电子式电能表的结构和工作原理
- 格式:ppt
- 大小:1.64 MB
- 文档页数:54
电子式电能表的工作原理及AD7755的简介电子式电能表的工作原理为:由分压器完成电压取样,由取样电阻完成电流取样,取样后的电压、电流信号由乘法器转换为功率信号,经V/F变换后,输出的脉冲信号推动计数器工作,如果是智能电表,则将脉冲信号输入单片机系统进行处理。
要完成上述功能,就要采用专用的电功率测量芯片,其中最常用的AD7755就是一种高精度的电功率测量芯片,其内部的乘法器是数字型乘法器。
AD7755的功能框图见图 1,引脚见图2。
它输出的脉冲信号可以直接驱动计数器的步进电机。
AD7755的性能测试电路见图3。
其中V1P、V1N为电流传感器的模拟输入端,V2P、V2N为电压传感器的模拟输入端。
按图中SCF、S1、SO的接法,CF输出频率是F1和F2的16倍。
图1 AD7755内部框图图2AD7755引脚排列图3 AD7755性能测试电路图4 AD7755信号处理框图AD7755的信号处理框图见图4。
两个ADC分别对来自CH1(交流电流取样)和CH2(交流电压取样)的电压信号进行数字化,这两个ADC都是16位的数模转换器。
电流通道内的高通滤波器(HPF)滤掉电流信号中的直流分量,从而消除了曲于电流或电压失调所造成的有功功率计算上的误差。
瞬时功率由电压信号和电流信号直接相乘得到,通过低通滤波器(LPF)得到有功功率。
再经电压一频率转换,引脚F1和F2以较低频率形式输出有功功率平均值,此脉冲推动计数器计数,引脚CF以较高频率形式输出有功功率瞬时值,用于仪表校验,由于其输出频率高,便于进行处理,因此本文利用CF输出的脉冲信号作为测量信号。
AD7755在电子电度表电路中的应用AD7755是一种高准确度电能测量集成电路。
AD7755只在ADC和基准源中使用模拟电路,其它信号处理(如相乘和滤波)都使用了数字电路,这使AD7755在恶劣的环境条件下仍能保持极高的准确度和长期的稳定性。
AD7755有24脚DIP和SSOP两种封装。
电子式电能表工作原理与基本结构电子式电能表1、电子式电能表按其工作原理的不同,可分为模拟乘法器型、电子式电能表和数字乘法器型电子式电能表。
2、一般来说,电子式电能表由六个部分组成:电源单元、电能测量单元、中央处理单元(单片机) 、显示单元、输出单元、通信单元。
3、正常供电时,电子式电能表的工作电源通常有三种实现方式:工频电源(即变压器降压) 、阻容电源(电阻和电容降压) 、开关电源。
4、电子式电能表的显示单元主要分为 LED数码管和 LCD液晶显示器两种,后者功耗低,并支持汉字显示。
5、电子式电能表的关键部分是电能测量单元6、时分割乘法器是许多电子式电能表的关键部分,它通常由三角波发生器、比较器、调制器、滤波器四个部分组成。
7、若某电子式电能表的启动电流是0.01Ib,过载电流是6Ib,则A/D型的电能表要求A/D转换器的位数可以是10,A/D的位数取决于Imax和Imin的比值,6÷0.01=600,而29<600<210,即要求A/D的位数至少是10位。
8、U/F(电压/频率)转换器组成的电能测量单元,其作用是产生正比于有功功率的电能脉冲。
9、采用电阻网络作为电能表的电压采样器的最大特点是线性好和成本低,缺点是无法实现电气隔离。
采用电压互感器的最大优点是可实现初级和次级的电气隔离,并可提高电能表的抗干扰能力,缺点是成本高。
请登陆: 浏览更多信息10、检定无源脉冲电能表误差:通常在脉冲正端施加一个VDD=+5~12V的直流电源,有的现场校验仪或电能表检定装置具有这一电源,中间串联R=5~10Ω的电阻,再输入给检定脉冲回路。
11、单片机就是将微型计算机所具备的几个基本功能,如中央处理单元CPU 、程序存储器ROM 、数据存储器RAM 、定时计数器Timer/Counter 、输入输出接口I/O 等,集成到一块芯片中而构成小型计算机。
12、单片机的总线可以分为三种:地址总线AB 、数据总线DB 、控制总线CB 。
电子式电能表电原理图分析大纲:一、电子式电能表原理(分类为5大部分:电源、采样计量、单片机处理、通讯、输出):电表维修原则:1、通过现象查上一级电路输出的电压(或信号)是否正常。
2、上一级电路输出的电压(或信号)是正常的,则故障不在上一级电路,查本级电路。
3、上一级电路输出的电压(或信号)是不正常的,再查上上一级电路输出的电压(或信号)是否正常。
4、通过分级检测输出的电压(或信号)是否正常来确定故障的范围。
1、供电原理(讲原理时要画出电路,提及有故障时的现象和检测维修方法);1.1、三相表供电原理:变压器供电原理(详细讲解);电原理图如下:用变压器变压、整流、稳压对三相表进行供电,电路中有三个变压器。
其中的每个变压器的工作原理都相同,只是各个变压器的初级输入电压是三相电压中的不同的相。
对于三相四线电表:T1初级为A—N线电压,T2初级为B—N线电压,T3初级为C—N线电压;对于三相三线电表:T1初级为A—B相电压,T2初级为A—C相电压,T3初级为B —C相电压,对应我们经常在三相三线电表上显示的A相电压(为A—B相电压)、B相电压(为A—C相电压)、C相电压(为B—C相电压)。
用三个变压器供电的好处是:1、当电网出现某一相或两相无电压时,电表仍然可以计量有电压的相的用电情况;2、增加电表供电的带载能力,保证电表的正常工作。
现以变压器T1为例详细说明以上供电电路的工作原理:1、压敏电阻RV1压敏电阻的工作原理顾名思义,压敏电阻就是对电压敏感,由电压的改变而改变自身的电阻,我公司使用的压敏是正常时为开路,当电压达到一定值时(压敏的动作电压),压敏电阻会非常快速地阻值下降到零(短路。
这个时间为t、t为1nS—10 nS,t 因选择的压敏型号不同而不同)。
而对多少电压值(动作电压)会开始阻值下降也是因选用的型号不同而不同,一般是型号上的数值。
比如:20K510的压敏电阻,则最大不动作电压为510V,可以查相关的电子元件资料,电子文档文件路径:Z:\研发中心\综合组\陈大全。
电能表的分类和原理
电能表的分类可以分为机械式电能表和电子式电能表两类。
1. 机械式电能表:通过电流和电压的作用,驱动电能表内的机械部件运动,从而计量电能。
机械式电能表通常由电流线圈、电压线圈、铝盘电动机和机械计数装置等部件组成。
其工作原理是,电流线圈产生的磁场和电压线圈产生的磁场相互作用,通过铝盘电动机驱动计数装置转动,进而计算出电能的消耗。
2. 电子式电能表:借助电子技术和数字信号处理技术,实现对电能的计量和记录。
主要由电流变换器、电压变换器、微控制器、模数转换器和显示装置等组成。
其工作原理是,通过电流变换器和电压变换器将电能信号转换为低压信号,再经过模数转换器将信号数字化,最后由微控制器进行数据处理和显示。
电子式电能表具有测量精度高、抗干扰能力强、功能丰富等特点。
电子式单相电表原理
电子式单相电表是一种使用电子技术来测量电能消耗的装置。
它的工作原理基于电能测量的基本原理,通过测量电压和电流来确定电能的消耗。
以下是电子式单相电表的工作原理:
1. 电流测量:电子电表通过电流互感器将电流信号转化为低电平信号。
电流互感器是一种电感器,可以将电流信号转化为与之成正比的电压信号。
这样,电子电表可以通过测量电压信号来间接测量电流。
2. 电压测量:电子电表使用变压器将输入电压转化为与输入电流成正比的低电平信号。
这样,电子电表可以通过测量电压信号来间接测量电压。
3. 电能计算:电子电表使用微处理器或专用集成电路来计算电能的消耗。
通过采集和处理电压和电流信号,并结合时间信息,电子电表可以计算出电能的消耗。
4. 数字显示:电子电表使用数码显示器来显示电能的消耗。
数码显示器可以将计算得到的电能数值以数字形式显示出来,方便用户读取。
5. 数据记录:电子电表通常具有数据记录功能,可以记录电能消耗的历史数据。
这些数据可以用于分析电能使用情况,帮助用户了解和管理电能消耗。
总结而言,电子式单相电表通过测量电压和电流来间接测量电
能消耗,并利用微处理器或专用集成电路进行计算和显示。
它具有精准度高、功能丰富、数据可记录等优点,是现代电能计量的重要工具。
单相预付费电子式电能表的原理与应用电能表是用于测量和记录电能消耗的设备,随着科技的进步,电能表也得到了许多改进和创新。
单相预付费电子式电能表作为一种新型的电能表,在电力管理和使用方面起到了重要的作用。
本文将介绍单相预付费电子式电能表的原理和应用。
一、原理单相预付费电子式电能表的工作原理基于电能计量和费用计算。
它由电流互感器、电压互感器、电能计量芯片、显示屏、控制器等组成。
其工作过程如下:1. 电流互感器和电压互感器:单相预付费电子式电能表通过电流互感器和电压互感器来测量电流和电压。
电流互感器是用于测量并降低高压电流,而电压互感器是用于测量并降低高压电压。
通过互感器,电能表可以获取准确的电流和电压数值。
2. 电能计量芯片:电能计量芯片是电能表的核心部件,用于计量电能的消耗。
它通过对电流和电压进行采样和计算,实时地记录电能的使用情况。
经过电能芯片的计算和处理,可以得出用户所消耗的电能量。
3. 显示屏和控制器:显示屏和控制器是用户与电能表进行交互的界面设备。
显示屏用于显示电能的使用情况、剩余金额等信息,方便用户了解自己的电能消耗情况。
控制器则用于进行充值、查询余额、设置功能等操作。
二、应用单相预付费电子式电能表具有以下应用场景和优势:1. 居民用户:单相预付费电子式电能表可广泛应用于居民用户的电力管理中。
通过预付费方式,用户可以提前充值电力,并通过显示屏实时了解自己的电能使用情况和剩余金额,提高用电的主动性和节能意识。
2. 商业用户:商业用户的电力消耗通常较大。
采用单相预付费电子式电能表可以更好地控制电力使用的成本,避免因为大额电费账单而产生的不必要的经济压力。
同时,商业用户也可通过电能表的智能功能实时监测用电情况,进行用电量分析,优化用电策略。
3. 对电力公司的利益保护:使用单相预付费电子式电能表可以有效防止电力盗窃和欠费行为的发生。
采用预付费方式后,电力公司可以在用户将电力全部消耗完之前预收费用,确保用户按照实际使用情况进行电费充值,维护了公司的经济利益。
电子式电能表的组成为了能将被测电压、电流变为代表被测功率的标准脉冲,并显示所计电能值,电子式电能表一般由输入级、乘法器、变换器、计数显示控制电路、直流电源等部分组成。
其中乘法器和变换器组成电能计量单元电路。
(1)输入级输入级的作用是将被测的高电压(几十伏或几百伏)和大电流(几安至几十安)转换成电子电路能处理的低电压(几十毫伏至几伏)和小电流(几毫安)输人到乘法器中,并使乘法器和电网隔离,减小干扰。
电压采样器和电流采样器构成了表计的输入级,电压采样可采用电压互感器或分压电阻,电流采样可采用电流互感器或锰铜分流器,它们与乘法器、U/f 转换器或D/f转换器共同构成了电子式电能表的电能测量单元。
(2)乘法器乘法器是实现被测电压、电流相乘,并输出功率的器件,它是电子式电能表的关键部分。
常用的乘法器可分为模拟乘法器和数字乘法器。
①模拟乘法器。
模拟乘法器分为时分割乘法器、霍尔乘法器和热电转换型乘法器。
目前采用较多的是时分割乘法器,又称PWM乘法器。
它实质上是一个脉宽、幅度调制器。
两路输入信号中的一路对脉宽进行调制,另一路对幅值进行调制,被调制的脉冲信号的直流分量就是两路输入信号的乘积。
时分割乘法器的制造技术成熟且工艺性好,原理先进,具有很好的线性度和很高的准确度,但与数字乘法器相比,功能扩展较难。
②数字乘法器。
数字乘法器可分为高精度A/D型乘法器和DSP型乘法器。
A/D型乘法器的作用,就是对输入的交流电压、电流波形进行分时采样,把模拟量变成数字量,然后由CPU对电压、电流数字量进行相乘、相加,计算功率,对时间积分得到电能。
DSP芯片也称数字信号处理器,它除具有A/D转换器的交流采样功能外,还肩负CPU数据处理的一部分功能,大大减轻了CPU的工作负荷,使整机的功能得到进一步加强。
(3)转换器转换器是把乘法器输出的代表有功功率的信号变为标准脉冲,并且用脉冲频率的高低来代表功率的大小,它和计数器一起实现电能测量中的积分运算。
单相电子式电能表的工作原理及应用研究引言:随着电力行业的发展和电能计量技术的进步,传统的机械式电能表逐渐被单相电子式电能表所取代。
单相电子式电能表具有精确计量、安全可靠、智能化管理等优势,因此在电力系统中得到了广泛的应用。
本文将对单相电子式电能表的工作原理及应用进行详细研究。
一、工作原理1. 电能表结构单相电子式电能表的结构主要由电流传感器、电压电路、信号处理器、运算器、存储器、显示器和通信接口等组成。
电流传感器负责感知电流信号,电压电路用于测量电压波形,信号处理器负责对感测到的电流和电压信号进行滤波、放大和线性化处理,运算器进行电能计量和数据处理,存储器用于存储计量结果,显示器用于显示电能数据,通信接口用于与外部系统进行数据交互。
2. 电能计量原理单相电子式电能表的电能计量基于电能守恒定律和欧姆定律。
当电流通过电能表流过时,电流传感器感测到电流信号,并经过电压电路测量电压信号,通过信号处理器进行滤波和放大处理后送到运算器进行电能计量。
根据欧姆定律和电能守恒定律,电能计量可通过电流和电压的乘积来实现。
运算器根据采集到的电流和电压信号,通过特定算法计算出瞬时功率,再积分得到电能。
3. 主要特点和优势单相电子式电能表相比传统机械式电能表具有以下主要特点和优势:(1) 高精确度:单相电子式电能表采用数字信号处理技术,具有较高的计量精度和稳定性。
(2) 多功能性:单相电子式电能表可实现电能测量、功率因数测量、需量测量等多种功能。
(3) 抄读方便:单相电子式电能表的计量数据可以通过通信接口传输,实现自动抄表和远程监控。
(4) 负载容量大:单相电子式电能表能够适应不同负载条件,满足工业和家庭用电需求。
(5) 节能环保:单相电子式电能表的电能损耗较低,能够减少能源浪费。
二、应用研究1. 工业应用单相电子式电能表在工业领域广泛应用,可用于对电动机、照明设备、变压器等的电能计量,帮助企业实现能耗监测和用电管理,提高能源利用率和降低生产成本。