电子式电能表原理
- 格式:ppt
- 大小:2.49 MB
- 文档页数:52
单相电子式电能表原理
单相电子式电能表是一种用于测量单相电力消耗的电器设备,其工作原理基于电压和电流的测量。
该电能表使用了一对电压线圈和一对电流线圈,分别用于测量输入电路中的电压和电流。
当待测电路通电时,输入电流将通过电流线圈,而输入电压将通过电压线圈。
电流线圈和电压线圈各自将产生相应的磁场。
为了测量电能,电流线圈和电压线圈之间通过一个电流、电压倍数调整器和一个共安装的显示和计算装置连接在一起。
电压线圈的输出电压经过倍数调整器进行放大或缩小,以匹配电压线圈传感器的灵敏度。
同样地,电流线圈的输出电压经过倍数调整器也进行同样的放大或缩小操作。
在电压线圈和电流线圈的输出电压已经调整完成后,它们将进入显示和计算装置。
该装置通过将电压和电流乘以相应的倍数,然后将它们相乘,从而计算出电能的消耗。
该结果将通过数字显示屏显示出来,以供用户查看。
总体来说,单相电子式电能表通过测量电压和电流,然后将其作为输入送入显示和计算装置,以计算出电能的消耗。
这种电能表具有精确度高和稳定性好等特点,被广泛应用于家庭和工业领域中。
机电脉冲式和全电子式电能表工作原理说明电子式电能表是由电能测量机构和数据处理机构两大部分组成的。
根据电能测量机构又可以分为机电脉冲式和全电子式两大类;1.机电脉冲式电子电能表它是一款出现较早的电能表,简称机电式电能表或脉冲电能表,它沿用了感应系测量机构,数据处理机构则由电子电路和计算机控制系统实现。
在制造上只需将普通感应系电能表的机械式传动计数器换为以单片机为核心的电子计数装置即可。
因而机电脉冲式电子电能表是一种电子线路与机电转换单元相结合的半电子式的电能表。
机电脉冲式电子电能表主要由感应系测量机构、光电转换器和分频器、计数器以及显示器四大部分组成。
感应系测量机构的主要功能是将电能信号转变为转盘的转数;光电转换器的功能是将正比于电能的转盘转数转换为电脉冲,此脉冲数同时也正比于被测电能;分频器和计数器的主要功能是对经光电转换成的脉冲信号进行分频、计数,从而得到被测量的电能量;显示器的功能是利用电子器件显示电能表所测量的电能a和其他电参数,便于读取数据。
(机电脉冲式电能表的工作原理)所谓分频,就是降低电能输出脉冲信号频率,使输出信号的频率分为输入信号频率的整数分之一。
分频的目的,一是为了方便取出电能计量单位的位数和正常的校表习惯;二是为了考虑计数器长期计数的容量问题。
所谓计数,就是把经过分频处理的电能脉冲,通过累计脉冲个数的方式,终以数码的形式显示电能测量的结果。
因为集成器件的工作可靠性、抗干扰能力、功率消耗、电路保安和机械尺寸均优于分立元件电路,所以分频器和计数器采用CMOS集成器件。
光电转换器是连接电能测量机构和数据处理机构的纽带。
光电转换器包括光电头和光电转换电路两部分。
单向脉冲电能表只有一套光电转换器,而双向脉冲电能表有两套光电转换器,具有同时计量正向电量和反向电量的功能。
2.全电子式电能表全电子式电能表是在数字功率表的基础上发展起来的,全电子式电表与机电脉冲式电能表不一样,它的测量机构不再使用感应系的,改用乘法器完成对负荷功率的测量。
电子式电能表的工作原理及AD7755的简介电子式电能表的工作原理为:由分压器完成电压取样,由取样电阻完成电流取样,取样后的电压、电流信号由乘法器转换为功率信号,经V/F变换后,输出的脉冲信号推动计数器工作,如果是智能电表,则将脉冲信号输入单片机系统进行处理。
要完成上述功能,就要采用专用的电功率测量芯片,其中最常用的AD7755就是一种高精度的电功率测量芯片,其内部的乘法器是数字型乘法器。
AD7755的功能框图见图 1,引脚见图2。
它输出的脉冲信号可以直接驱动计数器的步进电机。
AD7755的性能测试电路见图3。
其中V1P、V1N为电流传感器的模拟输入端,V2P、V2N为电压传感器的模拟输入端。
按图中SCF、S1、SO的接法,CF输出频率是F1和F2的16倍。
图1 AD7755内部框图图2AD7755引脚排列图3 AD7755性能测试电路图4 AD7755信号处理框图AD7755的信号处理框图见图4。
两个ADC分别对来自CH1(交流电流取样)和CH2(交流电压取样)的电压信号进行数字化,这两个ADC都是16位的数模转换器。
电流通道内的高通滤波器(HPF)滤掉电流信号中的直流分量,从而消除了曲于电流或电压失调所造成的有功功率计算上的误差。
瞬时功率由电压信号和电流信号直接相乘得到,通过低通滤波器(LPF)得到有功功率。
再经电压一频率转换,引脚F1和F2以较低频率形式输出有功功率平均值,此脉冲推动计数器计数,引脚CF以较高频率形式输出有功功率瞬时值,用于仪表校验,由于其输出频率高,便于进行处理,因此本文利用CF输出的脉冲信号作为测量信号。
AD7755在电子电度表电路中的应用AD7755是一种高准确度电能测量集成电路。
AD7755只在ADC和基准源中使用模拟电路,其它信号处理(如相乘和滤波)都使用了数字电路,这使AD7755在恶劣的环境条件下仍能保持极高的准确度和长期的稳定性。
AD7755有24脚DIP和SSOP两种封装。
机械式电能表和电子式电能表比较一;工作原理:目前使用的电能表有两种:一种是机械式电能表又称感应式电能表,一种是电子式电能表;它们由于出现的年代不一样,因而其工作原理截然不同;机械式电能表的工作原理是:当电能表接入电路时,电压线圈和电流线圈产生的磁通穿过圆盘,这些磁通在时间和空间上不同相,分别在圆盘上感应出涡流,由于磁通与涡流的相互作用而产生转动力矩使圆盘转动,因磁钢的制动作用,使圆盘的转速达到匀速运动,由于磁通与电路中的电压和电流成正比例,使圆盘在其作用下以正比于负载电流的转速运动,圆盘的转动经蜗杆传动到计度器,计度器的示数就是电路中实际所使用的电能;电子式电能表是近几年随着电子工业的发展而出现的,它是利用电子电路/芯片来测量电能;用分压电阻或电压互感器将电压信号变成可用于电子测量的小信号,用分流器或电流互感器将电流信号变成可用于电子测量的小信号,利用专用的电能测量芯片将变换好的电压、电流信号进行模拟或数字乘法,并对电能进行累计,然后输出频率与电能成正比的脉冲信号;脉冲信号驱动步进马达带动机械计度器显示,或送微计算机处理后进行数码显示;二;电能表简单分类:电能表是专门用来测量电能累积值的仪表,电力企业用以计量发电量,用电量、供电量、损耗电量、销售电量等数值均依赖于电能表;所以有人也把电能表比作电力工业销售产品的一杆秤;上面所说的机械式电能表与电子式电能表是按照电能表的结构原理进行分类的,也是最常用的分类方法;除了这种分类之外,电能表还可以按以下标准进行分类:1、按照所测不同电流种类可分为:直流式和交流式二种;2、按照电能表的用途可分为:单相电能表、三相有功电能表、三相无功电能表、最大需量表、复费率电能表、损耗电能表;3、按电能表的接线方式不同可分为:直接接入式、经互感器接入式、经万用互感器接入式;同时也分为单相、三相三线和三相四线等;4、按照电能表的等级划分为:普通有功电能表0.2或0.2S级、0.5或0.5S级、1.0级、2.0级,普通无功电能表2.0级、3.0级;标准电能表分为0.5级、0.2级、0.05级、0.02级、0.01级;三;机械式电能表与电子式电能表的比较机械式电能表与电子式电能表诞生于不同的年代,原理也大不相同,为什么这两种电能表还能并存呢这是由它们各自的优缺点所决定的;这两种电能表在性能上有什么样的优缺点呢1、稳定性电子表因采用锰铜等高稳定性材料制作电流采样元件,高质量的电路作运算处理元件,因此总体的稳定性很好,用户在安装前可以实现免调,工作中的调校周期也可以大大延长,从而节省了人工;机械表因采用机械转动方式工作,摩擦力不稳定,因此稳定性与电子表相比显得较差,经运输后准确度就可能更差,在安装之前必须重新调校;安装运行后的表由于上述原因,稳定性又会逐渐变差;2、精度电子表电路中的A/D模数变换器的精度可达2-14以上,因此分辨力和精度很高,可以设计0.5级以上的高精度电能表;因此,电网管理中计量精度可大大提高,线损统计也可以更为准确;机械表由于采用磁路结构非线性失真大,一致性差,因此要采用各种补偿机构,采用补偿机构又降低了稳定性,也不利于生产使用中的调校,因此要生产精度高的机械电能表的难度相当大;3、灵敏度电子表的电子线路本身灵敏度极高,可比机械表高一个数量级,而且可以长时间保持这种高灵敏度;机械表的机械摩擦阻力是原理性的问题,目前无法克服,特别是在低转速时,机械摩擦力接近静态摩擦力,数值明显提高,因而计量漏洞将增大,长时间工作后尤其如此;4、线性动态范围与计量准确度由于电子表的采样元件、A/D变换元件、放大电路等的线性好,使得电子表的线性动态范围较大,适应性很强,特别适合于用电量变化大的地方,能保证大小电流时计量精度不变;机械表的线性动态范围小,原因是非线性因素太多,如小电流低转速时受制于摩擦力上升、磁阻上升等因素,大电流时磁路容易产生磁路饱和,因此当用电量变化很大时计量精度将受到很大影响;5、功耗由于电子表采用的CMOS元件,自身功耗很小,例如一只单相电子表的每月功耗约为0.3~0.5kW·h;而机械表的功耗约为每月0.8~1kW·h;不要小看了这0.5kW·h左右的差别,对一个拥有几十万只甚至上百万只电能表的大电网而言,这个总数是十分庞大的,对电网的节能效果及电网的管理成本影响十分巨大;6、防窃电效果由于电子线路内部在设计上很容易实现对付各种窃电行为防范措施,因此电子表在防窃电功能上要比机械表强得多。
电子式电能表工作原理与基本结构电子式电能表1、电子式电能表按其工作原理的不同,可分为模拟乘法器型、电子式电能表和数字乘法器型电子式电能表。
2、一般来说,电子式电能表由六个部分组成:电源单元、电能测量单元、中央处理单元(单片机) 、显示单元、输出单元、通信单元。
3、正常供电时,电子式电能表的工作电源通常有三种实现方式:工频电源(即变压器降压) 、阻容电源(电阻和电容降压) 、开关电源。
4、电子式电能表的显示单元主要分为 LED数码管和 LCD液晶显示器两种,后者功耗低,并支持汉字显示。
5、电子式电能表的关键部分是电能测量单元6、时分割乘法器是许多电子式电能表的关键部分,它通常由三角波发生器、比较器、调制器、滤波器四个部分组成。
7、若某电子式电能表的启动电流是0.01Ib,过载电流是6Ib,则A/D型的电能表要求A/D转换器的位数可以是10,A/D的位数取决于Imax和Imin的比值,6÷0.01=600,而29<600<210,即要求A/D的位数至少是10位。
8、U/F(电压/频率)转换器组成的电能测量单元,其作用是产生正比于有功功率的电能脉冲。
9、采用电阻网络作为电能表的电压采样器的最大特点是线性好和成本低,缺点是无法实现电气隔离。
采用电压互感器的最大优点是可实现初级和次级的电气隔离,并可提高电能表的抗干扰能力,缺点是成本高。
请登陆: 浏览更多信息10、检定无源脉冲电能表误差:通常在脉冲正端施加一个VDD=+5~12V的直流电源,有的现场校验仪或电能表检定装置具有这一电源,中间串联R=5~10Ω的电阻,再输入给检定脉冲回路。
11、单片机就是将微型计算机所具备的几个基本功能,如中央处理单元CPU 、程序存储器ROM 、数据存储器RAM 、定时计数器Timer/Counter 、输入输出接口I/O 等,集成到一块芯片中而构成小型计算机。
12、单片机的总线可以分为三种:地址总线AB 、数据总线DB 、控制总线CB 。
电子式电能表电原理图分析大纲:一、电子式电能表原理(分类为5大部分:电源、采样计量、单片机处理、通讯、输出):电表维修原则:1、通过现象查上一级电路输出的电压(或信号)是否正常。
2、上一级电路输出的电压(或信号)是正常的,则故障不在上一级电路,查本级电路。
3、上一级电路输出的电压(或信号)是不正常的,再查上上一级电路输出的电压(或信号)是否正常。
4、通过分级检测输出的电压(或信号)是否正常来确定故障的范围。
1、供电原理(讲原理时要画出电路,提及有故障时的现象和检测维修方法);1.1、三相表供电原理:变压器供电原理(详细讲解);电原理图如下:用变压器变压、整流、稳压对三相表进行供电,电路中有三个变压器。
其中的每个变压器的工作原理都相同,只是各个变压器的初级输入电压是三相电压中的不同的相。
对于三相四线电表:T1初级为A—N线电压,T2初级为B—N线电压,T3初级为C—N线电压;对于三相三线电表:T1初级为A—B相电压,T2初级为A—C相电压,T3初级为B—C相电压,对应我们经常在三相三线电表上显示的A相电压(为A—B相电压)、B相电压(为A—C相电压)、C相电压(为B—C相电压)。
用三个变压器供电的好处是:1、当电网出现某一相或两相无电压时,电表仍然可以计量有电压的相的用电情况;2、增加电表供电的带载能力,保证电表的正常工作。
现以变压器T1为例详细说明以上供电电路的工作原理:1、压敏电阻RV1压敏电阻的工作原理顾名思义,压敏电阻就是对电压敏感,由电压的改变而改变自身的电阻,我公司使用的压敏是正常时为开路,当电压达到一定值时(压敏的动作电压),压敏电阻会非常快速地阻值下降到零(短路。
这个时间为t、t为1nS—10 nS,t因选择的压敏型号不同而不同)。
而对多少电压值(动作电压)会开始阻值下降也是因选用的型号不同而不同,一般是型号上的数值。
比如:20K510的压敏电阻,则最大不动作电压为510V,可以查相关的电子元件资料,电子文档文件路径:Z:\研发中心\综合组\陈大全。
电能表工作原理
电能表,又称电表,是用来测量电能消耗的仪器。
它的工作原理是通过测量电
流和电压来计算电能的消耗。
电能表通常由电流表和电压表组成,通过测量电流和电压的变化来计算电能的使用情况。
下面将详细介绍电能表的工作原理。
首先,电能表通过电流互感器来测量电流的大小。
电流互感器是一种电流变压器,它可以将高电流变压为低电流,以便电能表能够进行准确测量。
电流互感器将电流传感器测量到的电流信号转化为标准的电流信号,然后传送给电能表。
其次,电能表通过电压变压器来测量电压的大小。
电压变压器是一种电压变压器,它可以将高电压变压为低电压,以便电能表能够进行准确测量。
电压变压器将电压传感器测量到的电压信号转化为标准的电压信号,然后传送给电能表。
然后,电能表将测量到的电流和电压信号进行计算,得出电能的消耗情况。
电
能表通常采用电磁式或电子式计量。
电磁式电能表通过电流线圈和电压线圈产生电磁力,使铝片转动,从而实现电能的计量。
而电子式电能表则通过电流和电压的数字信号进行计算,得出电能的消耗情况。
最后,电能表会将计算得出的电能消耗情况显示在表盘上,以便用户进行查看。
电能表通常具有数字显示和机械指针两种形式,用户可以通过表盘上的数字或指针来了解电能的使用情况。
总的来说,电能表的工作原理是通过测量电流和电压来计算电能的消耗情况。
它通过电流互感器和电压变压器来测量电流和电压的大小,然后通过电磁式或电子式计量来计算电能的使用情况,最后将结果显示在表盘上。
这种工作原理使得电能表能够准确地测量电能的使用情况,为用户提供了方便和可靠的电能计量服务。
电能表的分类和原理
电能表的分类可以分为机械式电能表和电子式电能表两类。
1. 机械式电能表:通过电流和电压的作用,驱动电能表内的机械部件运动,从而计量电能。
机械式电能表通常由电流线圈、电压线圈、铝盘电动机和机械计数装置等部件组成。
其工作原理是,电流线圈产生的磁场和电压线圈产生的磁场相互作用,通过铝盘电动机驱动计数装置转动,进而计算出电能的消耗。
2. 电子式电能表:借助电子技术和数字信号处理技术,实现对电能的计量和记录。
主要由电流变换器、电压变换器、微控制器、模数转换器和显示装置等组成。
其工作原理是,通过电流变换器和电压变换器将电能信号转换为低压信号,再经过模数转换器将信号数字化,最后由微控制器进行数据处理和显示。
电子式电能表具有测量精度高、抗干扰能力强、功能丰富等特点。