基于模拟退火的选区划分问题 数学建模
- 格式:pdf
- 大小:429.56 KB
- 文档页数:13
基于模拟退火算法的布局优化问题求解研究布局优化问题一直是计算机科学领域中的重要问题之一。
在现代工程学中,布局优化问题具有十分广泛的应用。
例如,在电路设计中,通过优化电路的布局可以大大提高电路的性能;在工业生产中,通过对机器与人员的布局进行优化可以提高工作效率,减少资源的浪费。
因此,布局优化问题一直是计算机科学中的研究热点之一。
目前,基于模拟退火算法的布局优化问题求解方法已经广泛应用于各种优化问题中。
本文将从以下几个方面讨论基于模拟退火算法的布局优化问题求解方法:问题定义、模拟退火算法的原理、基于模拟退火算法的布局优化问题求解流程以及模拟退火算法在布局优化问题中的应用。
问题定义在布局优化问题中,我们需要将对象(比如电路中的电子元件、生产工厂中的机器与人员等)进行合理的排列,从而实现最优化的整体效果。
在此基础上,我们可以将布局优化问题定义为:给定一组对象,找出它们之间最适宜的排列方式,以使得整个系统的效果最优。
假设我们有$n$个对象$O_i(i=1,2,\cdots,n)$需要排列,每个对象有对其他对象的紧密关联关系,可以用一个邻接矩阵$C$表示。
邻接矩阵$C$的元素$C_{i,j}$可以表示对象$O_i$与对象$O_j$之间的紧密关联程度,其中$C_{i,j}=1$表示对象$O_i$与对象$O_j$紧密关联,$C_{i,j}=0$则表示二者之间没有关联。
则我们的任务可以转化成求解一个合适的排列$P=(p_1,p_2,\cdots,p_n)$,其中$p_i$是对象$O_i$的位置,使得整个系统的效果最优。
模拟退火算法的原理模拟退火算法是一种解决组合优化问题的随机化算法。
和其他优化算法不同的是,模拟退火算法可以克服局部最优解问题,并且不易陷入局部最优解。
模拟退火算法的核心思想是:在搜索空间中随机游走,并以有一定概率接受劣解作为当前的解。
模拟退火算法包括如下三个主要步骤:1. 初始化解:随机生成一个解$S_0$;2. 解的扰动:对当前解进行一定的扰动,得到一个变换后的解$S'$;3. 解的接受:以一定的概率接受新的解$S'$作为当前解$S$,或者以概率$1-P$拒绝新的解$S'$,继续使用当前解进行下一轮操作。
2011数学建模B题标准答案承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):北京大学参赛队员(打印并签名) :1. 姚胜献2. 许锦敏3. 刘迪初指导教师或指导教师组负责人(打印并签名):刘业辉日期: 2011 年 9 月 12日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):交巡警服务平台的设置与调度摘要本文通过建立整数规划模型,解决了分配各平台管辖范围、调度警务资源以及合理设置交巡警服务平台这三个方面的问题;通过建立线性加权评价模型定量评价了某市现有交巡警服务平台设置方案的合理性,并根据各个区对服务平台需求量的不同,提出了重新分配全市警力资源的解决方案。
在计算交巡警服务平台到各个路口节点的路程时,使用了图论里的floyd算法。
针对问题一的第一个子问题,首先假设交巡警服务平台对某个路口节点的覆盖度是二元的,引入决策变量,建立了0-1整数规划模型。
交巡警出警应体现时间的紧迫性,所以选择平均每个突发事件的出警时间最短作为目标函数,运用基于MATLAB的模拟退火算法进行求解,给出了中心城区A的20个服务平台的管辖范围,求得平均每个案件的出警时间为1.013分钟。
数学建模模拟退火算法
数学建模是一种将实际问题转化为数学问题,通过建立数学模型来分析和解决问题的方法。
而模拟退火算法则是一种基于概率的全局优化算法,常被用于求解复杂问题的最优解。
在数学建模中,模拟退火算法可以应用于各种领域,如图像处理、目标识别、路线规划等。
模拟退火算法的基本思想是从一个随机解开始,通过随机扰动和接受策略来探索可能解空间,并逐渐降温,使得随机扰动的程度逐渐减小,最终达到全局最优解。
在应用模拟退火算法时,需要确定初始温度、温度下降速度以及接受策略等参数。
在数学建模中,模拟退火算法可以应用于很多问题。
例如,在图像处理中,可以通过模拟退火算法对图像进行优化,如图像的平滑处理、边缘检测等。
在目标识别领域,模拟退火算法可以用于对目标进行跟踪和识别。
在路线规划问题中,模拟退火算法可以用于求解最优路径。
在应用模拟退火算法时,需要考虑算法的效率和精度。
为了提高效率,可以采用多种优化技巧,如快速随机数生成、启发式信息引导等。
为了提高精度,可以适当增加迭代次数和初始温度,以便探索更广泛的解空间。
总之,模拟退火算法是一种非常有用的全局优化算法,可以应用于很多数学建模问题中。
在实际应用中,需要根据具体问题的特点和需求来选择算法参数和优化技巧,以达到最佳效果。
- 1 -。
例已知敌方100个目标的经度、纬度如下:我方有一个基地,经度和纬度为(70,40)。
假设我方飞机的速度为1000公里/小时。
我方派一架飞机从基地出发,侦察完敌方所有目标,再返回原来的基地。
在敌方每一目标点的侦察时间不计,求该架飞机所花费的时间(假设我方飞机巡航时间可以充分长)。
这是一个旅行商问题。
我们依次给基地编号为1,敌方目标依次编号为2,3,…,101,最后我方基地再重复编号为102(这样便于程序中计算)。
距离矩阵102102)(⨯=ij d D ,其中ij d 表示表示j i ,两点的距离,102,,2,1, =j i ,这里D 为实对称矩阵。
则问题是求一个从点1出发,走遍所有中间点,到达点102的一个最短路径。
上面问题中给定的是地理坐标(经度和纬度),我们必须求两点间的实际距离。
设B A ,两点的地理坐标分别为),(11y x ,),(22y x ,过B A ,两点的大圆的劣弧长即为两点的实际距离。
以地心为坐标原点O ,以赤道平面为XOY 平面,以0度经线圈所在的平面为XOZ 平面建立三维直角坐标系。
则B A ,两点的直角坐标分别为:)s i n ,c o s s i n ,c o s c o s(11111y R y x R y x R A )s i n ,c o s s i n ,c o s c o s(22222y R y x R y x R B 其中6370=R 为地球半径。
B A ,两点的实际距离⎫⎛=R d arccos , 化简得]s i n s i n c o s c o s )(a r c c o s [co s 212121y y y y x x R d +-=。
求解的模拟退火算法描述如下:(1)解空间解空间S 可表为{102,101,,2,1 }的所有固定起点和终点的循环排列集合,即}102,}101,,3,2{),,(,1|),,{(102101211021===ππππππ的循环排列为 S其中每一个循环排列表示侦察100个目标的一个回路,j i =π表示在第i 次侦察j 点,初始解可选为)102,,2,1( ,本文中我们使用Monte Carlo 方法求得一个较好的初始解。
模拟退火算法及其改进算法模拟退火算法(Simulated Annealing Algorithm)是一种基于概率的全局优化算法,它模拟了金属冶炼过程中的“退火”过程。
退火过程是指将高温物质逐渐降温,使之逐渐固化形成晶态结构。
同样地,模拟退火算法通过随机和接受不太好的解决方案的策略,以找到全局最优解。
算法的基本思路是在一个空间中随机生成一个起始解,然后通过一系列的变换和评估过程逐步更新当前解,直到找到满足优化目标的解决方案。
在每次迭代中,算法会通过采样邻域解决方案来将当前解转移到新的状态,并计算相应的目标函数值。
如果新的状态比当前解更优,则接受新的解作为当前解,并在下一次迭代中继续。
如果新的状态不是更优的解,则以一定的概率接受新的解,概率的大小与两个解之间的差距以及当前温度有关。
温度逐渐降低,使得算法在开始时可以接受较差的解决方案,但随着迭代次数的增加逐渐降低接受较差解决方案的概率,最终使算法收敛到一个较好的解。
尽管模拟退火算法在全局优化问题中表现优秀,但仍存在一些问题,例如收敛速度慢、易陷入局部最优解等。
因此,研究者提出了一些改进算法来提高模拟退火算法的性能。
一种改进算法是自适应模拟退火算法(Adaptive Simulated Annealing, ASA),它利用负自适应参数来调整算法自身的控制参数,从而提高收敛速度。
通过对负自适应参数进行精确建模和合适的调整,能够使算法自动地根据当前状态的差距和目标函数值的变化来调整的速度和方向。
另一种改进算法是量子模拟退火算法(Quantum Simulated Annealing, QSA),它引入了量子位操作和量子态演化来提高效率。
QSA利用一种特殊的迭代方式来更新解决方案,将随机排列算法与量子信息处理技术相结合,通过量子态的演化来寻找最优解,并避免陷入局部最优解。
此外,还有一些其他的改进算法,如多重爬山算法(Multi-startHill Climbing)、禁忌算法(Tabu Search)等,它们在模拟退火算法的基础上增加了一些启发式方法和约束条件,从而进一步提高性能。
模拟退火算法介绍模拟退火算法(Simulated Annealing,SA)是一种基于蒙特卡洛方法的优化算法,由Kirkpatrick等人于1983年提出。
它模拟了固体物体从高温到低温时退火的过程,通过模拟这一过程来寻找问题的最优解。
首先,模拟退火算法需要生成一个初始解。
初始解是随机生成的,它代表了问题的一个可能解。
初始解的生成可以采用随机数生成方法,或者使用其他启发式算法生成。
然后,算法需要定义一个邻域结构来解空间。
邻域结构定义了问题的解的相邻解之间的关系。
在退火算法中,邻域结构是动态变化的,随着算法的进行,邻域结构会不断调整以适应的需求。
在退火准则方面,模拟退火算法使用了一个“接受准则”来决定是否接受一个邻域解。
接受准则基于Metropolis准则,它比较了当前解和邻域解之间的差异以及温度参数。
如果邻域解的质量更好,那么就接受它;否则,以一定的概率接受较差的解。
这个概率与温度成正比,随着温度降低,接受较差解的概率逐渐减小。
在算法的每个迭代中,温度参数会随着迭代次数逐渐降低,这意味着算法逐渐从随机转变为局部。
温度参数的降低速率决定了算法的接受较差解的概率的减小速率。
温度参数的决定是关键,它通常是一个退火函数的参数,根据经验选择。
总的来说,模拟退火算法是一种随机化的优化算法,通过模拟物理退火过程,在解空间时能够克服局部最优解,从而寻找全局最优解。
它的应用范围广泛,涵盖了诸多领域,如组合优化、图像处理、网络设计等。
但是,模拟退火算法的收敛速度相对较慢,需要很多次迭代才能找到最优解,因此在实际应用中需要根据具体问题进行合适的调整和优化。
第二章模拟退火算法(Simulated Annealing)搜索问题描述搜索问题描述搜索算法盲目搜索还是启发式搜索?按照预定的控制策略实行搜索,在搜索过程中获取的中间信息不用来改进控制策略,称为盲目搜索,反之,称为启发式搜索。
关于“启发式”,可有两种看法:1)任何有助于找到问题的解,但不能保证找到解的方法均是启发式方法;2)有助于加速求解过程和找到较优解的方法是启发式方法。
搜索算法盲目搜索深度优先、广度优先、代价优先、向前、向后、双向。
启发式搜索爬山法、模拟退火算法、遗传算法、粒子群算法、蚁群算法。
贪心算法1.随机选定一个初始解x 0;2.Do while (中止条件不满足)1.在某个邻域函数所定义的邻域范围内,按照某个(随机)扰动Δ产生策略,得到一个新解x i ’;2.对新解进行评估,得f (x i ’);3.如果f (x i ’) > f (x i )(或者f (x i ’) < f (x i )),即新解比老解好,则令x i +1=x i ’;4.否则,x i +1=x i 。
3.End Do爬山法1.随机选定一个初始解x 0;2.Do while (中止条件不满足)1.在某个邻域函数所定义的邻域范围内,按照某个(随机)扰动Δ产生策略,得到多个新解X new ={x i 1, x i2,…, x i k };2.对这组新解进行评估,得{f (x i 1), f (x i 2), …, f (x i k )};3.x i +1=x i ’,x i ’∈X new ,∀x i j , (i =1,2,…,n; j =1,2,…,k ), f (x i ’) > f (x i )且f(x i ’) > f (x i j )(或者f (x i ’) < f (x i )且f (x i ’) < f (x i j )),即新的当前解比老解好,并且是所有新解中最好的一个;4.如果,∀x i j , (i =1,2,…,n; j =1,2,…,k ), f(x i ) > f (x i j )(或者f (x i ) <f (x i j )),则x i +1=x i 。
matlab中模拟退火算法Matlab中的模拟退火算法【引言】模拟退火算法是一种基于模拟物理退火过程而设计的优化算法,可以在复杂的搜索空间中寻找全局最优解。
它被广泛应用于各种领域,如组合优化、机器学习和工程设计等。
Matlab作为一种强大而灵活的数值计算软件,提供了丰富的工具和函数,使得模拟退火算法的实现变得相对容易。
在本文中,我们将使用Matlab来详细介绍模拟退火算法的原理及其在解决优化问题中的应用。
【算法原理】模拟退火算法模拟了金属退火时的过程,通过控制温度的变化来逐步降低系统的能量。
算法的过程可以总结为以下几个步骤:1. 初始化参数在实施模拟退火算法之前,我们需要初始化一些参数。
其中,初始解决方案是通过随机生成的方式得到的,温度的初始值和减少率需要根据问题的特性来选择。
2. 迭代过程在每一次迭代中,我们首先生成一个邻域解。
在解空间中,邻域解是指一个与当前解相邻的解。
生成邻域解的方式因问题而异,可以通过变异、交换或其他方式来实现。
接下来,我们计算当前解和邻域解之间的能量差。
能量差越大,邻域解越不优于当前解,但是有一定的概率可以接受这个邻域解。
概率使用Metropolis准则来计算,该准则与当前温度和能量差相关。
如果邻域解被接受,我们将其作为下一次迭代的当前解。
否则,我们保留之前的解作为当前解。
在每次迭代中,温度会逐渐下降,从而减少邻域解被接受的概率,直到温度降至接近于零时,算法停止。
3. 输出结果最终,模拟退火算法给出了一个局部最优解,即使不能保证找到全局最优解,但通常在实际问题中找到的解已经足够满意。
【Matlab实现】在Matlab中,我们可以使用以下几个步骤来实现模拟退火算法:1. 定义目标函数首先,我们需要定义一个目标函数,即我们希望优化的问题。
这个函数将输入一个解向量,并返回一个代表该解向量对应的目标值。
在实际问题中,目标函数的形式可以是各种各样的,根据实际情况进行定义。
2. 初始化参数在Matlab中,我们可以使用rand函数来生成一个初始解向量,并选择适当的初始温度和减少率。
模拟退火算法算法简介模拟退火算法得益于材料的统计力学的研究成果。
统计力学表明材料中粒子的不同结构对应于粒子的不同能量水平。
在高温条件下,粒子的能量较高,可以自由运动和重新排列。
在低温条件下,粒子能量较低。
如果从高温开始,非常缓慢地降温(这个过程被称为退火),粒子就可以在每个温度下达到热平衡。
当系统完全被冷却时,最终形成处于低能状态的晶体。
如果用粒子的能量定义材料的状态,Metropolis 算法用一个简单的数学模型描述了退火过程。
假设材料在状态i 之下的能量为)(i E ,那么材料在温度T 时从状态i 进入状态j 就遵循如下规律:(1)如果)()(i E j E ≤,接受该状态被转换。
(2)如果)()(i E j E >,则状态转换以如下概率被接受:其中K 是物理学中的波尔兹曼常数,T 是材料温度。
在某一个特定温度下,进行了充分的转换之后,材料将达到热平衡。
这时材料处于状态i 的概率满足波尔兹曼分布:∑∈--==Sj KTj E KT i E T eei x P )()()(其中x 表示材料当前状态的随机变量,S 表示状态空间集合。
显然||1lim )()(S eeSj KTj E KT i E T =∑∈--∞→ 其中||S 表示集合S 中状态的数量。
这表明所有状态在高温下具有相同的概率。
而当温度下降时,∑∑∑∉--∈----→∈----→+=minminminminminminmin)()()(0)()(0limlimS j KTE j E S j KTE j E KTE i E T Sj KTE j E KT E i E T eeeee⎪⎩⎪⎨⎧∈==∑∈----→其它若 0 ||1limmin min )()(0minminminS i S eeS j KTE j E KT E i E T 其中)(min min j E E Sj ∈=且})(|{min min E i E i S ==。
中国数学建模-编程交流-模拟退火算法模拟退火算法模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(CoolingSchedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
3.5.1 模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
数学建模模拟退火算法数学建模是一项重要的研究方法,在各个学科领域都有广泛应用。
而退火算法是一种常见的优化算法,它通过模拟物质的退火过程来寻找问题的最优解。
下面本文将为大家介绍数学建模模拟退火算法的步骤。
首先,数学建模的第一步是选择问题及建立模型。
在这里,我们以旅行商问题为例进行讲解。
旅行商问题是指一个旅行商要走遍n个城市,并回到起点,问他应该按照怎样的顺序走才能使路程最短。
构建旅行商问题的数学模型,需要确定城市的坐标、距离矩阵等相关数据。
其次,建立目标函数,描述问题的优化目标。
在旅行商问题中,我们的目标是使路程最短。
因此,目标函数可以表示成:$${ \min \sum_{i,j=1}^{n} d_{i,j} x_{i}x_{j}}$$ 其中,dij表示城市i和城市j之间的距离,xi和xj则代表城市i 和城市j是否构成了回路。
接下来,我们需要确定退火算法的参数。
其中包括:初始温度T,降温速度a,迭代次数N和状态转移概率函数p。
其中,初始温度设置越高,容错率将越高;降温速度越慢,计算时间越长;迭代次数越多,则搜索的区域将越大;状态转移概率函数可以采用“metropolis准则”,即:$$ p=\begin{cases} 1\quad \Delta f\le 0 \\ e^{-\Delta f/T}\quad \Delta f>0 \end{cases} $$ 其中,△f代表目标函数的变化量,T表示当前温度,e为自然常数,越小则接受非最优解的概率也就越小。
最后,进行模拟退火算法的求解过程。
具体步骤包括:初始化,生成初始解;计算目标函数;降温,进行状态转移;重复上述过程,去掉个别的极值,直到收敛。
综上所述,数学建模模拟退火算法是一种有效的优化算法,和其他算法相比,模拟退火算法不需要求目标函数的导数,适用于非线性、非凸优化问题。
同时,该算法分类简单,容易实现,因此在实际应用中得到了广泛的推广和应用。