBE,S△AEC=S△DEC,∵S△CEB=S△BDE+S△CDE∴S△BDE+S△CDE=10∴S△AEB+S△AEC=10∴S△ABC=S△BDE+S△CDE+S△AEB+S△AEC=20故选:B.【点睛】熟悉三角形中线的拓展性质:分其两个三角形的面积是相等的,这样便可在实际问题当中家以应用.13.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56 B.64 C.72 D.90【答案】D【解析】【分析】根据题意找出规律得到第n个图形中花盆的个数为:(n+1)(n+2),然后将n=7代入求解即可.【详解】第1个图形的花盆个数为:(1+1)(1+2);第2个图形的花盆个数为:(2+1)(2+2)=12;第3个图形的花盆个数为:(3+1)(3+2)=20;,第n个图形的花盆个数为:(n+1)(n+2);则第7个图形中花盆的个数为:(7+1)(7+2)=72.故选:C.【点睛】本题考查图形规律题,解此题的关键在于根据题中图形找到规律.14.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD的度数为()A.20°B.35°C.40°D.45°【答案】B【解析】【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-505°=35°,故选:B.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.15.若正多边形的内角和是540︒,则该正多边形的一个外角为()A.45︒B.60︒C.72︒D.90︒【答案】C【解析】【分析】n-•︒求出多边形的边数,再根据多边形的外角和是固定根据多边形的内角和公式()2180的360︒,依此可以求出多边形的一个外角.【详解】正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572==.÷︒故选C.【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.16.如果一个多边形的内角和是1800°,这个多边形是()A.八边形B.十四边形C.十边形D.十二边形【答案】D【解析】【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【详解】这个正多边形的边数是n,根据题意得:(n﹣2)•180°=1800°解得:n=12.故选D.【点睛】本题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.17.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110︒B.115︒C.120︒D.125︒【答案】A【解析】【分析】根据三角形外角的性质三角形的一个外角等于和它不相邻的两个内角的和可得∠AEB=∠A+∠C=65°,∠DFE=∠B+∠AEC,进而可得答案.【详解】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,故选:A.【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.18.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10【答案】C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【详解】设第三边为x,根据三角形的三边关系,得:4-1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选C.【点睛】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.19.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°【答案】D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.20.如图,在△ABC中,过点A作射线AD∥BC,点D不与点A重合,且AD≠BC,连结BD 交AC于点O,连结CD,设△ABO、△ADO、△CDO和△BCO 的面积分别为和,则)下列说法不正确的是(C.D.【答案】D【解析】【分析】根据同底等高判断△ABD和△ACD 的面积相等,即可得到,即,同理可得△ABC和△BCD的面积相等,即.【详解】∵△ABD和△ACD 同底等高,,,即△ABC和△DBC 同底等高,∴∴故A,B,C正确,D错误.故选:D.【点睛】考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.。
一、选择题1.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3B .()1,3--C .()1,3-D .()1,3- D解析:D【分析】在平面直角坐标系中,关于原点对称的两点的横坐标和纵坐标均互为相反数即可求得.【详解】∵与点P 关于原点对称的点Q 为()1,3-,∴点P 的坐标是:()1,3-.故选D .【点睛】本题考查平面直角坐标系中点的对称性,掌握关于原点对称的两点的横坐标和纵坐标均互为相反数是解题关键.2.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定B 解析:B【分析】根据第四象限内的点的坐标第四象限(+,-),可得答案.【详解】解:M 到x 轴的距离为3,到y 轴距离为2,且在第四象限内,则点M 的坐标为(2,-3),故选:B .【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 3.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交D 解析:D【分析】根据点M 、N 的坐标可得直线MN 的解析式,由此即可得.【详解】 (9,5),(3,5)M N ---,∴直线MN 的解析式为5y =-,则直线MN 与x 轴平行,与y 轴垂直相交,故选:D .【点睛】本题考查了直线与坐标轴的位置关系,正确求出直线的解析式是解题关键.4.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限D解析:D【解析】解:点P 的坐标为(3,﹣1),那么点P 在第四象限,故选D .5.已知点A 的坐标为(2,1)--,点B 的坐标为(0,2)-,若将线段AB 平移至A B ''的位置,点A '的坐标为(3,2)-,则点B '的坐标为( )A .(3,2)--B .(0,1)C .(1,1)-D .(1,1)- C 解析:C【分析】根据平移的性质,以及点A ,B 的坐标,可知点A 的横坐标加上了1,纵坐标加上了1,所以平移方法是:先向左平移1个单位,再向上平移3个单位,根据点B 的平移方法与A 点相同,即可得到答案.【详解】∵A (-2,-1)平移后对应点A '的坐标为(-3,2),∴A 点的平移方法是:先向左平移1个单位,再向上平移3个单位,∴B 点的平移方法与A 点的平移方法是相同的,∴B (0,-2)平移后B '的坐标是:(0-1,-2+3)即(-1,1).故选:C .【点睛】本题考查了坐标与图形的变化-平移,解决问题的关键是运用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.6.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,5D解析:D【分析】根据平行四边形的性质可知:平行四边形的对边平行且相等,连接各个顶点,数形结合,可以做出D点可能的坐标,利用排除法即可求得答案.【详解】解:数形结合可得点D的坐标可能是(﹣3,﹣1),(7,﹣1),(1,5);但不可能是(2,5)故选:D.【点睛】本题考查平行四边形的性质和直角坐标系,考查学生解题的综合能力,解题的关键是在直角坐标系中画出可能的平行四边形.7.某公交车上显示屏上显示的数据(),a b表示该车经过某站点时先下后上的人数.若车上原有10个人,此公交车依次经过某三个站点时,显示器上的数据如下:()()()3,2,8,5,6,1,则此公交车经过第二个站点后车上的人数为()A.9 B.12 C.6 D.1C解析:C【分析】根有序数对的意义,算出净上车人数,再用原有车上人数加上净上车人数即可.【详解】解:∵数据(),a b表示该车经过某站点时先下后上的人数.∴()3,2表示先下车3人,再上车2人,即经过第一个站点净上车人数为-1人,此时公交车上有:10-1=9(人).∴()8,5表示先下车8人,再上车5人,即经过第二个站点时净上车人数为-3人,此时公交车上共有:9-3=6(人).故选C.【点睛】本题考查了有序数对的意义,理解有序数对表示的意义是解题的关键.8.如图是医院、公园和超市的平面示意图,超市B在医院O的南偏东25︒的方向上,且到AOB=︒,则公园A在医医院的距离为300m,公园A到医院O的距离为400m.若∠90院O的()A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上B解析:B【解析】 分析:首先根据勾股定理得出公园A 到超市B 的距离为500m ,再计算出∠AOC 的度数,进而得到∠AOD 的度数.本题∵∠AOB=90°,∴3002+4002=5002,∴公园A 到超市B 的距离为500m∵超市在医院的南偏东25°的方向,∴∠COB=90°−25°=65°,∴∠AOC=90°−65°=25°,∴∠AOD=90°−25°=65°,故选B.9.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m B 解析:B【分析】根据图象可得移动4次图象完成一个循环,从而可得出OA 4n =2n 知OA 2020=2×505,据此利用三角形的面积公式计算可得.【详解】解:A 1(1,0),A 2(1,1),A 3(2,1),A 4(2,0),A 5(3,0),A 6(3,1),…, 由题意知OA 4n =2n ,∵2020÷4=505,∴OA 2020=2×505,则△OA 2A 2020的面积是12×1×2×505=505m 2, 故选:B .【点睛】 本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.10.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处B解析:B【分析】 直接利用已知点坐标得出原点位置进而得出答案.【详解】解:如图所示:敌军指挥部的位置大约是B 处.故选:B .【点睛】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.二、填空题11.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________.或8【分析】根据点P 到两坐标轴的距离相等得到计算即可【详解】∵点P 到两坐标轴的距离相等∴∴2-a=6或2-a=-6解得a=-4或a=8故答案为:-4或8【点睛】此题考查点到坐标轴的距离:点到x 轴距离解析:4-或8【分析】根据点P 到两坐标轴的距离相等,得到26a -=,计算即可. 【详解】∵点P 到两坐标轴的距离相等,∴26a -=,∴2-a=6或2-a=-6,解得a=-4或a=8,故答案为:-4或8.【点睛】此题考查点到坐标轴的距离:点到x 轴距离是点纵坐标的绝对值,点到y 轴的距离是点横坐标的绝对值.12.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.【分析】(1)根据向上向右走均为正向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件可知从而得到点向右走个格点向上走个格点到点反过来即可得到答案【详解】解:(1)∵规定:向上向右走为正向下向解析:3+ 4+ 2+ 0 D 2- ()2,2--【分析】(1)根据向上向右走均为正,向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件,可知5(3)2a a ---=,2(4)2b b ---=,从而得到点A 向右走2个格点,向上走2个格点到点N ,反过来即可得到答案.【详解】解:(1)∵规定:向上向右走为正,向下向左走为负∴A C →记为()3,4++,B C →记为()2,0+,C D →记为()1,2+-;(2)∵()3,4→--M A a b ,()5,2→--M N a b∴5(3)2a a ---=,2(4)2b b ---=∴点A 向右走2个格点,向上走2个格点到点N∴N A →应记为()2,2--.故答案是:(1)3+,4+,2+,0,D ,2-;(2)()2,2--【点睛】本题考查了利用坐标确定点的位置的方法,解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.13.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.【分析】先分别求出的坐标再归纳类推出一般规律由此即可得【详解】由题意得:观察可知归纳类推得:的坐标为其中n 为正整数∵∴的坐标为即故答案为:【点睛】本题考查了点的坐标的规律性正确归纳类推出一般规律是解解析:()2016,1【分析】先分别求出123,,,P P P 的坐标,再归纳类推出一般规律,由此即可得.【详解】由题意得:()12,1P ,()23,0P ,()33,0P ,()44,1P ,()56,1P ,()67,0P ,()77,0P ,()88,1P ,,观察可知,()()484,1(0,18,),1,P P P ,归纳类推得:4n P 的坐标为()4,1n ,其中n 为正整数,∵20164504=⨯,∴2016P 的坐标为()4504,1⨯,即()2016,1,故答案为:()2016,1.【点睛】本题考查了点的坐标的规律性,正确归纳类推出一般规律是解题关键.14.若线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称,则线段CD上任意一点的坐标可表示为___________.(x-3)()【分析】关于x 轴对称点的坐标特点是横坐标相同纵坐标互为相反数即可求解【详解】解:∵线段AB 的端点为线段CD 与线段AB 关于x 轴轴对称∴线段CD 的端点为∴线段CD 上任意一点的坐标可表示为(解析:(x ,-3)(1x 1-≤≤).【分析】关于x 轴对称点的坐标特点是横坐标相同,纵坐标互为相反数,即可求解.【详解】解:∵线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称, ∴线段CD 的端点为()1,3--,()1,3-,∴线段CD 上任意一点的坐标可表示为(x ,-3)(1x 1-≤≤).故答案为:(x ,-3)(1x 1-≤≤).【点睛】此题主要考查利用关于x 轴对称点的坐标特点来解题,正确理解轴对称的性质是解题关键.15.已知点A (2m +,3-)和点B (4,1m -),若直线//AB x 轴,则m 的值为______.【分析】根据平行于轴的直线上的点的纵坐标相同列出方程求解即可【详解】∵点A ()B (4)直线AB ∥x 轴∴解得故答案为:【点睛】本题考查了坐标与图形性质熟记平行于轴的直线上的点的纵坐标相同是解题的关键 解析:2-【分析】根据平行于x 轴的直线上的点的纵坐标相同,列出方程求解即可.【详解】∵点A (2m +,3-),B (4,1m -),直线AB ∥x 轴,∴13m -=-,解得2m =-.故答案为:2-.【点睛】本题考查了坐标与图形性质,熟记平行于x 轴的直线上的点的纵坐标相同是解题的关键. 16.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.(20201)【分析】由图中点的坐标可得:每4次运动为一个循环组循环并且每一个循环组向右运动4个单位用2021除以4再由商和余数的情况确定运动后点的坐标【详解】∵2021÷4=505余1∴第2021 解析:(2020,1)【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,再由商和余数的情况确定运动后点的坐标.【详解】∵2021÷4=505余1,∴第2021次运动为第505循环组的第1次运动,横坐标为505×4=2020,纵坐标为1,∴点的坐标为(2020,1).故答案为:(2020,1).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.17.三角形A′B′C′是由三角形ABC 平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C 的坐标为______.(-25)【分析】根据点A(-14)的对应点为A′(1-1)可以得出变化规律再将点C′按照此变化规律即可得出C 点的坐标【详解】解:∵点A (-14)的对应点为A′(1-1)∴此题变化规律是为(x+2y 解析:(-2,5)【分析】根据点A(-1,4)的对应点为A′(1,-1),可以得出变化规律,再将点C′按照此变化规律即可得出C 点的坐标.【详解】解:∵点A (-1,4)的对应点为A′(1,-1),∴此题变化规律是为(x+2,y-5),∴C′(0,0)的对应点C 的坐标分别为(-2,5),故答案为:(-2,5).【点睛】本题考查了平移中点的变化规律,横坐标右移加,左移减;纵坐标上移加,下移减.左右移动改变点的横坐标,上下移动改变点的纵坐标.18.如图,已知1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,则2020A 的坐标为_______.【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限的点除外)逐步探索出下标和各点坐标之间的关系总结出规律根据规律推理结果【详解】通过观察可得:下标数字是4的倍数的点在第三象限∵202解析:()505,505--【分析】根据题意可得各个点分别位于象限的角平分线上( A 1和第四象限的点除外),逐步探索出下标和各点坐标之间的关系,总结出规律,根据规律推理结果.【详解】通过观察可得:下标数字是4的倍数的点在第三象限,∵2020÷4=505,第一圈第三象限点的坐标是(-1,-1),第二圈第三象限点的坐标是(-2,-2),第三圈第三象限点的坐标是(-3,-3)……,∴点2020A 在第三象限,且转了505圈,即在第505圈上,∴2020A 的坐标为()505,505--.顾答案为:()505,505--.【点睛】本题考查平面直角坐标系中找点的坐标规律,结题关键是找出坐标系中点的位置和坐标之间的对应关系以及点所在象限和下角标的关系.19.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换: ①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.【分析】根据三种变换规律的特点解答即可【详解】解:故答案为:【点睛】本题考查了点的坐标变换读懂题目信息正确理解三种变换的特点是解题的关键解析:()2,5-【分析】根据三种变换规律的特点解答即可.【详解】解:()()()()2,52,52,5O Ω=O -=-.故答案为:()2,5-.【点睛】本题考查了点的坐标变换,读懂题目信息、正确理解三种变换的特点是解题的关键. 20.在平面直角坐标系中,点()3,1A -在第______象限.二【分析】根据第二象限的横坐标小于零纵坐标大于零可得答案【详解】解:点A (-31)在第二象限故答案为:二【点睛】本题考查了点的坐标记住各象限内点的坐标的符号是解决的关键四个象限的符号特点分别是:第一解析:二【分析】根据第二象限的横坐标小于零,纵坐标大于零,可得答案.【详解】解:点A (-3,1)在第二象限,故答案为:二.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题21.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A (0,3);B (﹣2,4);C (3,﹣4);D (﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y 轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 .解析:(1)3,4,2;(2)平行【分析】(1)根据坐标得表示方法可得到点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,根据点A 坐标即可求得点A 到原点O 的距离;(2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【详解】(1)点A 到原点O 的距离是3,点B 到x 轴的距离是4,点B 到y 轴的距离是2; (2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【点睛】本题考查点的坐标,熟练掌握利用平面直角坐标系写出点的坐标和确定点的位置是解题的关键.22.在平面直角坐标系中,已知点(),B a b ,线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,且2(2)a b -++ |22|0a b --=. (1)求A ,B ,C 三点的坐标.(2)若点D 是AB 的中点,点E 是OD 的中点,求AEC 的面积.(3)在(2)的条件下,若点()2,P a ,且AEP AEC S S =△△,求点P 的坐标.解析:(1)B 点坐标为(4,6),A 点坐标为(4,0),C 点坐标为(0,6);(2)3;(3)点P 的坐标为(2,32-)或(2,92). 【分析】(1)根据非负数的性质得a-b+2=0,2a-b-2=0,解得a=4,b=6,则B 点坐标为(4,6),由于线段BA ⊥x 轴于A 点,线段BC ⊥y 轴于C 点,易得A 点坐标为(4,0),C 点坐标为(0,6);(2)利用线段中点坐标公式得到点D 的坐标为(4,3),点E 的坐标为(2,32),再根据三角形面积公式和AEC AOC AOE COE S S S S =--△△△△进行计算;(3)由于点P (2,a ),点E 的坐标为(2,32),,则32PE a =-,利用三角形面积公式即可求解.【详解】(1)∵2(2)|22|0a b a b -++--=, ∴20a b -+=,220a b --=,∴4a =,6b =,∴B 点坐标为 (4,6),∵线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,∴A 点坐标为(4,0),C 点坐标为(0,6);(2)∵点D 是AB 的中点,∴点D 的坐标为(4,3),∵点E 是OD 的中点,∴点E 的坐标为(2,32), ∴AEC AOC AOE COE S S S S =--△△△△1131644622222=⨯⨯-⨯⨯-⨯⨯ 3=.(3)∵点P 的坐标为(2,a ),点E 的坐标为(2,32), ∴32PE a =-, ∵AEP AEC S S =△△, ∴132322a ⨯⨯-=, ∴32a =-或92, ∴点P 的坐标为(2,32-)或(2,92). 【点睛】本题考查了坐标与图形性质、偶次方和算术平方根的非负性质、矩形的性质等知识.记住坐标轴上点的坐标特征是解题的关键.23.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC 经过一次平移后得到A B C ''',图中标出了点B 的对应点B '.(1)在给定方格纸中画出平移后的A B C''';(2)画出AB边上的中线CD和BC边上的高线AE;(3)求A B C''的面积是多少?解析:(1)见解析;(2)见解析;(3)8.【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)取线段AB的中点D,连接CD,过点A作AE⊥BC的延长线与点E即可;(3)根据S△A′B′C =S△ABC代入三角形公式计算即可.【详解】(1)如图,A B C'''即为所求;(2)如图,线段CD和线段AE即为所求;(3)1144822A B C ABCS S BC AE'''==⋅⋅=⨯⨯=【点睛】本题考查的是平移变换,掌握图形平移但图形的形状不变是解答本题的关键.24.如图,在平面直角坐标系中,点A(0,12),点B(m,12),且B到原点O的距离OB=20,动点P从原点O出发,沿路线O→A→B运动到点B停止,速度为每秒5个单位长度,同时,点Q从点B出发沿路线B→A→O运动到原点O停止,速度为每秒2个单位长度.设运动时间为t.(1)求出P 、Q 相遇时点P 的坐标.(2)当P 运动到AB 边上时,连接OP 、OQ ,若△OPQ 的面积为6,求t 的值. 解析:(1)P (8,12);(2)满足条件的值为277或297或1098. 【分析】(1)由勾股定理得AB=16,当P 、Q 相遇,P 和Q 走过的路程之和是AB+OA ,即可求得; (2)分类讨论, P 、Q 都在AB 边上和点Q 在OA 上,即可求得.【详解】(1)设t 秒后P ,Q 相遇.在Rt △AOB 中,∵∠BAO =90°,OA =12,OB =20,∴16AB ==,由题意:5t +2t =12+16,解得t =4,此时BQ =8.AQ =AB ﹣BQ =16﹣8=8,∴P (8,12).(2)当P ,Q 都在AB 边上时,()11216512262t t ⨯⨯---=, 解得t =277或297当点Q 在OA 上时,12×16(28﹣2t )=6, 解得t =1098, 综上所述,满足条件的值为277或297或1098. 【点睛】 本题考查平面直角坐标系、勾股定理和动点类型习题,掌握分类讨论思想是解决本题的关键.25.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC 的顶点在格点上,且A(2,−4),B(5,−4),C(4,−1)(1)画出ABC ;(2)求出ABC 的面积;(3)若把ABC 向上平移2个单位长度,再向左平移4个单位长度得到A B C ''',在图中画出A B C ''',并写出B '的坐标解析:(1)见解析;(2)3;(3)图见解析,()12,-【分析】(1)根据A 、B 、C 三点的坐标在坐标系内描出即可;(2)根据三角形面积公式,底为AB 的长,高为C 点到AB 的距离,代入三角形面积公式即可求解;(3)根据平移路径画出对应点,然后连线即可.【详解】(1)如图所示;(2)13332ABC S ∆=⨯⨯= 故三角形的面积为3; (3)如下图所示,B '的坐标为()12,-【点睛】本题考查了平面直角坐标系内的平移问题,根据平移路径画出对应点,然后连线是本题的关键.26.三角形ABC (记作△ABC )在8×8方格中,位置如图所示,A (-3,1),B (-2,4).(1)请你在方格中建立直角坐标系,并写出C点的坐标;(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是.(3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.解析:(1)画图见解析,C(1,1);(2)画图见解析,(a+2,b-1);(3)D(1,0)或(5,0)【分析】(1)根据点A、B的坐标和直角坐标系的特点建立直角坐标系;(2)分别将点A、B、C向下平移1个单位长度,再向右平移2个单位长度,然后顺次连接各点,并写出点P的对应点P1的坐标;(3)根据三角形的面积求出C1D的长度,再分两种情况求出OD的长度,然后写出点D的坐标即可.【详解】解:(1)直角坐标系如图所示,C点坐标(1,1);(2)△A1B1C1如图所示,点P1坐标(a+2,b-1);故答案为:(a+2,b-1);(3)设点D的坐标为(a,0),则:△DB1C1的面积=12C1D×OB1=3,即12|a-3|×3=3,解得:a=1或a=5,综上所述,点D 的坐标为(1,0)或(5,0).【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.27.画图并填空:如图,方格纸中每个小正方形的边长都为1,在方格纸内将ABC 经过一次平移后得到A B C ''', 图中标出了点B 的对应点B '.请利用网格点和直尺画图或计算:(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD 及高线CE ;(3)在上述平移中,边AB 所扫过的面积为 .解析:(1)见解析;(2)见解析;(3)34【分析】(1)首先确定A 、C 两点平移后的位置,再连接即可;(2)利用三角形中线和高的定义画图即可;(3)利用矩形面积减去多余三角形面积即可.【详解】解:(1)如下图所示;(2)如下图所示;连接AA′,BB′, 边AB 所扫过的面积为:()()1111787121661172342222⨯-⨯+⨯-⨯⨯-⨯⨯-⨯+⨯=. 故答案为:34.【点睛】此题主要考查了平移变换,关键是正确确定组成图形的关键点平移后的位置.28.如图为某校区分布图的一部分,方格纸中每个小方格是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的坐标为(-2,-1).解答以下问题:(1)在图中找到坐标系中的原点O ,并建立直角坐标系;(2)若体育馆的坐标为C(1,-3),餐厅坐标为D (2,0),请在图中标出体育馆和餐厅的位置;(3)顺次连接教学楼、图书馆、体育馆、餐厅得到四边形ABCD ,求四边形ABCD 的面积.解析:(1)见解析;(2)见解析;(3)10【分析】(1)根据点A 的坐标,向左1个单位,向下2个单位为坐标原点,建立平面直角坐标系即可;(2)根据平面直角坐标系标注体育馆和食堂即可;(3)根据四边形所在的矩形的面积减去四周四个小直角三角形的面积列式计算即可得解.【详解】解:(1)建立平面直角坐标系如图所示;(2)体育馆(1,3)C ,食堂(2,0)D 如图所示;(3)四边形ABCD的面积1111 4533231312 2222=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯,20 4.53 1.51=----,2010=-,10=.【点睛】本题考查了坐标确定位置,平面直角坐标系的定义,网格结构中不规则四边形的面积的求解,熟记概念并熟练运用网格结构是解题的关键.。
一、选择题 1.按如图所示的运算程序,能使输出的结果为12的是( )
A.x=-4,y=-2 B.x=3, y=3 C.x=2,y=4 D.x=4,y=0 2.下列运算正确的有( )
①15150;②11111122344; ③2112439;
④30.10.0001;⑤224
33
A.1个 B.2个 C.3个 D.4个
3.计算:11322的结果是( )
A.﹣3 B.3 C.﹣12 D.12 4.定义一种新运算2xyxyx,如:2212122.则(42)1( )
A.1 B.2 C.0 D.-2 5.下列说法中,其中正确的个数是( )
(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3 A.1 B.2 C.3 D.4 6.下列算式中,计算结果是负数的是(
)
A.3(2) B.|1| C.(2)7 D.
2(1)
7.下列各组数中,不相等的一组是( )
A.-(+7),-|-7| B.-(+7),-|+7| C.+(-7),-(+7) D.+(+7),-|-7| 8.绝对值大于1小于4的整数的和是( )
A.0 B.5 C.﹣5 D.10 9.下列各组数中,互为相反数的是( )
A.(﹣3)2和﹣32 B.(﹣3)2和32 C.(﹣2)3和﹣23 D.|﹣2|3和|﹣23| 10.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于
标准质量0.02克记作(). A.+0.02克 B.-0.02克 C.0克 D.+0.04克
11.如果a,b,c为非零有理数且a + b + c = 0,那么abcabcabcabc的所有可能的值
为( A.0 B.1或- 1 C.2或- 2 D.0或- 2 12.若|x|=7|y|=5x+y>0,,且,那么x-y的值是 ( )
一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.3.有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点,数b的点与原点的距离相等。
一、初一数学有理数解答题压轴题精选(难) 1.同学们都知道 表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索: (1)求 ________. (2)找出所有符合条件的整数 ,使得 .满足条件的所有整数值有________ (3)由以上探索,猜想对于任何有理数x, 是否有最大值或最小值?如果有最大值或最小值是多少? 有最________(填“最大”或“最小”)值是________. 【答案】 (1)7 (2)-3,-2,-1,0,1,2; (3)最小;3 【解析】【解答】(1)原式=|5+2|=7. 故答案为: 7;(2)令x+3=0或x-2=0时,则x=-3或x=2. 当x<-3时,- (x+3) - (x-2) =5 , -x-3-x+2=5,解得x=-3(范围内不成立) 当-3≤x≤2时,(x+3) - (x-2) = 5, x+3-x+1=4,0x=0,x为任意数, 则整数x=-3,-2,-1, 0,1, 当x>2时,(x+3) + (x-2) = 5, x=2(范围内不成立) . 综上所述,符合条件的整数x有: -3, -2, -1, 0,1,2. 故答案为:-3,-2,-1,0,1,2;(3) 由(2) 的探索猜想,对于任何有理数x, 有最小值为3, 令x-3=0或x-6=0时,则x=3,x=6 当x<3时,-(x-3)-(x-6)=-2x+3﹥3 当3≤x≤6时,x-3-(x-6)=3, 当x>6时,x-3+x-6=2x-9>3 ∴对于任何有理数x, 有最小值为3
【分析】(1)直接去括号,再按照去绝对值的方法去掉绝对值就可以了;(2)要求x的整数值可以进行分段计算,令x+3=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.
2.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题. (1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是________,A、B两点间的距离是________; (2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是________,A、B两点间的距离为________; (3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是________,A、B两点间的距离是________; (4)一般地,如果A点表示的数为m , 将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A、B两点间的距离为多少? 【答案】 (1)4;7 (2)1;2 (3)﹣13;9 (4)解:一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示m+n﹣p,A、B两点间的距离为|n﹣p|. 【解析】【解答】解:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是7;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A、B两点间的距离为2;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是﹣13,A、B两点间的距离是9; 【分析】(1)根据数轴上的点向右平移加,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(4)根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;
成都石室天府中学一年级数学上册第一单元《准备课》单元测试卷(包含答案解析)一、选择题1.找规律:1,3,5,(),9。
A. 4B. 5C. 72.红花有90朵,黄花比红花少很多。
黄花可能有()朵。
A. 87B. 21C. 983.明明比小兰多13个球,也就是小兰比明明少( )个球。
A. 11B. 12C. 134.A. 14B. 7C. 65.比48大一些的数是( )。
A. 52B. 30C. 45D. 966.看图,一人一块糖,应该准备()A. 7块B. 8块C. 9块D. 10块7.比一比,最少的是()。
A. B. C.8.一个数最高位十万位是8,十位上是9,其余各位上的数都是0,这个数是()A. 800090B. 8009000C. 900089.多的是()A. B.10.下面是3个同样大的杯子,里面装有同样多的水,后来小明往3个杯子里都丢进一些同样大的玻璃球,想一想,哪个杯子里丢进的玻璃球最多?()A. AB. BC. C11.数一数,图中表示()。
A. 4B. 5C. 7D. 8 12.数一数,图中表示()。
A. 4B. 5C. 10D. 9二、填空题13.画○,与△同样多。
△△△△△△△________14.看图填空。
从左数,排第________,排第4的是________。
从右数,排第________,排第5的是________。
图上一共有________种水果。
15.比少________个,比多________个,比多________个,比少________个。
16.数一数,写出相应的数字。
________________________________________________________________17.第4和第9之间有________个数。
18.看图写数。
① ________② ________③ ________④ ________⑤ ________⑥ ________19.比一比,填一填。
四川省成都市石室天府中学2023-2024学年七年级上学期分班考试数学试题一、单选题1.1.2的倒数是( )A .1.2B .2.1C .56D .652.下列判断中正确的是( )A .角是由两条射线组成的图形B .一条直线就是一个平角C .如果线段AB BC =,那么点B 叫做线段AB 的中点D .经过两点有且只有一条直线3.我国第七次人口普查数据结果公布了,数据显示,全国人口共141178万人,相比于第六次人口普查,增加了7206万人.这个数据结果也表明我国人口在这10年来保持低速增长态势.其中数据7206万用科学记数法表示为( )A .4720610⨯B .87.20610⨯C .77.20610⨯D .7.20610⨯ 4.下列各组数中,互为相反数的是( )A .﹣|﹣2|和﹣(+2)B .|﹣(﹣2)|和﹣[﹣(﹣2)]C .|﹣2|和﹣(﹣2)D .|﹣2|和25.在0.65,58,35,916这四个数中,最大的是() A .0.65 B .58 C .35 D .9166.若235x y -=,则1046x y -+=( )A .4-B .0C .1D .2-7.有两道作图题:①“延长线段AB 到C ,使BC AB =”;②“反向延长线段DE ,使点D 是线段EF 的一个三等分点”.小明正确的作出了图形.他的两个同学嘉嘉、淇淇展开了讨论:嘉嘉说:“点B 是线段AC 中点”;淇淇说:“如果线段DE x =cm ,那么线段3EF x =cm ”,下列说法正确的是( )A .嘉嘉对,淇淇不对B .嘉嘉不对,淇淇对C .嘉嘉、淇淇都不对D .嘉嘉、淇淇都对8.观察如图所示的程序,若输出的结果为2023,则输入的x 的值为( )A .1011或45B .1022或45-C .1012或45D .1011或45-二、填空题9.在数1-,9-, 2.23-,0,3+,227,π-,12-,0.01001-中,是负分数. 10.若23x a b 与3y a b 是同类项,则x y +的值是.11.若5x =,则x =.12.如图,在ABC V 中,90ACB ∠=︒,39CAB ∠=︒,以点C 为圆心,CB 长为半径作弧交AB于点D ,分别以D ,B 为圆心,大于12DB 长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则BCF ∠的度数为.三、解答题13.计算:(1)61039--+; (2)315121022÷⨯; (3)()()2216225⎛⎫÷---÷- ⎪⎝⎭; (4)3218433⎛⎫⎛⎫-⨯-+- ⎪ ⎪⎝⎭⎝⎭; 14.化简:(1)325a b a b +--;(2)22234628yx xy xy x y xy -+-+++.15.先化简,再求值:()222225231x y xy x y xy ⎡⎤-+-+⎣⎦,其中4x =,12y =. 16.一个窗户的形状如图,其上部是半圆形,下部是边长相同的四个小正方形,已知下部小正方形的边长为cm a .(1)求窗户的面积;(2)求窗框和窗格的总长.(用a 的代数式表示)17.小张上星期天买进某公司股票2000股,每股25元,下表为本周内每日该股票的涨跌情况.(单位:元)(注:正号表示每股价格比前一天上涨,负号表示每股价格比前一天下跌.)(1)星期二收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)请用折线统计图表示该股市这几天的股票涨跌情况.(4)已知小张买进股票时付了1%的手续费,卖出时需付成交额的1.5%的手续费和1%的交易税,如果小张在星期六将全部股票卖出,他的收益情况如何?18.有一个形如六边形的点阵,它的中心是一个点算第一层,第二层每边有两个点,第三层每边有三个点,依次类推.(1)填写下表中的空格:(2)根据上表中的数据,试推断: ①第n 层(2n ≥)的点数为________(用n 的代数式表示);②n 层六边形点阵的总点数为_______(用n 的代数式表示).四、填空题19.已知有理数x ,y 满足()2320x y -+-=,则代数式()2023x y -的值为.20.计算:775436342744''''''︒+︒=.21.已知1a b -=,2b c -=,3c d -=,则()()a c b d a d--=-.22.如图,已知AB 和CD 的公共部分1134BD AB CD ==,线段AB ,CD 的中点E ,F 之间的距离是10cm ,则AB 的长是.23.如图,圆桌周围有 20 个箱子,按顺时针方向编号 1~20,小明先在 1 号箱子中丢入一颗红球,然后沿着圆桌按顺时针方向行走,每经过一个箱子丢一颗球,规则如下:①若前一个箱子丢红球,则下一个箱子就丢绿球.②若前一个箱子丢绿球,则下一个箱子就丢白球.③若前一个箱子丢白球,则下一个箱子就丢红球.按以上的放法,则 10 号箱放了球.五、解答题24.(1)有理数a 、b 、c 在数轴上的位置如图所示,化简11a b b a c c +------.(2)已知:221A x x =--,231B x x =-+,21C x x =--+.求当=1x -时,式子()()13242B A BC B ⎡⎤---+⎢⎥⎣⎦的值. 25.(1)求图中阴影部分面积(π取3).(2)如图所示,已知100AOE ∠=︒,80DOF ∠=︒,OE 平分DOC ∠,OF 平分AOC ∠,求EOF ∠的度数.26.如图,在射线OM 上有三点A ,B ,C ,满足20cm OA =,60cm AB =,10cm BC =(如图所示),点P 从点O 出发,沿OM 方向以1cm /s 的速度匀速运动,点Q 从点C 出发在线段CO上向点O匀速运动,两点同时出发.(1)当P在线段AB上,且2PA PB=时,点Q运动到的位置恰好是线段AB的三等分点,求点Q运动的速度;(2)若点Q运动的速度为3cm/s,经过多长时间P、Q两点相距70cm;(3)当点P运动到线段AB上时,分别取OP和AB的中点E,F,求OB APEF-的值.。
四川省成都市石室中学2023届高三高考模拟测试数学
(理科)试题
学校:___________姓名:___________班级:___________考号:___________
.甲的成绩的极差小于乙的成绩的极差
.甲的成绩的方差小于乙的成绩的方差
.甲的成绩的平均数等于乙的成绩的平均数
.甲的成绩的中位数小于乙的成绩的中位数
.设zÎC,则在复平面内35
££所表示的区域的面积是()
z
.B.C.D.
.
13
B .
23
C .
43
二、填空题
13.“五一”假期期间,小明和小红两位同学计划去卷上的圆锥曲线大题.如图,小红在街道E 处,小明14.已知点C 的坐标为()2,0,点,A B 是圆0AC BC ×=uuu r uuu r
,设P 为线段AB 的中点,则15.已知函数()()2e R x f x ax a =-Î有两个极值点围为___________.
三、双空题
信基站核心部件,下表统计了该科技集团近几年来在A部件上的研发投入x(亿元)与收益y(亿元)的数据,结果如下:。
1.若b<0,刚a,a+b,a-b的大小关系是( )
A.a.
C.a<.
D
解析:D 【分析】 根据有理数减法法则,两两做差即可求解. 【详解】 ∵b<0
∴0aabb,0abab
∴aab,aba
∴abaab
故选D. 【点睛】 本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数. 2.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如
下四个结论: ①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示
东单的点所表示的数为6; ②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东
单的点所表示的数为12; ③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示
东单的点所表示的数为7; ④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东
单的点所表示的数为14; 上述结论中,所有正确结论的序号是( )
A.①②③ B.②③④ C.①④ D.①②③④D 解析:D 【分析】 数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可. 【详解】 :①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确; ②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东
单的点所表示的数为12,故②说法正确; ③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示
东单的点所表示的数为7,故③说法正确; ④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东
单的点所表示的数为14,故④说法正确. 故选:D. 【点睛】 本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度. 3.下列有理数大小关系判断正确的是( )
一、选择题 1.(0分)13的倒数的绝对值( )
A.-3 B.13 C.3 D.
1
3C
解析:C 【分析】
首先求13的倒数,然后根据绝对值的含义直接求解即可. 【详解】 13的倒数为-3,-3绝对值是3,
故答案为:C. 【点睛】 本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键. 2.(0分)2的相反数是( )
A.12 B.2 C.12 D.2D 解析:D 【分析】 |-2|去掉绝对值后为2,而-2的相反数为2.
【详解】 2的相反数是2,
故选:D. 【点睛】 本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0. 3.(0分)2017年12月17日,第二架国产大型客机C919在上海浦东国际机场完成首次飞
行.飞行时间两个小时,飞行的高度达到15000英尺.15000用科学记数法表示是( ) A.0.15×105 B.15×103 C.1.5×104 D.1.5×105C 解析:C 【分析】 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数. 【详解】 15000用科学记数法表示是1.5×104.
故选C. 【点睛】 本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.(0分)计算4(8)(4)(1)的结果是(
)
A.2 B.3 C.7 D.
4
3C
解析:C 【分析】 先计算除法、将减法转化为加法,再计算加法可得答案. 【详解】 解:原式421 7,
故选:C. 【点睛】 本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 5.(0分)正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方
成都石室天府中学数学轴对称解答题单元培优测试卷一、八年级数学轴对称解答题压轴题(难)1.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).(3)不存在这样的点P .作AB 的垂直平分线l 3,则l 3上的点满足PA =PB ,作B 关于x 轴的对称点B ′,连结AB ′,由图可以看出两线交于第一象限.∴不存在这样的点P .【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.2.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42°【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=°180-2x可得°180-22x x∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE时,∵2x+x=27°+27°,∴x=18°;②当AD=DE时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.3.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC边上的中线AD的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.根据SAS可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.【解析】【分析】(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明△BAE≌△ACH,故BE=AH,故可证明BE=2AF.(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.【详解】(1)∵△ADC≌△EDB,∴BE=AC=8,∵AB=12,∴12-8<AE<12+8,即4<AE<20,∵D为AE中点∴2<AD<10;(2)延长AF到H,使AF=HF,由题意得△ADF≌△HCF,故AH=2AF,∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,∵∠D=∠FCH,∠DAF=∠CHF,∴∠ACH+∠CAD=180°,故∠BAE= ACH,又AB=AC,AD=AE∴△BAE≌△ACH(SAS),故BE=AH,又AH=2AF∴BE= 2AF.(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,由题意得△DBF≌△ADG,∴FD=GD,BF=AG,∵DE⊥DF,∴DE垂直平分GF,∴EF=EG,∵∠C=90°,∴∠B+∠CAB=90°,又∠B=∠DAG,∴∠DAG +∠CAB=90°∴∠EAG=90°,故EG2=AE2+AG2,∵EF=EG, BF=AG∴EF2=AE2+BF2,则以线段AE、BF、EF为边的三角形为直角三角形.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.4.(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】(1)AF=BD,理由见解析;(2)AF与BD在(1)中的结论成立,理由见解析;(3)Ⅰ. AF+BF′=AB,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由见解析.【解析】【分析】(1)由等边三角形的性质得BC =AC ,∠BCA =60°,DC =CF ,∠DCF =60°,从而得∠BCD =∠ACF ,根据SAS 证明△BCD ≌△ACF ,进而即可得到结论;(2)根据SAS 证明△BCD ≌△ACF ,进而即可得到结论;(3)Ⅰ.易证△BCD ≌△ACF (SAS ),△BCF ′≌△ACD (SAS ),进而即可得到结论;Ⅱ.证明△BCF ′≌△ACD ,结合AF =BD ,即可得到结论.【详解】(1)结论:AF =BD ,理由如下:如图1中,∵△ABC 是等边三角形,∴BC =AC ,∠BCA =60°,同理知,DC =CF ,∠DCF =60°,∴∠BCA -∠DCA =∠DCF -∠DCA ,即:∠BCD =∠ACF ,在△BCD 和△ACF 中,∵BC AC BCD ACF DC FC =∠=∠=⎧⎪⎨⎪⎩,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(2)AF 与BD 在(1)中的结论成立,理由如下:如图2中,∵△ABC 是等边三角形,∴BC =AC ,∠BCA =60°,同理知,DC =CF ,∠DCF =60°,∴∠BCA +∠DCA =∠DCF +∠DCA ,即∠BCD =∠ACF ,在△BCD 和△ACF 中,∵BC AC BCD ACF DC FC =∠=∠=⎧⎪⎨⎪⎩,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(3)Ⅰ.AF +BF ′=AB ,理由如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理:△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立,新的结论是AF =AB +BF ′,理由如下:同理可得:BCF ACD ∠=∠′,F C DC =′,在△BCF ′和△ACD 中,BC ACBCF ACDF C DC=∠⎧⎪=∠=⎪⎨⎩′′,∴△BCF′≌△ACD(SAS),∴BF′=AD,又由(2)知,AF=BD,∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.【点睛】本题主要考查等边三角形的性质定理,三角形全等的判定和性质定理,熟练掌握三角形全等的判定和性质定理,是解题的关键.5.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,ABC∆是等腰锐角三角形,()AB AC AB BC=>,若ABC∠的角平分线BD交AC于点D,且BD是ABC∆的一条特异线,则BDC∠=度.(2)如图2,ABC∆中,2B C∠=∠,线段AC的垂直平分线交AC于点D,交BC于点E,求证:AE是ABC∆的一条特异线;(3)如图3,若ABC∆是特异三角形,30A∠=,B为钝角,不写过程,直接写出所有可能的B的度数.【答案】(1)72;(2)证明见解析;(3)∠B度数为:135°、112.5°或140°.【解析】【分析】(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A,据此进一步利用三角形内角和定理列出方程求解即可;(2)通过证明△ABE与△AEC为等腰三角形求解即可;(3)根据题意分当BD为特异线、AD为特异线以及CD为特异线三种情况分类讨论即可.【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC,∵BD是△ABC的一条特异线,∴△ABD与△BCD为等腰三角形,∴AD=BD=BC,∴∠A=∠ABD,∠C=∠BDC,∴∠ABC=∠C=∠BDC,∵∠BDC=∠A+∠ABD=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,∠A+∠ABC+∠C=180°,即:x+2x+2x=180°,∴x=36°,∴∠BDC=72°,故答案为:72;(2)∵DE是线段AC的垂直平分线,∴EA=EC,∴△EAC为等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,∴△EAB为等腰三角形,∴AE是△ABC的一条特异线;(3)如图3,当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°+15°=135°;如果AD=AC,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;如果AD=DB,DC=DB,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;如图4,当AD是特异线时,AB=BD,AD=DC,则:∠ABC=180°−20°−20°=140°;当CD为特异线时,不符合题意;综上所述,∠B度数为:135°、112.5°或140°.【点睛】本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.6.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得到答案;(3)以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点 F .证明点 P 在直线 EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H ,∵∠BAO =60°,∴∠ABO =30°,∴AB =2OA =6,∵∠BAO =60°,∠BCO =40°,∴∠ABC =180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°,∴DB =DC ,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BDABC DBQBC BQ=⎧⎪∠=∠⎨⎪=⎩∴△CBA≌△QBD(SAS),∴∠BDQ=∠BAC=60°,∴∠PDO=60°,∴PD=2DO=6,∵PD=23DC,∴DC=9,即 OC=OD+CD=12,∴点 C的坐标为(12,0);(3)如图3,以 OA为对称轴作等边△ADE,连接 EP,并延长 EP交 x 轴于点F.由(2)得,△AEP≌△ADB,∴∠AEP=∠ADB=120°,∴∠OEF=60°,∴OF=OA=3,∴点P在直线 EF上运动,当 OP⊥EF时,OP最小,∴OP=12OF=32则OP的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.7.已知△ABC.(1)在图 中用直尺和圆规作出B的平分线和BC边的垂直平分线交于点O(保留作图痕迹,不写作法).(2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图 ,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG ∆≅∆,∴BH=BG ,∵BE=CD ,∴EH=BH-BE=BG-CD=CG-CD=DG ,在OEH ∆和ODG ∆中,90OH OG OHE OGD EH DG =⎧⎪∠=∠=⎨⎪=⎩, ∴OEH ODG ∆≅∆,∴OE=OD .(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由如下;如图 ,作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,由(2)可知,因为 CD=BE ,所以OEH ODG ∆≅∆且OE=OD ,∴EOH DOG ∠=∠,180ABC HOG ∠+∠=,∴EOD EOG DOG EOG EOH HOG ∠=∠+∠=∠+∠=∠,∴180ABC EOD ∠+∠=,∵△BEF 的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF 和△OGF 中,OE OD EF FD OF OF =⎧⎪=⎨⎪=⎩,∴OEF OGF ∆≅∆,∴EOF DOF ∠=∠,∴2EOD EOF ∠=∠,∴2180ABC EOF ∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.8.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两.条线段...叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案.【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE 时,则∠EAD=∠EDA=1802(90)2x x -=-, ∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.9.(1)操作:如图,在已知内角度数的三个三角形中,请用直尺从某一顶点画一条线段,把原三角形分割成两个等腰三角形,并在图中标注相应的角的度数(2)拓展,△ABC中,AB=AC,∠A=45°,请把△ABC分割成三个等腰三角形,并在图中标注相应的角的度数.(3)思考在如图所示的三角形中∠A=30°.点P和点Q分别是边AC和BC上的两个动点.分别连接BP和PQ把△ABC分割成三个三角形.△ABP,△BPQ,△PQC若分割成的这三个三角形都是等腰三角形,求∠C的度数所有可能值直接写出答案即可.【答案】(1)见解析;(2)见解析;(3)∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【解析】【分析】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,根据垂直平分线的性质及外角的性质求出各角度数即可;(2)分别作AB、BC的垂直平分线,交于点O,连接OA、OB、OC可得三角形OAB、OAC、OBC为等腰三角形,根据等腰三角形的性质及外角性质求出各角度数即可;(3)分PB=PA、AB=AP、BA=BP时,PB=PQ、BP=BQ、QB=QP,PQ=QC、PC=QC、PQ=PC等10种情况,根据等腰三角形的性质分别求出∠C的度数即可.【详解】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,如图1,∵∠ABC=23°,∠BAC=90°,∴∠C=90°-23°=67°,∵MN垂直平分AB,∴BD=AD,∴△ABD是等腰三角形,∴∠BAD=∠ABC=23°,∴∠ADC=2∠ABC=46°,∵∠BAC=90°,∴∠DAC=∠BAC-∠BAD=67°,∴∠DAC=∠C,∴△DAC是等腰三角形,同理:图2中,∠ADC=46°,∠DAC=88°,∠C=46°,△ABD和△ACD是等腰三角形,图3中,∠BCD=23°,∠ADC=46°,∠ACD=46°,△BCD和△ACD是等腰三角形.(2)作AB、BC的垂直平分线,交于点O,连接OA、OB、OC,∵点O是三角形垂直平分线的交点,∴OA=OB=OC,∴△OAB、△OAC、△OBC是等腰三角形,∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°,∴AD是BC的垂直平分线,∴∠BAD=∠CAD=22.5°,∴∠OBA=∠OAB=22.5°,∠OCA=∠OAC=22.5°,∴∠OBC=∠OCB=45°.(3)①如图,当PB=PA,PB=PQ,PQ=CQ时,∵∠A=30°,PB=PQ,∴∠ABP=∠A=30°,∴∠APB=120°,∵PB=PQ,PQ=CQ,∴∠PQB=∠PBQ,∠C=∠CPQ,∴∠PBQ=2∠C,∴∠APB=∠PBQ+∠C=3∠C=120°,解得:∠C=40°.②如图,当PB=PA,PB=BQ,PQ=CQ时,∴∠PQB=2∠C,∠PQB=∠BPQ,∴∠PBQ=180°-2∠PQB=180°-4∠C,∴180°-4∠C+∠C=120°,解得:∠C=20°,③如图,当PA=PB,BQ=PQ,CQ=CP时,∵∠PQC=2∠PBQ,∠PQC=12(180°-∠C),∴∠PBQ=14(180°-∠C),∴14(180°-∠C)+∠C=120°,解得:∠C=100°.④如图,当PA=PB,BQ=PQ,PQ=CP时,∵∠PQC=∠C=2∠PBQ,又∵∠C+∠PBQ=120°,∴∠C=80°;⑤如图,当AB=AP,BP=BQ,PQ=QC时,∵∠A=30°,∴∠APB=12(180°-30°)=75°,∵BP=BQ,PQ=CQ,∴∠BPQ=∠BQP,∠QPC=∠QCP,∴∠BQP=2∠C,∴∠PBQ=180°-4∠C,∴∠C+180°-4∠C=75°,解得:∠C=35°.⑥如图,当AB=AP,BQ=PQ,PC=QC时,∴∠PQC=2∠PBC,∠PQC=12(180°-∠C),∴∠PBC=14(180°-∠C),∴14(180°-∠C)+∠C=75°,解得:∠C=40°.⑦如图,当AB=AP,BQ=PQ,PC=QP时,∵∠C=∠PQC=2∠PBC,∠C+∠PQC=75°,∴∠C=50°;⑧当AB=AP,BP=PQ,PQ=CQ时,∵AB=BP,∠A=30°,∴∠ABP=∠APB=75°,又∵∠PBQ=∠PQB=2∠C,且有∠PBQ+∠C=180°-30°-75°=75°,∴3∠C=75°,∴∠C=25°;⑨当AB=BP,BP=PQ,PQ=CQ时,∵AB=BP,∴∠BPA=∠A=30°,∵∠PBQ=∠PQB=2∠C,∴2∠C+∠C=30°,解得:∠C=10°.⑩当AB=BP,BQ=PQ,PQ=CQ时,∴∠PQC=∠C=2∠PBQ,∴12∠C+∠C=30°, 解得:∠C=20°.综上所述:∠C 所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【点睛】本题考查复杂作图及等腰三角形的性质,熟练掌握等腰三角形的性质是解题关键. 10.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B 的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B 的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下两题:变式1: 等腰三角形ABC 中,∠A=100°,求B 的度数.变式2: 等腰三角形ABC 中,∠A= 45° ,求B 的度数.(1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B 的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B 只有一个度数时,请你探索x 的取值范围. 【答案】(1)变式1: 40°;变式2: 90°或67.5°或45°;(2)90°≤<180°或x=60°【解析】【分析】(1)根据等腰三角形的性质和三角形内角和定理,分类讨论,即可得到答案;(2)在等腰三角形ABC 中,当B 只有一个度数时,A ∠只能作为顶角时,或∠A=60°,进而可得到答案.【详解】变式1:∵等腰三角形ABC 中,∠A=100°,∴∠A 为顶角,∠B 为底角,∴∠B =1801002-=40°; 变式2: ∵等腰三角形ABC 中,∠A= 45° ,∴当AB=BC 时,∠B =90° ,当AB=AC 时, ∠B =67.5° ,当BC=AC 时 ∠B =45° ;(2)等腰三角形ABC 中,设A x ∠=,当90°≤x <180°,∠A 为顶角,此时,B 只有一个度数,当x=60°时,三角形ABC 是等边三角形,此时,B 只有一个度数,综上所述:90°≤x <180°或x=60°【点睛】本题主要考查等腰三角形的性质,分类讨论思想的应用,是解题的关键.。
成都石室天府中学2023—2024学年度下期期中抽样调查初2026届数学抽样试卷(满分:150分,考试时间:120分钟)A 卷(共100分)一、选择题(本大题共8个小题,每小题4分,共32分)1.下列计算正确的是( )A .B .C .D .2.我国古代数学家祖冲之推算出π的近似值为,它与π的误差小于.将用科学记数法可以表示为( )A .B .C .D .3.下列算式能用平方差公式计算的是( )A .B .C .D .4.如图,为了测出池塘两端A ,B 间的距离,小铱在地面上取一个可以直接到达A 点和B 点的点,连接并延长到,使;连接并延长到,使,连接并和测量出它的长度,小铱认为的长度就是A ,B 间的距离,她是根据来判断的,那么判定这两个三角形全等的依据是( ).A .B .C .D .5.下列说法不正确的是( )A .同角或等角的补角相等238⋅=x y x 222(3)3xy x y =2(2)2x x x -=-22(2)44x x x +=++3551130.00000030.00000037310-⨯40.310-⨯4310-⨯7310⨯()()22a b b a +-()()33x y x y --+111122x x ⎛⎫⎛⎫+-- ⎪⎪⎝⎭⎝⎭()()m n m n ---+O AO C OC OA =BO D OD OB =CD CD OAB OCD V V ≌AB CD =SSS SAS ASA AASB .过直线外一点有且只有一条直线与这条直线平行C .两边分别相等且其中一组等边的对角相等的两个三角形一定全等D .在同一平面内,两条直线的位置关系有相交和平行两种6.如图,在和中,点B ,F ,C ,E 在同一直线上,,,只添加一个条件,能判定的是( )A .B .C .D .7.已知等腰三角形的一边长为3,周长为12,那么它的腰长为( )A .4.5B .6C .4.5或6D .不能确定8.如图,已知,平分平分,,则的度数为( )度.A .55B .50C .40D .30二.填空题(本大题共5个小题,每小题4分,共20分)9.如图,运动会上,小明自踏板M 处跳到沙坑P 处,甲、乙、丙三名同学分别测得PM =3.25米,PN =3.15米,PF =3.21米,则小明的成绩为 米.(填具体数值)10.若是一个完全平方式,则 .11.若多项式与多项式的乘积的展开式中不含项与x 项,则 .12.如图,已知,AB ∥CD ∥EF ,∠E=140°,∠A=115°,则∠ACE= 度.ABC DEF ACB DFE ∠=∠BF EC =ABC DEF ≌△△B E ∠=∠BC EF =AB DE =DF FE =AB CD ∥BE ABC DE ∠,ADC ∠7040,∠=︒∠=︒BAD BCD BED ∠212x x n ++n =2x p +214x x q -+2x 2p q +=13.如图,在三角形纸片中ABC ,,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则的周长等于 .三.解答题(共5小题)14.计算或化简:(1)(2)(3).15.张老师在黑板上布置了一道题:已知,求代数式的值,小白和小红展开了下面的讨论:根据上述情景,你认为谁说得对?并将代数式化简求值.16.已知:点在同一条直线上,.求证:7cm,5cm,6cm AB BC AC ===AED △()()3021********π-⎛⎫-+---⨯- ⎪⎝⎭()()()223442·63xy x y x y -÷()()2211ab ab +--1y =-()()()()22252x y x y y x y x ⎡⎤⎣++-⎦+-÷,,,A D C B ,,DF CE DF CE AD BC ==∥(1);(2).17.如图,于于F ,若,(1)求证:平分;(2)已知,求的长.18.已知,直线,点、分别在直线、上,点是直线与外一点,连接、.(1)如图1,若,,求的度数;(2)如图2,过点作的角平分线交的延长线于点,的角平分线交的反向延长线交于点,若与互补,试探索直线与直线的位置关系,并说明理由;(3)若点在直线的上方且不在直线上,作的角平分线交的角平分线所在直线于点,请直接写出与的数量关系.B 卷(50分)一、填空题(共5个小题,每小题4分,共20分)CF DE =AF EB ∥DE AB ⊥E DF AC ⊥,BD CD BE CF ==、AD BAC ∠204,==AC BE AB AB CD ∥E F AB CD P AB CD PE PF 45AEP ∠=︒105DFP ∠=︒EPF ∠E AEP ∠EM FP M DFP ∠FN EM N M ∠3N ∠EP FN P AB EF DFP ∠FN AEP ∠EM N EPF ∠ENF ∠19.已知,则的值是 .20.中,是边上的高,,,则 度.21.我们知道,同底数幂的乘法法则为(其中,,为正整数),类似的,我们规定关于任意正整数,的一种新运算:,若,则 .22.如图,在中,,D 是的中点.点P 在线段上以的速度由点B 向点C 运动,同时,点Q 在线段上由点C 向点A 运动,它们运动的时间为,设点Q 的运动速度为,若使得与全等,则x 的值为 .23.如图,已知点B 是边上的动点(不与A 、C 重合),在AC 的同侧作等边和等边,连接,下列结论正确的是 .(填写序号)①;②;③;④平分;⑤二、解答题(3个小题,共30分)24.“数形结合”是一种非常重要的数学思想方法,比如:在学习“整式的乘法”时,我们通过构造几何图形,用“等积法”直观地得到多项式的乘法公式.240x y +-=39⋅y x ABC BD AC 60A ∠=︒20DBC ∠=︒ABC ∠=m n m n a a a +⋅=0a ≠m n m n ()()()h m n h m h n +=⋅()213h =(3)=h ABC 10cm 6cm ,,∠=∠===B C AB AC BC AB BC 2cm /s AC ()s t cm /s x DBP QCP △AC ABD △BCE AE CD ,ABE DBC ≌60CHE ∠=︒GF AC ∥BH DBF ∠AH DH BH=+(1)从图1可以容易得到;,等乘法公式(如图1),根据得到的乘法公式完成下列问题:①若,,则______;②若x 满足,求的值.(2)观察图2,回答下列问题:①请你从图2中得到______;②根据得到的结论,解决问题:若,,,,求的值.25.(1)如图1,已知△ABC 是直角三角形,∠BAC =90°,AB =AC ,直线l 经过点A ,分别从点B 、C 向直线l 作垂线,垂足分别为D 、E .请写出图中全等的一对三角形是______.(2)如图2,△ABC 中,AB =AC ,直线l 经过点A ,点D 、E 分别在直线l 上,如果∠CEA =∠ADB =∠BAC ,猜想DE 、BD 、CE 有何数量关系?给予证明.(3)某学校学生小明在科技创新大赛上,创作了一幅机器人图案,大致图形如图3,以△ABC 的边AB 、AC 为腰向外作等腰Rt △BAD 和等腰Rt △CAE ,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,AG 是BC 边上的高,延长GA 交DE 于点H ,经测量,DE =50cm ,求HE 的长.26.如图1,在中,,点D 在的延长线上,连接,.()()22223a b a b a ab b ++=++()2a a b a ab +=+()2222a b b ab b +=++6a b +=4ab =22a b +=()()22202520232024x x -+-=()()20252023x x --()2a b c ++=23a x =+35b x =+57c x =--9ab ac bc ++=-222a b c ++ABC 90AB AC BAC =∠=︒,CB AD ,⊥∠=∠EA AD ACE ABD(1)求证:;(2)如图2,若点F 为的中点,的延长线交于点G ,求证:;(3)在(2)的条件下,若,求的面积.参考答案与解析1.D 【分析】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.直接利用积的乘方运算法则、单项式乘多项式、完全平方公式分别判断,进而得出答案.【详解】解:A .,故此选项不合题意;B .,故此选项不合题意;C .,故此选项不合题意;D .,故此选项符合题意.故选:D .2.A【分析】本题考查用科学记数法表示较小的数,一般形式为,其中为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数数,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:.AD AE =CD AF BE AF BE ⊥102,==AG GF ADC △2323=x y x y 222(3)9xy x y =2(2)2x x x x -=-22(2)44x x x +=++10n a -⨯1||10,a n ≤<10n a -⨯70.0000003310-=´故选:A .3.D【分析】本题主要考查了平方差公式,熟知平方差公式的结构是解题的关键:.【详解】解;A 、不能用平方差公式计算,不符合题意;B 、不能用平方差公式计算,不符合题意;C 、不能用平方差公式计算,不符合题意;D 、能用平方差公式计算,符合题意;故选:D .4.B【分析】由题意可知根据“边角边”可证即可选择.【详解】解:∵在和中,,∴.故判定这两个三角形全等的依据是“”.故选B .【点睛】本题考查三角形全等的判定.熟练掌握判定三角形全等的条件是解题关键.5.C【分析】本题考查了补角的性质,平行线的判定,全等三角形的判定,平行线的定义进行判断,熟练掌握各知识点是解答本题的关键.根据性质和定义逐项分析即可.【详解】解:A 、同角或等角的补角相等,正确,不符合题意;B 、过直线外一点有且只有一条直线与这条直线平行,正确,不符合题意;C 、两边分别相等且其中一组等边的对角相等的两个三角形不一定全等,不正确,符合题意;D 、在同一平面内,两条直线的位置关系有相交和平行两种,正确,不符合题意;故选:C .6.A【分析】先证明,分别判断选项所添加的条件,根据全等三角形的判定定理:()()22x y x y x y +-=-()()22a b b a +-()()()()3333x y x y x y x y --+=---111111112222x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+--=-++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()()22m n m n m n ---+=-OAB OCD V V ≌OAB OCD OC OA COD AOB OD OB =⎧⎪∠=∠⎨⎪=⎩()OAB OCD SAS ≌△△SAS BC EF =、、、和进行判断即可.【详解】解:∵,∴,∴,∵,∴A 、添加可用进行判定,故符合题意;B 、添加不能判定,故不符合题意;C 、添加不能判定,故不符合题意;D 、添加不能判定,故不符合题意.故选:A .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即、、、和)是解题的关键.注意:、不能判定两个三角形全等.判定两个三角形全等时,必须有边的参与,若有两边一角相等时,角必须是两边的夹角.7.A【分析】根据题意分①3是腰长时,②3是底边时两种情况,分别求得其他两边,根据三角形三边关系判断能否构成三角形,进而求得腰长.【详解】解:①3是腰长时,三边分别为3、3、6,不能组成三角形;②3是底边时,腰长为(12﹣3)=4.5,三边分别为4.5、4.5、3,能组成三角形.综上所述,腰长为4.5.故选:A .【点睛】本题考查了等腰三角形的定义,三角形三边关系,分类讨论是解题的关键.8.A【分析】本题考查了平行线的性质以及角平分线的定义,利用平行线的性质及角平分线的定义,求出和的度数是解题的关键.由,利用“两直线平行,内错角相等”可得出和的度数,结合角平分线的定义可求出和的度数,过点作,则,利用“两直线平行,内错角相等”可得出和的度数,再结合,即可求出的度数.【详解】解:∵,SSS SAS ASA AAS HL BF CE =BF FC CE CF +=+BC EF =ACB DFE ∠=∠B E ∠=∠ASA BC EF =ABC DEF ≌△△AB DE =ABC DEF ≌△△DF FE =ABC DEF ≌△△SSS SAS ASA AAS HL AAA SSA 12BEF ∠DEF ∠AB CD ∥ABC ∠ADC ∠ABE ∠CDE ∠E EF AB ∥EF CD ∥BEF ∠DEF ∠BED BEF DEF ∠=∠+∠BED ∠AB CD ∥∴,.∵平分平分,∴.过点作,则,如图所示.∵,,∴,∴.故选:A .9.3.15【分析】根据跳远的距离应该是起跳板到P 点的垂线段的长度进行求解即可【详解】解:由图形可知,小明的跳远成绩应该为PN 的长度,即3.15米,故答案为:3.15.【点睛】本题主要考查了点到直线的距离,熟练掌握点到直线的距离的定义是解题的关键.10.36【分析】此题主要考查完全平方公式的形式,根据完全平方公式的形式即可解答.解题的关键是熟知完全平方公式的特点.【详解】∵是一个完全平方式,∴,∴.故答案为:36.11.5【分析】本题主要考查了多项式乘多项式,先计算,得出40ABC BCD ∠=∠=︒70ADC BAD ∠=∠=︒BE ,ABC DE ∠ADC ∠1120,3522ABE ABC CDE ADC ∠=∠=︒∠=∠=︒E EF AB ∥EF CD ∥EF AB ∥EF CD ∥20,35BEF ABE DEF CDE ∠=∠=︒∠=∠=︒203555BED BEF DEF ∠=∠+∠=︒+︒=︒212x x n ++()2221261236x x n x x x ++=+=++36n =()2124x p x x q ⎛⎫+-+ ⎪⎝⎭,再根据展开式中不含项与x 项,求出,,然后求出结果即可.【详解】解:,∵展开式中不含项与x 项,∴,,解得:,,∴.故答案为:5.12.25【分析】延长FE 交AC 于点G ,根据平行线的性质求出∠CGE 的度数,再由三角形外角的性质即可得出结论.【详解】解:延长FE 交AC 于点G ,∵AB ∥EF ,∠A =115°,∴∠CGE =∠A =115°.∵∠CEF =140°,∴∠ACE =∠CEF−∠CGE =140°−115°=25°.故答案为25.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用三角形外角的性质求解是解答此题的关键.13.【分析】根据折叠得到CD =DE ,BC =BE ,求出AE ,根据周长的计算公式求出答案.【详解】解:由折叠得CD =DE ,BC =BE ,∵AB =7cm ,BC =5cm ,()321121242x p x q p x pq ⎛⎫+-+-+ ⎪⎝⎭2x 12p =4q =()2124x p x x q ⎛⎫+-+ ⎪⎝⎭232214122x x px px pq qx -+++-=()321121242x p x q p x pq ⎛⎫=+-+-+ ⎪⎝⎭2x 210p -=1204q p -=12p =4q =122452p q +=⨯+=8cm∴AE =AB -BE =2cm ,∴△ADE 的周长=AD +DE +AE =AD +CD +AE =AC +AE =6cm+2cm=8cm ,故答案为8cm .【点睛】此题考查了折叠的性质:折叠前后对应的边相等,对应的角相等,熟记折叠的性质是解题的关键.14.(1)(2)(3)【分析】本题主要考查了有理数的混合运算,整式的混合运算等知识点,(1)根据整式的混合运算顺序,首先求出负指数次幂、零指数次幂,绝对值,平方的值各是多少,然后从左向右依次计算即可;(2)根据整式的混合运算顺序,首先计算乘方,然后进行单项式乘除计算即可;(3)先运用公式因式分解,然后再进行单项式乘法计算即可;关键是能对算式进行准确变形,并能运用乘法公式进行计算.【详解】(1);(2);(3).10-8xy-4ab()()3021********π-⎛⎫-+---⨯- ⎪⎝⎭()11893=+--⨯73=--10=-()()()22344263xy x y x y ⋅-÷()()24344463x y x y x y =⨯-÷()234414463x y +-+-⎡⎤=⨯-÷⎣⎦8xy =-()()2211ab ab +--()()()()1111ab ab ab ab ⎡⎤⎡⎤=++-+--⎣⎦⎣⎦22ab =⨯4ab =15.小红的说法正确;;【分析】根据整式混合运算法则进行化简,然后再代入求值即可.【详解】解:小红的说法正确;,把代入得:原式.【点睛】本题主要考查了整式化简求值,解题的关键是熟练掌握整式混合运算法则,准确计算.16.(1)证明见解析(2)证明见解析【分析】(1)先根据平行线的性质可得,再根据定理证出,然后根据全等三角形的性质即可得证;(2)先根据平行线的性质可得,从而可得,再根据定理证出,然后根据全等三角形的性质可得,最后根据平行线的判定即可得证.【详解】(1)证明:,,在和中,,,.(2)证明:,,2y 2-()()()()22252x y x y y x y x ⎡⎤⎣++-⎦+-÷()()222225244x xy y y x y x +-⎡⎤=+⎣⎦÷+-()()222224452x xy y y x y x =+++--÷()42xy x =÷2y =1y =-()212=⨯-=-CDF DCE ∠=∠SAS CDF DCE ≅ CDF DCE ∠=∠ADF BCE ∠=∠SAS ADF BCE ≅△△A B ∠=∠DF CE CDF DCE ∴∠=∠CDF DCE △DF CE CDF DCE CD DC =⎧⎪∠=∠⎨⎪=⎩()SAS CDF DCE ∴≅ CF DE ∴=DF CE CDF DCE ∴∠=∠,即,在和中,,,,.【点睛】本题考查了三角形全等的判定与性质、平行线的判定与性质,熟练掌握三角形全等的判定与性质是解题关键.17.(1)见详解(2)12【分析】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有,全等三角形的对应边相等,对应角相等.(1)求出,根据全等三角形的判定定理得出,推出,根据角平分线性质得出即可;(2)根据全等三角形的性质得出,即可求出答案.【详解】(1)证明:∵,∴,∴在和中,,∴,∴,∵,∴平分;(2)解:∵,∴,180180CDF DCE ∴︒-∠=︒-∠ADF BCE ∠=∠ADF △BCE DF CE ADF BCE AD BC =⎧⎪∠=∠⎨⎪=⎩()SAS ADF BCE ∴≅ A B ∴∠=∠AF EB ∴ ,,,SAS ASA AAS SSS 90E DFC ∠=∠=︒Rt BED Rt CFD ≌DE DF =,==AE AF BE CF ,DE AB DF AC ⊥⊥90E DFC ∠=∠=︒Rt BED Rt CFD BD CD BE CF =⎧⎨=⎩()Rt BED Rt CFD HL ≌DE DF =,DE AB DF AC ⊥⊥AD BAC ∠90,,∠=∠=︒==AED AFD AD AD DE DF ()Rt ADE Rt ADF HL ≌∴,∵,∴,∴.18.(1)(2)),理由见解析(3)或【分析】(1)过作,根据平行线的性质可得;(2),根据角平分线的定义和三角形外角的性质可得,进而可得结论;(3)根据角平分线的定义和平行线的性质分情况讨论即可.【详解】(1)解:如图,过作,,,,,.故;(2)解:,如图,理由:平分,平分,,,,,AE AF =20,4===AC CF BE 20416AE AF ==-=16412AB AE BE =-=-=120EPF ∠=︒EP FN ∥2180EPF ENF ∠+∠=︒2180EPF ENF ∠=∠-︒P PQ AB ∥120EPF ∠=︒EP FN ∥421AEP ∠=∠=∠P PQ AB ∥ AB CD ∥∴PQ CD ∥∴45QPE AEP ∠=∠=︒180********QPF DFP ∠=︒-∠=︒-︒=︒∴4575120EPF QPE QPF ∠=∠+∠=︒+︒=︒120EPF ∠=︒EP FN ∥ EM AEP ∠FN DFP ∠∴21AEP ∠=∠23MFD ∠=∠ AB CD ∥∴34∠∠=由(1)得,,,,与互补,,整理得,,;(3)解:①.如图,,,,平分,平分,,,,,,.②.如图,,,,由(1)得,,()()1118023118024M CFM ∠=∠+∠=∠+︒-∠=∠+︒-∠ 24N ∠+∠=∠∴4241N ∠=∠-∠=∠-∠ M ∠3N ∠∴()()118024341180∠+︒-∠+∠-∠=︒421AEP ∠=∠=∠∴EP FN ∥2180EPF ENF ∠+∠=︒ AB CD ∥∴CFH EHF ∠=∠EKF KFD ∠=∠ FN DFP ∠EM AEP ∠∴1802CFH DFK ∠=︒-∠22AEP AEM KEN ∠=∠=∠18022EPF EHF AEP DFK AEM ∠=∠-∠=︒-∠-∠ENF EKF KEN DFK AEM ∠=∠+∠=∠+∠∴1802EPF ENF ∠=︒-∠∴2180EPF ENF ∠+∠=︒2180EPF ENF ∠=∠-︒ AB CD ∥∴2PKB PFD DFN ∠=∠=∠()180222180EPF PKB BEP PKB MEP DFN AEM ∠=∠-∠=∠-︒-∠=∠+∠-︒ENF DFN NEK DFN AEM ∠=∠+∠=∠+∠,.综上,或.【点睛】本题考查平行线判定和性质,角平分线的定义,三角形外角与内角的关系,根据题意理清各角之间的关系是解题关键.19.81【分析】本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.由已知条件可得,再利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,再代入相应的值运算即可.【详解】解:∵,,,故答案为:81.20.或10【分析】分两种情况讨论:①点D 在内部;②点D 在外部,利用三角形内角和定理分别求解,即可得到答案.【详解】解:①如图,当点D 在内部时,是边上的高,,,,,,;②如图,当点D 在外部时,∴222ENF DFN AEM ∠=∠+∠∴2180EPF ENF ∠=∠-︒2180EPF ENF ∠+∠=︒2180EPF ENF ∠=∠-︒24x y +=240x y +-=24∴+=x y 22439333381+∴==⋅=⋅=y x y x x y 50ABC ABC ABC BD Q AC BD AC ∴⊥90BDC ∴∠=︒20DBC ∠=︒ 180180209070ACB DBC BDC ∴∠=︒-∠-∠=︒-︒-︒=︒60A ∠=︒ 180180607050ABC A ACB ∴∠=︒-∠-∠=︒-︒-︒=︒ABC,,,,,综上可知,的度数为或故答案为:度或10.【点睛】本题考查了三角形的高,三角形内角和定理,利用分类讨论的思想,熟练掌握三角形内角和等于是解题关键.21.【分析】考查了同底数幂的乘法,定义新运算,熟练掌握运算性质和法则是解题的关键.将变形为,再根据定义新运算:计算即可求出,再将变形为,再根据定义新运算:计算即可求解;【详解】解:∵,∴,∴,故答案为:.22.2或【分析】本题考查全等三角形的对应边相等的性质,根据对应角分情况讨论是本题的关键.用表示出相关线段,再根据全等三角形对应边相等,分①、是对应边,②与是对应边两种情况讨论即可.【详解】解:∵,点为的中点,60A ∠=︒ 90ADB ∠=︒180180609030ABD A ADB ∴∠=︒-∠-∠=︒-︒-︒=︒20DBC ∠=︒ 302010ABC ABD DBC ∴∠=∠-∠=︒-︒=︒ABC ∠50︒10︒50180︒827()2h (11)+h ()()()h m n h m h n +=⋅()2h (3)h (21)+h ()()()h m n h m h n +=⋅2(1),()()()3=+=⋅h h m n h m h n 224(2)(11)(1)(1)339h h h h =+=⋅=⨯=428(3)(21)(2)(1)9327=+=⋅=⨯=h h h h 82752t BD PC BD C Q 10cm,6cm AB AC BC ===D AB,设点、的运动时间为,则,,①当时,,解得:,则,故点的运动速度为:;②当时,∵,∴,∴,故点的运动速度为;故答案为:2或.23.①②③④⑤【分析】根据等边三角形的性质得到,则可根据“”判定,可对①进行判断;根据全等三角形的性质得到,则可得到,则可对②进行判断;证明为等边三角形得到,则,所以,从而可对③进行判断.利用得到和边上的高相等,则根据角平分线的性质定理逆定理可对④进行判断,在上截取,连接,由“”可证,可得,可得,可判断⑤,即可求解.【详解】解:∵为等边三角形,∴,∴,∴,在和中,1105cm 2BD ∴=⨯=P Q t 2(cm)=BP t (62)cm PC t =-BD PC =625t -=12t =21cm BP CQ t ===Q 112(cm /s)2÷=BP PC =6cm BC =3cm BP PC ==422(s)t =÷=Q 552(cm /s)2÷=52,,60==∠=∠=︒BA BD BE BC ABD CBE SAS ABE DBC ≌BAE BDC ∠=∠60BAH BCH ∠+∠=︒BGF 60BGF ∠=︒ABG ∠BGF =∠GF AC ∥ABE DBC ≌AE DC AE AN DH =BN SAS ≌V V ABN DBH ,BN BH ABN DBH =∠=∠AH DH BH =+,ABD BCE V V ,60,AB DB ABD CBE BE BC =∠=∠=︒=60DBE ∠=︒ABE DBC ∠=∠ABE DBC △,∴,故①正确;∴,∵,,故②正确,在和中,,∴,,又∵,∴是等边三角形,∴,∴,故③正确,∵,∴和边上的高相等,即点到和的距离相等,∴平分,所以④正确;如图,在上截取,连接,在和中,,,AB DB ABE DBC BE BC =⎧⎪∠=∠⎨⎪=⎩()ABE DBC SAS ≌BAE BDC ∠=∠∠=∠+∠CHE BAE BCD 60CHE BDC BCD ABD ∴∠=∠+∠=∠=︒AGB DFB △60BAE BDC AB DBABG DBF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()AGB DFB ASA ≌BG BF ∴=60DBF ∠=︒BFG 60BGF ABD ∠=︒=∠GF AC ∥ABE DBC ≌AE DC B AE DC BH AHC ∠AE AN DH =BN ABN DBH △AN DH BAN BDH AB DB =⎧⎪∠=∠⎨⎪=⎩()ABN DBH SAS ∴ ≌,,是等边三角形,,,故⑤正确;故答案为:①②③④⑤.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质与判定,熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.24.(1)① ②(2)① ②【分析】本题考查的是整式的化简求值,掌握完全平方公式是解题的关键.(1)①根据完全平方公式计算即可;②设,分别求出 和 ,根据完全平方根时间是即可;(2)①根据完全平方公式计算即可;②根据完全平方公式计算即可.【详解】(1)① ,,故答案为: ;②设则,因为 ,所以 ;(2)① ;故答案为:;,∴=∠=∠BN BH ABN DBH 60∴∠+∠=∠+∠=∠=∠=︒ABN DBN DBH DBN NBH ABD ∴V BNH ∴=BH NH ∴=+=+AH AN NH DH BH 281010-22222a b c ab bc ++++2ac +192025,2023x a x b -=-=22a b +a b +()2222,a b a ab b +=++ 6,4a b ab +==()2222362428a b a b ab ∴+=+-=-⨯=282025,2023,x a x b -=-=()()()()222222202520232024x x a b a b -+-=-+-=+=()()202520232a b x x +=-+-=()2222a b a b ab +=++()()20252023x x ab--=()()22212a b a b ⎡⎤=+-+⎣⎦()21220242=-1010=-()222222a b c a b c ab bc ++=++++2ac +222222a b c ab bc ac +++++②由①得 .25.(1)∆ABD ≅ ∆CAE ;(2)DE =BD +CE ,证明见解析;(3)25cm【分析】(1)根据题意得出∠ABD =∠CAE ,利用全等三角形的判定即可证明三角形全等;(2)根据等量代换及三角形内角和定理得出∠AEC =∠ADB ,∠CAE =∠ABD ,由全等三角形的判定和性质即可证明;(3)过E 作EM ⊥HG 于M ,DN ⊥GH 的延长线于N .利用全等三角形的判定和性质得出∆DNH ≅∆EMH ,DH =HE ,即可求出结果.【详解】(1)证明:∵BD ⊥DE ,CE ⊥DE ,∴∠ADB =90°,∠AEC =90°∴∠ABD +∠BAD =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∴∠ABD =∠CAE ,在∆ABD 与∆CAE 中,,∴∆ABD ≅ ∆CAE ;故答案为:∆ABD ≅∆CAE .(2)DE =BD +CE .证明:在∆ABD 中,∠ADB +∠BAD +∠ABD =180°,在∆BEC 中,∠AEC +∠CEA +∠EAC =180°,∵∠CAE +∠CAB +∠BAD =180°,()2222222a b c a b c ab bc ac++=++---()()22335572x x x ab ac bc =+++---++()129=-⨯-19=90ABD CAE BDA AEC AB AC ∠∠∠∠=⎧⎪==︒⎨⎪=⎩∴∠AEC =∠ADB ,∠CAE =∠ABD ,∵AB =AC ,∴∆ABD ≅∆CAE ,∴CE =AD ,BD =AE ,∴DE =AE +AD =BD +CE .(3)如图,过E 作EM ⊥HG 于M ,DN ⊥GH 的延长线于N .∴∠EMG =∠DNH =90°,由(1)和(2)的结论可知EM =AG ,AG =DN ,∴EM =DN .在∆DNH 与∆EMH 中,,∴∆DNH ≌∆EMH ,∴DH =HE ,∵DE =50cm ,∴HE=cm .【点睛】本题是三角形综合题,考查了三角形内角和定 理、直角三角形的性质、全等三角形的判定与性质,熟练掌握三角形内角和定理,证明三角形全等是解题的关键.26.(1)见详解(2)见详解(3)80【分析】本题考查了全等三角形的判定和性质,利用了三角形全等的判定和性质解题.正确DNH EMH DHN MHE DN ME ∠∠∠∠=⎧⎪=⎨⎪=⎩1252DE =作出辅助线是解答本题的关键.(1)根据,可得,然后根据,可证明,继而可得出;(2)延长至,使,连接,证,可得出,证,从而证得,通过,得到;(3)求出,由(2)可求出,则的面积可求出.【详解】(1)证明:∵,,,在和中,,,;(2)证明:延长至,使,连接,在与中,,,,,,,90,∠=︒⊥BAC EA AD BAD CAE ∠=∠,=∠=∠AB AC ACE A BD ABD ACE ≌△△AD =AE AF M FM AF =MC ADF MCF ≌==AD AE CM ∠=∠BAE ACM ABE CAM ≌ABG CAF Ð=Ð90AGE ∠=︒AF BE ADC △90,∠=︒⊥BAC EA AD 90BAC DAE ∴∠=∠=︒BAD CAE ∴∠=∠ABD △ACE △BAD CAE AB ACACE ABD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABD ACE ASA ∴ ≌AD AE ∴=AF M FM AF =MC ADF △MCF △DF CF DFA CFM AF FM =⎧⎪∠=∠⎨⎪=⎩()ADF MCF SAS ∴ ≌,∴=∠=∠AD CM DAF M AD CM ∴∥180∴∠+∠=︒ACM DAC AD AE =,,,,,在和中,,∴,,,,,即;(3)解:如图,∵,,,,,,.∴==AD AE CM 180BAC DAE ∠∠︒+= 180∴∠+∠-∠=︒BAC DAC CAE 180BAE DAC ∴∠+∠=︒∴∠=∠BAE ACM ABE CAM V AB AC BAE ACM AE CM =⎧⎪∠=∠⎨⎪=⎩()ABE CAM SAS ≌ABG CAF ∴∠=∠90∠+∠=︒Q CAF BAG 90ABG BAG ∴∠+∠=︒90AGB AGE ∴∠=∠=︒AF BE ⊥10,2==AG GF 1028∴=-=-=AF AG GF 216∴===AM BE AF ≌QV V ADF MCF ∴=V V ADC ACM S S ≌QV V ABE CAM 1116108022ACD ABE CAM S S S BE AG ∴===⨯⨯=⨯⨯=。
一、初一数学有理数解答题压轴题精选(难)1.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.2.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x即可.3.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位,动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半;点P从点A出发的同时,点Q从点C出发,以1单位/秒的速度沿着“折线数轴”的负方向运动,当点P到达B点时,点P、Q均停止运动.设运动的时间为t秒.问:(1)用含t的代数式表示动点P在运动过程中距O点的距离;(2)P、Q两点相遇时,求出相遇时间及相遇点M所对应的数是多少?(3)是否存在P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等时?若存在,请直接写出t的取值;若不存在,请说明理由.【答案】(1)解:设动点P在运动过程中距O点的距离为S,当P从A运动到O时,所需时间为:(秒),当0≤t≤5时,S=10﹣2t,当P从O运动到B时,所需时间为:(秒)∴P从A运动到B时,所需时间为:15秒当5<t≤15时,S=t﹣5,即动点P在运动过程中距O点的距离S=;(2)解:设经过a秒,P、Q两点相遇,则点P运动的距离为10+(a-5),点Q运动的距离为a,10+(a-5)+a=28解得,a=,则点M所对应的数是:18﹣=,即点M所对应的数是;(3)解:存在,t=2或t=,理由:当0≤t≤5时,10﹣2t=(18﹣10﹣t)×1,解得,t=2当5<t≤8时,(t﹣10÷2)×1=(18﹣10﹣t)×1,解得,t=,当8<t≤15时,(t﹣10÷2)×1=[t﹣(18﹣10)÷1]×1该方程无解,故存在,t=2或t= .【解析】【分析】(1)分点P在AO上和点P在OB上两种情况,先求出点P在每段时t 的取值范围,再根据题意分别列出代数式可得答案;(2)根据相遇时P,Q运动的时间相等,P,Q运动的距离和等于28可得方程,根据解方程,可得答案;(3)分0≤t≤5,5<t≤8,8<t≤15三种情况,根据PO=BQ,可得方程,分别解出方程,可得答案.4.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【答案】(1)解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)解:AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【解析】【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB=PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.5.已知:b是最小的正整数,且a、b满足,请回答问题:(1)请直接写出a、b、c的值: a=________; b=________; c=________.(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.【答案】(1)-1;1;4(2)解:BC-AB=(4-1)-(1+1)=3-2=1.故此时BC-AB的值是1(3)解:t秒时,点A对应的数为-1-t,点B对应的数为3t+1,点C对应的数为xt+4.∴BC=(xt+4)-(3t+1)=(x-3)t+3,AB=(3t+1)-(-1-t)=4t+2,∴BC-AB=(x-3)t+3-(4t+2)=(x-7)t+1,∴BC-AB的值不随着时间t的变化而改变时,其值为7【解析】【解答】解:(1)∵b是最小的正整数,∴b=1,∵|c-4|+(a+b)2=0,∴c-4=0,a+b=0,∴a=-1,c=4【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;(3)先求出BC=4t+3,AB=4t+2,从而得出BC-AB,从而求解.6.已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c(1)填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)(2)若|a|=2,且点B到点A、C的距离相等① 当b2=16时,求c的值② 求b、c之间的数量关系③ P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x-c|-10|x+a|的值保持不变,求b的值【答案】(1)<;>;>(2)解:① 且 , ,且 , .∵点B到点A,C的距离相等,∴∴ ,∴②∵ , ∴ ,③依题意,得∴原式=∵∴原式= 【此处不取-2没关系】∵当 P 点在运动过程中,原式的值保持不变,即原式的值与无关∴ ,∴【解析】【解答】解:(1)由题中的数轴可知,a<0<b<c,且∴abc<0,a+b>ac,ab-ac>0,故答案为:<,>,>;【分析】(1)根据数轴上的点所表示的数的特点得出a<0<b<c,且,从而根据有理数的乘法法则,加法法则、减法法则及有理数大小的比较方法即可一一判断得出答案;(2)①根据数轴上点的位置及绝对值的意义、有理数的乘方确定a、b的取值,进而根据点B到点A,C的距离相等,即即可求解;②根据数轴上两个点之间的距离及点B到点A,C的距离相等,即,即可得结论;③根据绝对值的意义把算式化简,再根据当P点在运动过程中,原式的值保持不变,即原式的值与无关列出方程,求解即可.7.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如的几何意义是数轴上表示有理数的点与表示有理数3的点之间的距离.试探索:①:若,则=________.②:的最小值为________.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.①:当 =1时,A,P两点之间的距离为________;②:当 =________时,A,P之间的距离为2.(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)-12(2)6或10;20(3)6;3或5(4)2或4【解析】【解答】解:(1)∵AB=20,点A表示的数是8,B是数轴上位于点A左侧一点,∴点B表示的数是8-20=-12.故答案为:-12.(2)∵|x-8|=2∴x-8=±2解之:x=10或x=6;|x-(-12)|+|x-8|的最小值为8-(-12)=20.故答案为:6或10;20.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴OP=2t∴AP=8-2t当t=1时,AP=8-2×1=6;当AP=2时,则|8-2t|=2,解之:t=5或t=3.故答案为:6;3或5.(4)∵点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,∴点Q的速度为每秒8个单位长度,设运动时间为t(t>0)秒时,P,Q之间的距离为4.∴8t-4t-12=4或12+4t-8t=4解之:t=4或t=2故答案为:2或4.【分析】(1)根据点A表示的数和点B的位置关系,就可得到点B所表示的数。