(完整版)数学讲座
- 格式:ppt
- 大小:59.51 KB
- 文档页数:21
目录第一讲分式方程(组)的解法第二讲无理方程的解法第三讲简易高次方程的解法第四讲有关方程组的问题第五讲函数的基本概念与性质第六讲二次函数第七讲函数的最大值与最小值第八讲根与系数的关系及应用第九讲判别式及其应用第十讲一元二次不等式的解法第一讲分式方程(组)的解法分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根.例1 解方程解令y=x2+2x-8,那么原方程为去分母得y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0,y2-4xy-45x2=0,(y+5x)(y-9x)=0,所以y=9x或y=-5x.由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1.经检验,它们都是原方程的根.例2 解方程y2-18y+72=0,所以y1=6或y2=12.x2-2x+6=0.此方程无实数根.x2-8x+12=0,所以x1=2或x2=6.经检验,x1=2,x2=6是原方程的实数根.例3 解方程分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为整理得去分母、整理得x+9=0,x=-9.经检验知,x=-9是原方程的根.例4 解方程分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为即所以((x+6)(x+7)=(x+2)(x+3).例5 解方程分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为整理得去分母得x2+9x-22=0,解得x1=2,x2=-11.经检验知,x1=2,x2=-11是原方程的根.例6 解方程次项与常数项符号相反,故可考虑用合比定理化简.原方程变形为所以x=0或2x2-3x-2=2x2+5x-3.例7 解方程分析与解形式与上例相似.本题中分子与分母只是一次项的符号相反,故可考虑用合分比定理化简.原方程变形为当x≠0时,解得x=±1.经检验,x=±1是原方程的根,且x=0也是原方程的根.说明使用合分比定理化简时,可能发生增根和失根的现象,需细致检验.例8 解方程解将原方程变形为例9 解关于x的方程将x1=a-2b或x2=b-2a代入分母b+x,得a-b或2(b-a),所以,当a≠b时,x1=a-2b及x2=b-2a都是原方程的根.当a=b时,原方程无解.例10 如果方程只有一个实数根,求a的值及对应的原方程的根.分析与解将原方程变形,转化为整式方程后得2x2-2x+(a+4)=0.①原方程只有一个实数根,因此,方程①的根的情况只能是:(1)方程①有两个相等的实数根,即△=4-4·2(a+4)=0.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为0或2.(i)当x=0时,代入①式得a+4=0,即a=-4.这时方程①的另一个根是x=1(因为2x2-2x=0,x(x-1)=0,x1=0或x2=1.而x1=0是增根).它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×4-2×2+(a+4)=0,即a=-8.这时方程①的另一个根是x=-1(因为2x2-2x-4=0.(x-2)(x+1)=0,所以x1=2(增根),x2=-1).它不使分母为零,确是原方程的唯一根.因此,若原分式方程只有一个实数根时,所求的a的值分别是练习一1.填空:(3)如果关于x的方程有增根x=1,则k=____.2.解方程3.解方程4.解方程5.解方程6.解方程7.m是什么数值时,方程有根?第二讲无理方程的解法未知数含在根号下的方程叫作无理方程(或根式方程),这是数学竞赛中经常出现的一些特殊形式的方程中的一种.解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法、配方法、因式分解法、设辅助元素法、利用比例性质法等.本讲将通过例题来说明这些方法的运用.例1 解方程解移项得两边平方后整理得再两边平方后整理得x2+3x-28=0,所以x1=4,x2=-7.经检验知,x2=-7为增根,所以原方程的根为x=4.说明用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.例2 解方程方公式将方程的左端配方.将原方程变形为所以两边平方得3x2+x=9-6x+x2,两边平方得3x2+x=x2+6x+9,例3 解方程即所以移项得例4 解方程解三个未知量、一个方程,要有确定的解,则方程的结构必然是极其特殊的.将原方程变形为配方得利用非负数的性质得所以x=1,y=2,z=3.经检验,x=1,y=2,z=3是原方程的根.例5 解方程所以将①两边平方、并利用②得x2y2+2xy-8=0,(xy+4)(xy-2)=0.xy=2.③例6 解方程解观察到题中两个根号的平方差是13,即②÷①便得由①,③得例7 解方程分析与解注意到(2x2-1)-(x2-3x-2)=(2x2+2x+3)-(x2-x+2).设则u2-v2=w2-t2,①u+v=w+t.②因为u+v=w+t=0无解,所以①÷②得u-v=w-t.③②+③得u=w,即解得x=-2.经检验,x=-2是原方程的根.例8 解方程整理得y3-1=(1-y)2,即(y-1)(y2+2)=0.解得y=1,即x=-1.经检验知,x=-1是原方程的根.整理得y3-2y2+3y=0.解得y=0,从而x=-1.例9 解方程边的分式的分子与分母只有一些项的符号不同,则可用合分比定理化简方程.根据合分比定理得两边平方得再用合分比定理得化简得x2=4a2.解得x=±2a.经检验,x=±2a是原方程的根.练习二1.填空:2.解方程3.解方程4.解方程5.解方程6.解关于x的方程第三讲简易高次方程的解法在整式方程中,如果未知数的最高次数超过2,那么这种方程称为高次方程.一元三次方程和一元四次方程有一般解法,但比较复杂,且超过了初中的知识范围,五次或五次以上的代数方程没有一般的公式解法,这由挪威青年数学家阿贝尔于1824年作出了证明,这些内容我们不讨论.本讲主要讨论用因式分解、换元等方法将某些高次方程化为低次方程来解答.例1 解方程x3-2x2-4x+8=0.解原方程可变形为x2(x-2)-4(x-2)=0,(x-2)(x2-4)=0,(x-2)2(x+2)=0.所以x1=x2=2,x3=-2.说明当ad=bc≠0时,形如ax3+bx2+cx+d=0的方程可这样=0可化为bkx3+bx2+dkx+d=0,即(kx+1)(bx2+d)=0.方程ax4+bx3+cx+d=0也可以用类似方法处理.例2 解方程(x-2)(x+1)(x+4)(x+7)=19.解把方程左边第一个因式与第四个因式相乘,第二个因式与第三个因式相乘,得(x2+5x-14)(x2+5x+4)=19.设(y-9)(y+9)=19,即y2-81=19.说明在解此题时,仔细观察方程中系数之间的特殊关系,则可用换元法解之.例3 解方程(6x+7)2(3x+4)(x+1)=6.解我们注意到2(3x+4)=6x+8=(6x+7)+1,6(x+1)=6x+6=(6x+7)-1,所以利用换元法.设y=6x+7,原方程的结构就十分明显了.令y=6x+7,①由(6x+7)2(3x+4)(x+1)=6得(6x+7)2(6x+8)(6x+6)=6×12,即y2(y+1)(y-1)=72,y4-y2-72=0,(y2+8)(y2-9)=0.因为y2+8>0,所以只有y2-9=0,y=±3.代入①式,解得原方程的根为例4 解方程12x4-56x3+89x2-56x+12=0.解观察方程的系数,可以发现系数有以下特点:x4的系数与常数项相同,x3的系数与x的系数相同,像这样的方程我们称为倒数方程.由例5 解方程解方程的左边是平方和的形式,添项后可配成完全平方的形式.所以经检验,x1=-1,x2=2是原方程的根.例6 解方程(x+3)4+(x+1)4=82.分析与解由于左边括号内的两个二项式只相差一个常数,所以设于是原方程变为(y+1)4+(y-1)4=82,整理得y4+6y2-40=0.解这个方程,得y=±2,即x+2=±2.解得原方程的根为x1=0,x2=-4.说明本题通过换元,设y=x+2后,消去了未知数的奇次项,使方程变为易于求解的双二次方程.一般地,形如(x+a)4+(x+b)4=c例7 解方程x4-10x3-2(a-11)x2+2(5a+6)x+2a+a2=0,其中a是常数,且a≥-6.解这是关于x的四次方程,且系数中含有字母a,直接对x求解比较困难(当然想办法因式分解是可行的,但不易看出),我们把方程写成关于a的二次方程形式,即a2-2(x2-5x-1)a+(x4-10x3+22x2+12x)=0,△=4(x2-5x-1)2-4(x4-10x3+22x2+12x)=4(x2-2x+1).所以所以a=x2-4x-2或a=x2-6x.从而再解两个关于x的一元二次方程,得练习三1.填空:(1)方程(x+1)(x+2)(x+3)(x+4)=24的根为_______.(2)方程x3-3x+2=0的根为_____.(3)方程x4+2x3-18x2-10x+25=0的根为_______.(4)方程(x2+3x-4)2+(2x2-7x+6)2=(3x2-4x+2)2的根为______.2.解方程(4x+1)(3x+1)(2x+1)(x+1)=3x4.3.解方程x5+2x4-5x3+5x2-2x-1=0.4.解方程5.解方程(x+2)4+(x-4)4=272.6.解关于x的方程x3+(a-2)x2-(4a+1)x-a2+a+2=0.第四讲有关方程组的问题在教科书上,我们已经知道了二元一次方程组、三元一次方程组以及简单的二元二次方程组的解法.利用这些知识,可以研究一次函数的图像、二次函数的图像以及与此有关的问题.本讲再介绍一些解方程组的方法与技巧.1.二元二次方程组解二元二次方程组的基本途径是“消元”和“降次”.由一个二次和一个一次方程组成的二元二次方程组的一般解法是代入法,由两个二次方程组成的二次方程组在中学阶段只研究它的几种特殊解法.如果两个方程的二次项的对应系数成比例,可用加减消元法消去二次项.例1 解方程组解②×2-①×3得4x+9y-6=0.方程组中含有某一未知数的对应项的系数的比相等,可用加减消元法消去这个未知数.例2 解方程组解②×(-2)+①得3y2+3y-6=0,所以y1=1,y2=-2.解方程组与得原方程组的解方程组中至少有一个方程可以分解为一次方程的方程组,可用因式分解法解.例3 解方程组解由②得(2x+y)(x-2y)=0,所以2x+y=0或x-2y=0.因此,原方程组可化为两个方程组与解这两个方程组得原方程组的解为如果两个方程都没有一次项,可用加减消元法消去常数项,再用因式分解法求解.例4 解方程组解由①-②×2得x2-2xy-3y2=0,即(x+y)(x-3y)=0,所以x+y=0或x-3y=0.分别解下列两个方程组得原方程组的解为2.二元对称方程组方程中的未知数x,y互换后方程保持不变的二元方程叫作二元对称方程.例如x2-5xy+y2-3x-3y=7,等都是二元对称方程.由二元对称方程组成的方程组叫作二元对称方程组.例如等都是二元对称方程组.我们把叫作基本对称方程组.基本对称方程组通常用代入法或韦达定理求解.例5 解方程组解方程组中的x,y分别是新方程m2-5m+4=0的两个解.解关于m的一元二次方程得m1=1,m2=4,所以原方程组的解是这个方程组亦可用代入法求解(略).由于一般的二元对称式总可以用基本对称式x+y和xy表示,因此在解二元对称方程组时,一定可以用x+y和xy作为新的未知数,通过换元转化为基本对称方程组.例6 解方程组解原方程组可变形为①×2+②得令u=x+y,则即而方程组无实数解.综上所述,方程组的解为例7 解方程组分析本题是一个对称方程组的形式,观察知它可转化为基本对称方程组的形式.解由①得xy=16.④由②,④可得基本对称方程组于是可得方程组的解为例8 解方程组分析本题属于二元轮换对称方程组类型,通常可以把两个方程相减,因为这样总能得到一个方程x-y=0,从而使方程降次化简.解①-②,再因式分解得(x-y)(x+y-10)=0,所以x-y-0或x+x-10=0.解下列两个方程组得原方程组的四组解为例9 解方程组解法1用换元法.设4x+5=A,4y+5=B,则有即③-④并平方得整理得所以因此A-B=0或分别解下列两个方程组与经检验,A=B=9适合方程③,④,由此得原方程组的解是解法2①-②得即所以x-1与y-1同号或同为零.由方程①得所以x-1与y-1不能同正,也不能同负.从而x-1=0,y-1=0.由此解得经检验,x=1,y=1是方程组的解.练习四1.填空:(1)方程组的解有_____组.(2)若x,y是方程组(3)已知3a+b+2c=3,且a+3b+2c=1,则2a+c=_____.(4)已知实数x,y,z满足方程组则xyz=________.2.解方程组:3.设a,b,c,x,y,z都是实数.若4.已知一元二次方程a(x+1)(x+2)+b(x+2)(x+3)+c(x+3)(x+1)=0 有两根0,1,求a∶b∶c.5.(1)解方程组第五讲函数的基本概念与性质函数是中学数学中的一条主线,也是数学中的一个重要概念.它使我们从研究常量发展到研究变量之间的关系,这是对事物认识的一大飞跃,而且对于函数及其图像的研究,使我们把数与形结合起来了.学习函数,不仅要掌握基本的概念,而且要把解析式、图像和性质有机地结合起来,在解题中自觉地运用数形结合的思想方法,从图像和性质对函数进行深入的研究.1.求函数值和函数表达式对于函数y=f(x),若任取x=a(a为一常数),则可求出所对应的y值f(a),此时y的值就称为当x=a时的函数值.我们经常会遇到求函数值与确定函数表达式的问题.例1 已知f(x-1)=19x2+55x-44,求f(x).解法1令y=x-1,则x=y+1,代入原式有f(y)=19(y+1)2+55(y+1)-44=19y2+93y+30,所以f(x)=19x2+93x+30.解法2f(x-1)=19(x-1)2+93(x-1)+30,所以f(x)=19x2+93x+30.可.例3 已知函数f(x)=ax5-bx3+x+5,其中a,b为常数.若f(5)=7,求f(-5).解由题设f(-x)=-ax5+bx3-x+5=-(ax5-bx3+x+5)+10=-f(x)+10,所以f(-5)=-f(5)+10=3.例4 函数f(x)的定义域是全体实数,并且对任意实数x,y,有f(x+y)=f(xy).若f(19)=99,求f(1999).解设f(0)=k,令y=0代入已知条件得f(x)=f(x+0)=f(x·0)=f(0)=k,即对任意实数x,恒有f(x)=k.所以f(x)=f(19)=99,所以f(1999)=99.2.建立函数关系式例5 直线l1过点A(0,2),B(2,0),直线l2:y=mx+b过点C(1,0),且把△AOB分成两部分,其中靠近原点的那部分是一个三角形,如图3-1.设此三角形的面积为S,求S关于m的函数解析式,并画出图像.解因为l2过点C(1,0),所以m+b=0,即b=-m.设l2与y轴交于点D,则点D的坐标为(0,-m),且0<-m≤2(这是因为点D在线段OA上,且不能与O点重合),即-2≤m<0.故S的函数解析式为例6 已知矩形的长大于宽的2倍,周长为12.从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边x,试写出梯形面积S关于x的函数关系式.解设矩形ABCD的长BC大于宽AB的2倍.由于周长为12,故长与宽满足4<BC<6,0<AB<2.由题意,有如下两种情形:CE1=x,BE1=BC-x,AB=CD=2(BC-x),所以(2AB+x)+AB=6,所以3.含绝对值的函数一次函数的图像是一条直线,含有绝对值符号的函数所对应的图像是由若干条线段和射线所组成的折线;二次函数的图像是抛物线,而y=|ax2+bx+c|的图像是将y=ax2+bx+c 在x轴下方的图像按x轴为对称轴翻到x轴的上方.对于一些其他的含绝对值符号的函数和方程的图像,需要按区间分段讨论.例7 作函数y=|3-x|+|x-1|的图像.解当x<1时,y=(3-x)+(1-x)=-2x+4;当1≤x<3时,y=(3-x)+(x-1)=2;当x≥3时,y=(x-3)+(x-1)=2x-4.所以它的图像如图3-3所示.例8 作函数y=|x2-5x+6|的图像.解当x≤2或x≥3时,x2-5x+6≥0,于是y=x2-5x+6;当2<x<3时,x2-5x+6<0,于是y=-(x2-5x+6).所以于是,得图像如图3-4所示.例9 点(x,y)满足方程|x-1|+|y+2|=2,求它的图像所围成区域的面积.解当x≥1,y≥-2时,x-1+y+2=2,即y=-x+1.当x≥1,x<-2时,x-1-(y+2)=2,即y=x-5.当x<1,y≥-2时,-x+1+y+2=2,即y=x-1.当x<1,y<-2时,-x+1-(y+2)=2,即y=-x-3.于是,所得图像如图3-5所示.由此可知,|x-1|+|y+2|=2的图像是一个对角线长为4,边长为2例10m是什么实数时,方程x2-4|x|+5=m有四个互不相等的实数根?解法1将原方程变形为x2-4|x|+4=m-1.令y=x2-4|x|+4=m-1,则它的图像如图3-6,而y=m-1是一条与x轴平行的直线.原方程有四个互不相等的实根,即直线应与曲线有四个不同的交点.由图像可知,当0<m-1<4,即1<m<5时,直线与曲线有四个不同的交点,所以,当1<m<5时,方程x2-4|x|+5=m有四个互不相等的实数根.说明本题是一个方程问题,我们利用图形来研究,这是一种非常重要的思想方法——数形结合法.当然,本题不用图像也是可以解的,下面给出解法,请读者比较一下.解法2原方程变形为(|x|-2)2=m-1,练习五1.填空:(1)已知f(x-1)=19x2+55x-44,则f(x)=_______.(2)对所有实数x,f(x2+1)=x4+5x2+3,那么对所有实数x,f(x2-1)=_______.(3)设x与y2成反比例,y与z2成正比例.当x=24时,y=2;当y=18时,z=3,则z=1时,x=_______.(4)已知y=2x2+mx+5的值恒为正,且m为实数,则m的范围是_______.函数,且当x=2,x=3时,y的值都为19,则y的解析式为y=_______.(6)如果y+m与x+n成正比例,且当x=1时,y=2;当x=-1时,y=1,则y与x间的函数关系式是y=_______.2.在平面直角坐标系里,点A的坐标是(4,0),点P是第一象限内一次函数y=-x+6的图像上的点,原点是O,如果△OPA的面积为S,P点坐标为(x,y),求S关于x的函数表达式.3.平面直角坐标上有点P(-1,-2)和点Q(4,2),取点R(1,m),试问当m为何值时,PR+RQ有最小值.试求k的取值范围.5.设y=|x+2|+|x-4|-|2x-6|,且2≤x≤8,试求y的最大值与最小值之和.6.作y=2|x-3|,y=x-a的图像,问a取什么值时,它们可以围出一个平面区域,并求其面积.7.m是什么实数时,方程|x2-4x+3|=m有三个互不相等的实数解.第六讲二次函数二次函数是一类十分重要的最基本的初等函数,也是初中数学的主要内容之一,它在中学数学中起着承上启下的作用,它与一元二次方程、一元二次不等式知识的综合运用,是初中代数的重点和难点之一.另外,二次函数在工程技术、商业、金融以及日常生活中都有着广泛的应用.通过对二次函数的学习,使我们能进一步理解函数思想和函数方法,提高分析问题、解决问题的能力.正确掌握二次函数的基本性质是学好二次函数的关键.1.二次函数的图像及其性质例1 (1)设抛物线y=2x2,把它向右平移p个单位,或向下移q个单位,都能使得抛物线与直线y=x-4恰好有一个交点,求p,q的值.(2)把抛物线y=2x2向左平移p个单位,向上平移q个单位,则得到的抛物线经过点(1,3)与(4,9),求p,q的值.(3)把抛物线y=ax2+bx+c向左平移三个单位,向下平移两个单位析式.解(1)抛物线y=2x2向右平移p个单位后,得到的抛物线为y=2(x-p)2.于是方程2(x-p)2=x-4有两个相同的根,即方程2x2-(4p+1)x+2p2+4=0的判别式△=(4p+1)2-4·2·(2p2+4)=0,抛物线y=2x2向下平移q个单位,得到抛物线y=2x2-q.于是方程2x2-q=x-4有两个相同的根,即△=1-4·2(4-q)=0,(2)把y=2x2向左平移p个单位,向上平移q个单位,得到的抛物线为y=2(x+p)2+q.于是,由题设得解得p=-2,q=1,即抛物线向右平移了两个单位,向上平移了一个单位.解得h=3,k=2.原二次函数为说明将抛物线y=ax2+bx+c向右平移p个单位,得到的抛物线是y=a(x-p)2+b(x-p)+c;向左平移p个单位,得到的抛物线是y=a(x+p)2+b(x+p)+c;向上平移q个单位,得到y=ax2+bx +c+q;向下平移q个单位,得到y=ax2+bx+c-q.例2 已知抛物线y=ax2+bx+c的一段图像如图3-7所示.(1)确定a,b,c的符号;(2)求a+b+c的取值范围.解(1)由于抛物线开口向上,所以a>0.又抛物线经过点(0,-1),合a>0便知b<0.所以a>0,b<0,c<0.(2)记f(x)=ax2+bx+c.由图像及(1)知所以a+b+c=a+(a-1)-1=2(a-1),-2<a+b+c<0.例3 已知抛物线y=ax2-(a+c)x+c(其中a≠c)不经过第二象限.(1)判断这条抛物线的顶点A(x0,y0)所在的象限,并说明理由;(2)若经过这条抛物线顶点A(x0,y0)的直线y=-x+k与抛物线的另一解(1)因为若a>0,则抛物线开口向上,于是抛物线一定经过第二象限,所以当抛物线y=ax2-(a+c)x+c的图像不经过第二象限时,必有a<0.又当x=0时,y=c,即抛物线与y轴的交点为(0,c).因为抛物线不经过第二象限,所以c≤0.于是所以顶点A(x0,y0)在第一象限.B在直线y=-x+k上,所以0=-1+k,所以k=1.又由于直线y=-x+1经过-2x2+2x.2.求二次函数的解析式求二次函数y=ax2+bx+c(a≠0)的解析式,需要三个独立的条件确定三个系数a,b,c.一般地有如下几种情况:(1)已知抛物线经过三点,此时可把三点坐标代入解析式,得到关于a,b,c的三元一次方程组,解方程组可得系数a,b,c.或者已知抛物线经过两点,这时把两点坐标代入解析式,得两个方程,再利用其他条件可确定a,b,c.或者已知抛物线经过某一点,这时把这点坐标代入解析式,再结合其他条件确定a,b,c.(2)已知抛物线的顶点坐标为(h,k),这时抛物线可设为y=a(x-h)2+k,再结合其他条件求出a.(3)已知抛物线与x轴相交于两点(x1,0),(x2,0),此时的抛物线可设为y=a(x-x1)(x-x2),再结合其他条件求出a.例4 设二次函数f(x)=ax2+bx+c满足条件:f(0)=2,f(1)=-1,解由f(0)=2,f(1)=-1,得即c=2,b=-(a+3).因此所求的二次函数是y=ax2-(a+3)x+2.由于二次函数的图像在x轴上所截得的线段长,就是方程ax2-(a+3)x+2=0两根差的绝对值,而这二次方程的两根为于是因此所求的二次函数表达式为例5 设二次函数f(x)=ax2+bx+c,当x=3时取得最大值10,并且它的图像在x轴上截得的线段长为4,求a,b,c的值.分析当x=3时,取得最大值10的二次函数可写成f(x)=a(x-3)2+10,且a<0.解因为抛物线的对称轴是x=3,又因为图像在x轴上截得的线段长是4,所以由对称性,图像与x轴交点的横坐标分别是1,5.因此,二次函数又可写成f(x)=a(x-1)(x-5)的形式,从而a(x-3)2+10=a(x-1)(x-5),所以例6 如图3-8,已知二次函数y=ax2+bx+c(a>0,b<0)的图像与x轴、y轴都只有一个公共点,分别为点A,B,且AB=2,b+2ac=0.(1)求二次函数的解析式;(2)若一次函数y=x+k的图像过点A,并和二次函数的图像相交于另一点C,求△ABC的面积.解(1)因二次函数的图像与x轴只有一个公共点,故b2-4ac=0,而b+2ac=0,所以b2+2b=0,b=-2(因为b<0).点B的坐标为(0,c),AB=2,由勾股定理得所以1+a2c2=4a2.因为ac=1,所以4a2=2,练习六1.填空:(1)将抛物线y=2(x-1)2+2向右平移一个单位,再向上平移三个单位,得到的图像的解析式为______.(2)已知y=x2+px+q的图像与x轴只有一个公共点(-1,0),则(p,q)=____.(3)已知二次函数y=a(x-h)2+k的图像经过原点,最小值为-8,且形(4)二次函数y=ax2+bx+c的图像过点A(-1,0),B(-3,2),且它与x轴的两个交点间的距离为4,则它的解析式为________.(5)已知二次函数y=x2-4x+m+8的图像与一次函数y=kx+1的图像相交于点(3,4),则m=___,k=_____.(6)关于自变量x的二次函数y=-x2+(2m+2)x-(m2+4m-3)中,m是不小于零的整数,它的图像与x轴交于点A和点B,点A在原点左边,点B在原点右边,则这个二次函数的解析式为____.2.设抛物线y=x2+2ax+b与x轴有两个不同交点.(1)把它沿y轴平移,使所得到的抛物线在x轴上截得的线段的长度是原来的2倍,求所得到的抛物线;(2)通过(1)中所得曲线与x轴的两个交点,及原来的抛物线的顶点,作一条新的抛物线,求它的解析式.3.已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点为C.(2)若△ABC是等腰直角三角形,求b2-4ac的值;(3)若b2-4ac=12,试判断△ABC的形状.4.有两个关于x的二次函数C1:y=ax2+4x+3a和C2:y=x2+2(b+2)x+b2+3b.当把C1沿x轴向左平移一个单位后,所得抛物线的顶点恰与C2的顶点关于x轴对称,求a,b.5.已知二次函数y=x2-2bx+b2+c的图像与直线y=1-x只有一个公共点,并且顶点在二次函数y=ax2(a≠0)的图像上,求a的取值范围第七讲函数的最大值与最小值我们常常遇到求最大值和最小值的问题,在许多情况下可以归结为求函数的最大值与最小值.这类问题涉及的知识面广,综合性强,解法灵活,因而对于培养学生的数学能力具有重要作用.本讲从四个方面来讨论如何求解函数的最大值与最小值问题.1.一次函数的最大值与最小值一次函数y=kx+b在其定义域(全体实数)内是没有最大值和最小值的,但是,如果对自变量x 的取值范围有所限制时,一次函数就可能有最大值和最小值了.例1 设a是大于零的常数,且a≠1,求y的最大值与最小值.大值a.例2 已知x,y,z是非负实数,且满足条件x+y+z=30,3x+y-z=50.求u=5x+4y+2z的最大值和最小值.分析题设条件给出两个方程,三个未知数x,y,z,当然,x,y,z的具体数值是不能求出的.但是,我们固定其中一个,不妨固定x,那么y,z都可以用x来表示,于是u便是x的函数了.解从已知条件可解得y=40-2x,z=x-10.所以u=5x+4y+2z=5x+4(40-2x)+2(x-10)=-x+140.又y,z均为非负实数,所以解得10≤x≤20.由于函数u=-x+140是随着x的增加而减小的,所以当x=10时,u有最大值130;当x=20时,u有最小值120.2.二次函数的最大值与最小值例3 已知x1,x2是方程x2-(k-2)x+(k2+3k+5)=0解由于二次方程有实根,所以△=[-(k-2)]2-4(k2+3k+5)≥0,3k2+16k+16≤0,例4 已知函数有最大值-3,求实数a的值.解因为的范围内分三种情况讨论.-a2+4a-1=-3例5 已知边长为4的正方形截去一个角后成为五边形ABCDE(如图3-12),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.解设矩形PNDM的边DN=x,NP=y,于是矩形PNDM的面积S=xy,2≤X≤4.易知CN=4-x,EM=4-y,且有二次函数S=f(x)的图像开口向下,对称轴为x=5,故当x≤5时,函数值是随x的增加而增加,所以,对满足2≤x≤4的S来说,当x=4时有最大值例6 设p>0,x=p时,二次函数f(x)有最大值5,二次函数g(x)的最小值为-2,且g(p)=25,f(x)+g(x)=x2+16x+13.求g(x)的解析式和p的值.解由题设知f(p)=5,g(p)=25,f(p)+g(p)=p2+16p+13,所以p2+16p+13=30,p=1(p=-17舍去).由于f(x)在x=1时有最大值5,故设f(x)=a(x-1)2+5,a<0,所以g(x)=x2+16x+13-f(x)=(1-a)x2+2(a+8)x+8-a.由于g(x)的最小值是-2,于是解得a=-2,从而g(x)=3x2+12x+10.3.分式函数的最大值与最小值法是去分母后,化为关于x的二次方程,然后用判别式△≥0,得出y的取值范围,进而定出y的最大值和最小值.解去分母、整理得(2y-1)x2+2(y+1)x+(y+3)=0.△≥0,即△=[2(y+1)]2-4(2y-1)(y+3)≥0,解得-4≤y≤1.时,取最小值-4,当x=-2时,y取最大值1.说明本题求最值的方法叫作判别法,这也是一种常用的方法.但在用判别法求最值时,应特别注意这个最值能否取到,即是否有与最值相应的x值.解将原函数去分母,并整理得yx2-ax+(y-b)=0.因x是实数,故△=(-a)2-4·y·(y-b)≥0,由题设知,y的最大值为4,最小值为-1,所以(y+1)(y-4)≤0,即y2-3y-4≤0.②由①,②得所以a=±4,b=3.4.其他函数的最大值与最小值处理一般函数的最大值与最小值,我们常常用不等式来估计上界或下界,进而构造例子来说明能取到这个上界或下界.解先估计y的下界.又当x=1时,y=1,所以,y的最小值为1.说明在求最小(大)值,估计了下(上)界后,一定要举例说明这个界是能取到的,才能说这就是最小(大)值,否则就不一定对了.例如,本题我们也可以这样估计:但无论x取什么值时,y取不到-3,即-3不能作为y的最小值.例10 设x,y是实数,求u=x2+xy+y2-x-2y的最小值.分析先将u看作是x的二次函数(把y看作常数),进行配方后,再把余下的关于y的代数式写成y的二次函数,再配方后,便可估计出下界来.又当x=0,y=1时,u=-1,所以,u的最小值为-1.例11 求函数的最大值,并求此时的x值,其中[a]表示不超过a的最大整数.练习七。
初一数学竞赛讲座(三)数字、数位及数谜问题一、一、知识要点1、整数的十进位数码表示一般地,任何一个n 位的自然数都可以表示成:122321*********a a a a a n n n n +⨯+⨯++⨯+⨯---其中,a i (i=1,2,…,n )表示数码,且0≤a i ≤9,a n ≠0。
对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=121a a a a n n -2、正整数指数幂的末两位数字(1) (1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末位数字就是a n 的末位数字。
(2) (2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末位数字与m q 的末位数字相同。
3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条件的整数是多少的问题,这类问题称为数迷问题。
这类问题不需要过多的计算,只需要认真细致地分析,有时可以用“凑"、“猜”的方法求解,是一种有趣的数学游戏。
二、二、例题精讲例1、有一个四位数,已知其十位数字减去2等于个位数字,其个位数字加上2等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数.分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。
解:设所求的四位数为a ⨯103+b ⨯102+c ⨯10+d ,依题意得:(a ⨯103+b ⨯102+c ⨯10+d)+( d ⨯103+c ⨯102+b ⨯10+a)=9988∴ (a+d ) ⨯103+(b+c) ⨯102+(b+c) ⨯10+ (a+d )=9988比较等式两边首、末两位数字,得 a+d=8,于是b+c18又∵c —2=d,d+2=b ,∴b-c=0从而解得:a=1,b=9,c=9,d=7故所求的四位数为1997评注:将整数用十进位数码表示,有助于将已知条件转化为等式,从而解决问题.例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“新生数",试求所有的三位“新生数”。
小学数学教学专题讲座篇一:“提高数学课堂教学有效性”专题讲座稿“提高数学课堂教学有效性”专题讲座稿课程改革活跃了我们的课堂,新的理念、新的课标、新的教材、新的教法,使教师充满激情,学生充满活力,课堂教学变得更为精彩。
但在一些“热闹”的课堂之后,冷静下来,反思那些已经被广大教师认同并积极采用的新的教学方法,比如情境设置、动手实践、主动探究、合作学习、算法多样化等,感到我们在理解新课程、新理念上还有误区。
有些教师过于追求课堂教学改革的形式,而忽略了数学教学的基本出发点,丢掉了教学方法中的一些优秀传统,失去了课堂教学的“有效性”。
小学数学课程标准指出,数学教学的基本出发点是促进学生全面、持续、和谐地发展。
要在有限的教学时间里让学生得到充分发展。
因此,如何提高课堂教学的“有效性”,在当前课程改革中必须引起我们的足够重视。
教学的有效性包括三种含义:有效果,指对教学活动结果与预期教学目标的吻合程度的评价,教学效果是指每一节课的教学质量;有效率,教学效率=有效教学时间/实际教学时间×100%,就是指单位时间内所完成的教学工作量;有效益,指教学活动的收益、教学活动价值的实现。
如何提高课堂教学的“有效性”呢?在经历了几年的课改之后,反思我们的做法和效果,越加感到对新理念、新课标、新教材、新教法应该有个科学的、理性的、切实的理解。
一、怎样理解“算法多样化”“一题多解”和“算法最优化”现代教育的基本理念是“以学生的发展为本”,既要面向全体,又要尊重差异。
在数学教学中,教师要促进学生的全面发展,就要尊重学生的个性,不搞一刀切,要创造促进每个学生得到长足发展的数学教育。
因此,针对过去计算教学中往往只有一种算法的弊端,在新课程中提出了“算法多样化”。
比如:一年级“20以内退位减法”,教材提示了用“破十法”“想加算减”“点数”“连续减”等方法都可以。
因此这些算法对一年级学生而言,很难说孰优孰劣,学生完全可以按自己的经验采用和选择不同的方法进行计算,教师不对各种算法进行评价,要尊重学生自主的选择,保护学生自主发现的积极性,提倡和鼓励算法多样化。
第三讲素数与合数一、基础知识:对于任意正整数n>1,如果除1和n本身以外,没有其它的因数,那么称n 为素数,否则n称为合数。
这样,我们将正整数分为了三类:1,素数,合数。
例如:2,3,5,7,11,…都是质数。
1既不是质数也不是和数。
1之所以要摒于质数之外,是因为它完全没有质数所具备的那些重要的数论性质。
质数p和a互质,必要而且只要p|\a事实上,若p|a,则p和a除±1外还有公因数±p,故二者不互质。
若p|\a,则±p当然就不是p,a的公因数;但除了±p,只有±1才可能是p的因数,所以只有±1才可能是p,a的公因数,即二者互质。
显然任意两个不同的质数互质。
质数的性质性质1.素数中只有一个数是偶数,它是2.性质2.设n为大于1的正整数,p是n的大于1的因数中最小的正整数,则p为素数。
性质3.设a 是任意一个大于1的整数,则a 的除1 外最小正因数q 是一质数,并且当a是合数时,q≤证明:假设q不是质数,则由定义可知q除1及本身以外还有一正因数,设它为b,因而1<b<q。
但q|a,所以b|a,这与q是a的除1外的最小正因数矛盾,因而q是质数。
当a是合数时,则a=c·q且c>1,否则a是质数。
由于q是a的除1外的最小正因数,所以q小于等于c ,2q≤q c=a故q≤说明:此性质表明,一个合数a一定是不大于的某些质数的倍数。
换言之,如果所有不大于的质数都不能整除a,那么a一定是质数(作为性质4如下)。
此性质是我们检验一个数是否为素数的最常用的方法。
例如判断191是不是素数。
因为不大于<14的素数有2,3,5,7,11,13,由于191不能被2,3,5,7,11,13整除,所以191是质数。
这种方法还可以求不大于a的所有素数,例如,求50以内的全体素数。
由于不大于的质数有:2,3,5,7,可以在2,3,4,,50中依次划去2,3,5,7的倍数(保留2,3,5,7)最后余下的数就是50以内的全体质数。
第1篇一、引言数学,作为一门基础学科,在中学教育中占有举足轻重的地位。
为了提高中学数学教学质量,促进教师专业成长,本次教研小讲座将围绕“探索数学之美,提升教学品质”这一主题展开,旨在为广大数学教师提供一些教学策略和思考。
二、讲座内容1. 数学之美数学之美,在于其严谨的逻辑、简洁的表达和丰富的内涵。
教师在教学中要善于发现数学之美,激发学生的学习兴趣。
(1)数学的逻辑之美数学是一门逻辑性极强的学科,其推理过程严谨、严密。
在教学中,教师应注重培养学生的逻辑思维能力,让学生在探索中发现数学的逻辑之美。
(2)数学的表达之美数学语言简洁、准确,富有表现力。
教师应引导学生学会运用数学语言表达自己的思想,感受数学表达之美。
(3)数学的内涵之美数学蕴含着丰富的哲理和智慧,教师应引导学生挖掘数学的内涵之美,培养学生的综合素质。
2. 提升教学品质的策略(1)优化教学设计教学设计是教学活动的基础,教师应关注以下几个方面:1)明确教学目标:根据课程标准和学生实际情况,设定合理的教学目标。
2)精选教学内容:根据教学目标,选择合适的教材和教学资源。
3)创新教学方法:结合教学内容和学生特点,运用多种教学方法,提高教学效果。
4)合理安排教学过程:合理分配教学时间,确保教学活动的顺利进行。
(2)关注学生差异每个学生都有自己的学习特点,教师应关注学生的个体差异,因材施教。
1)了解学生:通过观察、交流等方式,了解学生的学习习惯、兴趣爱好、思维特点等。
2)分层教学:根据学生的差异,将学生分为不同的层次,实施分层教学。
3)个性化辅导:针对学生的学习需求,提供个性化的辅导,帮助其克服学习困难。
(3)加强师生互动师生互动是教学活动的重要组成部分,教师应注重以下几个方面:1)创设问题情境:通过创设问题情境,激发学生的学习兴趣,引导学生主动探究。
2)引导学生思考:鼓励学生提出问题,引导学生进行深入思考,培养学生的思维能力。
3)关注学生反馈:关注学生的学习反馈,及时调整教学策略,提高教学效果。