模拟退火算法
- 格式:doc
- 大小:35.00 KB
- 文档页数:3
模拟退火算法解决优化问题模拟退火算法(Simulated Annealing,SA)是一种基于模拟固体退火过程的全局优化算法,被广泛应用于解决各种优化问题。
它的基本思想源于固体退火过程中的原子热运动,通过模拟原子在退火过程中的状态变化,寻找全局最优解。
本文将介绍模拟退火算法的基本原理、算法流程以及在解决优化问题中的应用。
一、模拟退火算法的基本原理模拟退火算法的基本原理来自于固体物理学中的固体退火过程。
在固体退火过程中,固体在高温下加热后逐渐冷却,原子会随着温度的降低而逐渐趋于稳定状态。
类比到优化问题中,算法在搜索过程中允许一定概率接受比当前解更差的解,以避免陷入局部最优解,最终达到全局最优解。
二、模拟退火算法的基本步骤1. 初始化:随机生成初始解,并设定初始温度和终止条件。
2. 选择邻域解:根据当前解生成邻域解。
3. 接受准则:根据一定概率接受邻域解,更新当前解。
4. 降温策略:根据降温策略逐渐降低温度。
5. 终止条件:达到终止条件时停止搜索,输出最优解。
三、模拟退火算法的应用模拟退火算法在解决各种优化问题中都有广泛的应用,包括组合优化、函数优化、图像处理等领域。
下面以组合优化问题为例,介绍模拟退火算法的具体应用。
1. 旅行商问题(TSP):旅行商问题是一个经典的组合优化问题,目标是找到一条最短路径经过所有城市并回到起点。
模拟退火算法可以通过不断调整路径来寻找最优解。
2. 排课问题:在学校排课过程中,需要合理安排老师和班级的上课时间,避免冲突和空闲时间过长。
模拟退火算法可以优化排课方案,使得课程安排更加合理。
3. 装箱问题:在物流领域中,需要将不同大小的物品合理装箱,使得装箱空间利用率最大化。
模拟退火算法可以帮助优化装箱方案,减少空间浪费。
四、总结模拟退火算法作为一种全局优化算法,具有较好的全局搜索能力和收敛性。
通过模拟退火算法,可以有效解决各种优化问题,得到较优的解决方案。
在实际应用中,可以根据具体问题的特点调整算法参数和策略,进一步提高算法的效率和准确性。
模拟退火算法简单易懂的例子
模拟退火算法是一种基于概率的算法,来源于固体退火原理。
下面以一个简单的例子来说明模拟退火算法:
想象一个有十个元素的数组,代表一个能量状态,每个元素都有一个能量值。
开始时,所有元素都处于最高能量状态。
我们的目标是找到最低能量的状态,即最优解。
模拟退火算法的工作原理如下:
1. 从最高温度开始,逐渐降低温度。
在每个温度下,算法会尝试各种元素的组合方式,并计算其能量。
2. 在温度较高时,算法会尝试各种组合,并接受能量增加的“移动”,因为这些增加的能量对应于更高的温度,所以被接受的概率更大。
3. 随着温度的降低,算法开始更多地考虑能量的减少。
如果一个状态比前一个状态的能量更低,那么它一定会被接受。
但如果一个状态的能量比前一个状态的能量高,那么它会被以一定概率接受。
这个概率随着温度的降低而减小。
4. 重复上述过程,直到达到终止温度。
这时,算法已经找到了最低能量的状态。
模拟退火算法可以找到全局最优解,而不是局部最优解。
这是因为算法在搜索过程中会接受一些次优解(即能量增加的“移动”),以便跳出局部最优解,探索更广阔的解空间。
以上内容仅供参考,如果需要更多信息,建议查阅相关文献或咨询专业人士。
模拟退火算法缩写
模拟退火算法(Simulated Annealing Algorithm)的缩写可以有多种形式,常见的缩写包括:SA、SimAnneal 或 Simulated Annealing。
这些缩写通常在学术文献、研究报告或代码中使用,以简洁地表示模拟退火算法。
模拟退火算法是一种启发式随机搜索算法,用于在复杂的优化问题中找到近似最优解。
它基于物理退火过程的原理,通过模拟物质在加热和冷却过程中的行为,逐步搜索更优的解决方案。
在模拟退火算法中,通过随机生成候选解,并根据一个适应度函数评估每个候选解的质量。
然后,根据概率接受较差的候选解,以避免陷入局部最优解。
随着算法的进行,温度逐渐降低,接受较差解的概率也逐渐减小,从而使算法更倾向于找到全局最优解。
模拟退火算法在许多领域都有应用,如组合优化、神经网络训练、图像处理等。
它的优点包括在一定程度上避免陷入局部最优、对初始解的依赖性较小、能够处理复杂的约束和目标函数等。
需要注意的是,缩写的使用可能因领域、团队或个人偏好而有所不同。
在具体的上下文中,可能会使用其他特定的缩写或术语来表示模拟退火算法。
此外,在使用缩写时,确保在相关文档或说明中明确其含义,以避免混淆和误解。
希望以上内容对你有所帮助!如果你对模拟退火算法或其他相关问题有更多的疑问,请随时提问。
模拟退火算法原理模拟退火算法是一种基于统计力学原理的全局优化算法,它模拟了固体物质退火过程中的原子热运动,通过不断降低系统能量来寻找全局最优解。
该算法最初由Kirkpatrick等人于1983年提出,被广泛应用于组合优化、神经网络训练、图像处理等领域。
模拟退火算法的原理基于一个基本的思想,在搜索过程中允许一定概率接受劣解,以避免陷入局部最优解。
其核心思想是通过随机扰动和接受概率来逐渐减小系统能量,从而逼近全局最优解。
算法流程如下:1. 初始化温度T和初始解x;2. 在当前温度下,对当前解进行随机扰动,得到新解x';3. 计算新解的能量差ΔE=E(x')-E(x);4. 若ΔE<0,则接受新解x'作为当前解;5. 若ΔE>0,则以一定概率P=exp(-ΔE/T)接受新解x';6. 降低温度T,重复步骤2-5,直至满足停止条件。
在模拟退火算法中,温度T起着至关重要的作用。
初始时,温度较高,接受劣解的概率较大,有利于跳出局部最优解;随着迭代次数的增加,温度逐渐降低,接受劣解的概率减小,最终收敛到全局最优解。
模拟退火算法的关键参数包括初始温度、降温速度、停止条件等。
这些参数的选择对算法的性能和收敛速度有着重要影响,需要根据具体问题进行调整。
总的来说,模拟退火算法通过模拟物质退火过程,以一定概率接受劣解的方式,避免了陷入局部最优解,能够有效地寻找全局最优解。
它在解决组合优化、参数优化等问题上表现出了很好的性能,成为了一种重要的全局优化算法。
通过对模拟退火算法原理的深入理解,我们可以更好地应用该算法解决实际问题,同时也可以为算法的改进和优化提供理论基础。
希望本文的介绍能够对大家有所帮助。
模拟退火算法python一、简介模拟退火算法(Simulated Annealing,SA)是一种全局优化算法,可以用于求解各种优化问题。
模拟退火算法最初由Kirkpatrick等人于1983年提出,其灵感来源于固体物理中的“退火”过程。
模拟退火算法通过随机搜索的方式,在搜索空间中寻找全局最优解。
二、算法流程1.初始化参数模拟退火算法需要设置初始温度T0,终止温度Tend,降温速率a以及每个温度下的迭代次数L。
其中初始温度T0应该足够高,以便跳出局部最优解;终止温度Tend应该足够低,以便保证找到全局最优解;降温速率a应该足够慢,以便保证能够在合理的时间内找到最优解;每个温度下的迭代次数L应该足够大,以便在当前温度下充分搜索。
2.生成初始解随机生成一个初始解x0。
3.进行迭代搜索对于当前温度T和当前解x,在邻域内随机生成一个新解y,并计算新旧两个解之间的能量差ΔE=E(y)-E(x)。
如果ΔE<0,则接受新解y;如果ΔE>0,则以概率exp(-ΔE/T)接受新解y。
通过这种方式,可以在搜索空间中跳出局部最优解,并逐渐趋向全局最优解。
4.降温每个温度下的迭代次数L结束后,降低温度T=a*T,直到T<Tend为止。
5.终止条件当达到终止温度Tend时,停止迭代搜索,并输出最优解。
三、Python实现以下是一个简单的Python实现:```pythonimport randomimport math# 目标函数def f(x):return x**2# 初始温度T0 = 1000# 终止温度Tend = 1e-8# 降温速率a = 0.99# 每个温度下的迭代次数L = 100# 随机生成初始解x = random.uniform(-10, 10)best_x = xwhile T0 > Tend:for i in range(L):# 在邻域内随机生成新解y = x + random.uniform(-1, 1)# 计算能量差delta_E = f(y) - f(x)if delta_E < 0:# 接受新解x = yif f(x) < f(best_x):best_x = xelse:# 以概率接受新解p = math.exp(-delta_E / T0)if random.uniform(0, 1) < p:x = y# 降温T0 *= aprint("最优解:", best_x)print("最优值:", f(best_x))```四、总结模拟退火算法是一种全局优化算法,在求解各种优化问题时具有广泛的应用。
模拟退火算法模拟退火是一种通用概率算法,目的是在固定时间内在一个大的搜寻空间内寻求给定函数的全局最优解。
它通常被用于离散的搜索空间中,例如,旅行商问题。
特别地,对于确定的问题,模拟退火算法一般是优于穷举法。
这是由于我们一般只需得到一个可接受的最优解,而不是精确的最优解。
退火一词来源于冶金学。
退火(见图1)是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。
材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。
退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。
因此,我们将热力学的理论应用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。
而模拟退火算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。
模拟退火原理最早是 S. Kirkpatrick, C. D. Gelatt 和 M. P. Vecchi 在1983年所创造的。
而 V . Černý 在1985年也独立发明了此算法。
1. 问题描述数学上的最优化问题一般描述为如下形式:()()minimize()g 0,1,2,,subject to 0,1,2,,i i f x x i m h x i p≤=⎧⎪⎨==⎪⎩ 其中,():R n f x R →称作问题的目标函数,()g 0i x ≤称作问题的不等式约束条件,()0i h x =称作问题的等式约束条件。
寻求上述问题的最优解的过程就类似于从热动力系统的任意一个初始状态向内能最小的状态转移的过程,即退火过程。
2. 模拟退火算法基本思想模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有图1 物理退火原理图序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
模拟退火算法及其改进算法模拟退火算法(Simulated Annealing Algorithm)是一种基于概率的全局优化算法,它模拟了金属冶炼过程中的“退火”过程。
退火过程是指将高温物质逐渐降温,使之逐渐固化形成晶态结构。
同样地,模拟退火算法通过随机和接受不太好的解决方案的策略,以找到全局最优解。
算法的基本思路是在一个空间中随机生成一个起始解,然后通过一系列的变换和评估过程逐步更新当前解,直到找到满足优化目标的解决方案。
在每次迭代中,算法会通过采样邻域解决方案来将当前解转移到新的状态,并计算相应的目标函数值。
如果新的状态比当前解更优,则接受新的解作为当前解,并在下一次迭代中继续。
如果新的状态不是更优的解,则以一定的概率接受新的解,概率的大小与两个解之间的差距以及当前温度有关。
温度逐渐降低,使得算法在开始时可以接受较差的解决方案,但随着迭代次数的增加逐渐降低接受较差解决方案的概率,最终使算法收敛到一个较好的解。
尽管模拟退火算法在全局优化问题中表现优秀,但仍存在一些问题,例如收敛速度慢、易陷入局部最优解等。
因此,研究者提出了一些改进算法来提高模拟退火算法的性能。
一种改进算法是自适应模拟退火算法(Adaptive Simulated Annealing, ASA),它利用负自适应参数来调整算法自身的控制参数,从而提高收敛速度。
通过对负自适应参数进行精确建模和合适的调整,能够使算法自动地根据当前状态的差距和目标函数值的变化来调整的速度和方向。
另一种改进算法是量子模拟退火算法(Quantum Simulated Annealing, QSA),它引入了量子位操作和量子态演化来提高效率。
QSA利用一种特殊的迭代方式来更新解决方案,将随机排列算法与量子信息处理技术相结合,通过量子态的演化来寻找最优解,并避免陷入局部最优解。
此外,还有一些其他的改进算法,如多重爬山算法(Multi-startHill Climbing)、禁忌算法(Tabu Search)等,它们在模拟退火算法的基础上增加了一些启发式方法和约束条件,从而进一步提高性能。
模拟退火算法模拟退火算法(Simulated Annealing)是一种经典的优化算法,常用于解决复杂的优化问题。
它的灵感来自于金属退火的过程,通过降温使金属内部的不稳定原子重新排列,从而获得更优的结构。
在算法中,通过接受一定概率的差解,模拟退火算法能够逃离局部最优,并最终找到全局最优解。
在MATLAB中,我们可以使用以下步骤来实现模拟退火算法:1.初始化参数:设定初始温度T0、终止温度Tf、温度下降速率α、算法运行的迭代次数等参数,并设定当前温度为T0。
2.生成初始解:根据问题的要求,生成一个初始解x。
3. 迭代优化:在每个温度下,进行多次迭代。
每次迭代,随机生成一个新的解x_new,计算新解的目标函数值f_new。
4. 判断是否接受新解:根据Metropolis准则,判断是否接受新解。
如果新解比当前解更优,则直接接受;否则,以概率exp((f_current - f_new) / T)接受新解。
5.更新解和温度:根据前一步的判断结果,更新当前解和温度。
如果接受了新解,则将新解作为当前解;否则,保持当前解不变。
同时,根据设定的温度下降速率,更新当前温度为T=α*T。
6.重复步骤3-5,直到当前温度小于终止温度Tf。
7.返回最优解:记录整个迭代过程中的最优解,并返回最优解作为结果。
以下是一个简单的示例,演示如何使用MATLAB实现模拟退火算法解决旅行商问题(TSP)。
```matlabfunction [bestPath, bestDistance] =simulatedAnnealingTSP(cityCoordinates, T0, Tf, alpha, numIterations)numCities = size(cityCoordinates, 1);currentPath = randperm(numCities);bestPath = currentPath;currentDistance = calculateDistance(cityCoordinates, currentPath);bestDistance = currentDistance;T=T0;for iter = 1:numIterationsfor i = 1:numCitiesnextPath = getNextPath(currentPath);nextDistance = calculateDistance(cityCoordinates, nextPath);if nextDistance < currentDistancecurrentPath = nextPath;currentDistance = nextDistance;if nextDistance < bestDistancebestPath = nextPath;bestDistance = nextDistance;endelseacceptanceProb = exp((currentDistance - nextDistance) / T); if rand( < acceptanceProbcurrentPath = nextPath;currentDistance = nextDistance;endendendT = alpha * T;endendfunction nextPath = getNextPath(currentPath)numCities = length(currentPath);i = randi(numCities);j = randi(numCities);while i == jj = randi(numCities);endnextPath = currentPath;nextPath([i j]) = nextPath([j i]);endfunction distance = calculateDistance(cityCoordinates, path) numCities = length(path);distance = 0;for i = 1:numCities-1distance = distance + norm(cityCoordinates(path(i),:) - cityCoordinates(path(i+1),:));enddistance = distance + norm(cityCoordinates(path(numCities),:) - cityCoordinates(path(1),:)); % 加上回到起点的距离end```以上示例代码实现了使用模拟退火算法解决旅行商问题(TSP)。
模拟退火算法(Simulated Annealing)是一种随机优化算法,其基本思想是将问题转化为能量最小化问题,在解空间中以概率形式进行搜索空间,从而达到全局优化的目的。
一、算法原理的原理源于冶金学中的“模拟退火”过程。
在冶金学中,模拟退火是一种将材料加热到足够高的温度,使得原子以无序方式排列,并随着温度逐渐下降,原子逐渐重新排列成为有序状态的过程。
类似地,在算法中,模拟退火过程由三个参数组成:初始温度、降温速率和停止温度。
算法从一个初始解开始,随机产生新解,并计算新解与当前解之间的能量差。
如果新解的能量小于当前解的能量,则直接接受新解,如果新解的能量大于当前解的能量,则以一定的概率接受新解,以避免过早陷入局部最优解。
通过不断降温的过程,在搜索空间中进行随机跳跃,并慢慢收敛到全局最优解。
二、算法流程的流程如下:1. 设定初始温度、降温速率和停止温度。
2. 随机生成一个初始解,并计算其能量。
3. 生成一个新解,并计算新解与当前解之间的能量差。
4. 如果新解的能量小于当前解的能量,则接受新解。
5. 如果新解的能量大于当前解的能量,则以一定的概率接受新解。
6. 降温,更新温度。
7. 判断算法是否收敛,如果未收敛则返回步骤2。
三、应用场景广泛应用于组合优化问题、图论问题、生产调度问题等领域。
例如:1. 旅行商问题:在旅行商问题中,可以通过搜索空间中随机跳跃的方式找到最短路径,从而达到全局最优解。
2. 排课问题:在学校的排课问题中,可以帮助学校最优化考虑不同的课程安排,得到最优化的课程表。
3. 生产调度问题:在生产调度问题中,可以帮助生产企业在限制资源的条件下找到最优化的生产方案,提高生产效率。
四、优缺点作为一种优化算法,具有以下优点:1. 全局搜索能力强:能够在搜索空间中进行全局搜索,并趋向于全局最优解。
2. 算法收敛性好:在算法搜索到解后,能够很快地达到最优解,收敛速度较快。
3. 收敛到局部最优解的可能性较小:由于算法在跳跃过程中具有随机性,因此收敛到局部最优解的可能性较小。
模拟退火算法介绍模拟退火算法(Simulated Annealing,SA)是一种基于蒙特卡洛方法的优化算法,由Kirkpatrick等人于1983年提出。
它模拟了固体物体从高温到低温时退火的过程,通过模拟这一过程来寻找问题的最优解。
首先,模拟退火算法需要生成一个初始解。
初始解是随机生成的,它代表了问题的一个可能解。
初始解的生成可以采用随机数生成方法,或者使用其他启发式算法生成。
然后,算法需要定义一个邻域结构来解空间。
邻域结构定义了问题的解的相邻解之间的关系。
在退火算法中,邻域结构是动态变化的,随着算法的进行,邻域结构会不断调整以适应的需求。
在退火准则方面,模拟退火算法使用了一个“接受准则”来决定是否接受一个邻域解。
接受准则基于Metropolis准则,它比较了当前解和邻域解之间的差异以及温度参数。
如果邻域解的质量更好,那么就接受它;否则,以一定的概率接受较差的解。
这个概率与温度成正比,随着温度降低,接受较差解的概率逐渐减小。
在算法的每个迭代中,温度参数会随着迭代次数逐渐降低,这意味着算法逐渐从随机转变为局部。
温度参数的降低速率决定了算法的接受较差解的概率的减小速率。
温度参数的决定是关键,它通常是一个退火函数的参数,根据经验选择。
总的来说,模拟退火算法是一种随机化的优化算法,通过模拟物理退火过程,在解空间时能够克服局部最优解,从而寻找全局最优解。
它的应用范围广泛,涵盖了诸多领域,如组合优化、图像处理、网络设计等。
但是,模拟退火算法的收敛速度相对较慢,需要很多次迭代才能找到最优解,因此在实际应用中需要根据具体问题进行合适的调整和优化。
模拟退火算法原理
模拟退火算法是一种启发式优化算法,通过模拟退火的过程来搜索问题的解空间。
该算法的基本原理来自于固体退火过程中的微观行为,通过慢慢降低温度来使得固体达到低能态的状态。
在模拟退火算法中,首先需要定义一个目标函数来评估解的质量。
然后,从解空间中随机生成一个初始解作为当前最优解,并设置初始温度。
接下来的迭代过程中,通过对当前解进行随机扰动和评估,同时根据一定的概率接受劣解,从而避免陷入局部最优解。
这个概率与温度息息相关,温度降低时,接受劣解的概率也降低。
当温度降到足够低时,模拟退火算法将停止并返回最优解。
具体地,模拟退火算法的迭代过程中,会不断地改变当前解,形成一条解的搜索路径。
根据Metropolis准则,如果新解的质
量优于当前解,则直接接受新解;如果新解质量差于当前解,则以一定的概率接受新解。
这个概率根据新解质量的差距和当前温度计算得出。
温度越高,接受劣解的概率越高;温度越低,接受劣解的概率越低。
随着迭代的进行,温度逐渐下降,接受劣解的概率减小,最终得到一个接近最优解的解。
模拟退火算法的关键点之一是如何设置降温的规则。
常见的降温策略包括指数降温、线性降温和对数降温等。
这些策略都可以根据问题的特性进行选择。
另外,模拟退火算法还需要合适的初始温度和终止条件来保证算法的效果和收敛性。
总之,模拟退火算法通过模拟退火的过程,通过逐渐降低温度
来搜索问题的解空间。
它可以在解空间中进行随机搜索,并以一定的概率接受劣解,从而避免陷入局部最优解。
通过合适的降温策略和终止条件,模拟退火算法能够找到一个接近最优解的解。
【算法】数学建模常用算法简介——模拟退火算法
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
模拟退火算法的模型
模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:
(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L
(2) 对k=1,……,L做第(3)至第6步:
(3) 产生新解S′
(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.
(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
模拟退火算法新解的产生和接受可分为如下四个步骤:
第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
第二步是计算与新解所对应的目标函数差。
因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。
事实表明,对大多数应用而言,这是计算目标函数差的最快方法。
第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。
此时,当前解实现了一次迭代。
可在此基础上开始下一轮试验。
而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。
模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。
模拟退火算法的简单应用(2003年县官访问村庄的问题或者tsp问题的优化)
作为模拟退火算法应用,讨论货郎担问题(Travelling Salesman Problem,简记为TSP):设有n个城市,用数码1,…,n代表。
城市i和城市j之间的距离为d(i,j) i, j=1,…,n.TSP问题是要找遍访每个域市恰好一次的一条回路,且其路径总长度为最短.。
求解TSP的模拟退火算法模型可描述如下:
解空间解空间S是遍访每个城市恰好一次的所有回路,是{1,……,n}的所有循环排列的集合,S中的成员记为(w1,w2 ……,wn),并记wn+1= w1。
初始解可选为(1,……,n)目标函数此时的目标函数即为访问所有城市的路径总长度或称为代价函数:
我们要求此代价函数的最小值。
新解的产生随机产生1和n之间的两相异数k和m,若k<m,则将
(w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn)
变为:
(w1, w2 ,…,wm , wm-1 ,…,wk+1 , wk ,…,wn).
如果是k>m,则将
(w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn)
变为:
(wm, wm-1 ,…,w1 , wm+1 ,…,wk-1 ,wn , wn-1 ,…,wk).
上述变换方法可简单说成是“逆转中间或者逆转两端”。
也可以采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。
代价函数差设将(w1, w2 ,……,wn)变换为(u1, u2 ,……,un), 则代价函数差为:
根据上述分析,可写出用模拟退火算法求解TSP问题的伪程序:
Procedure TSPSA:
begin
init-of-T; { T为初始温度}
S={1,……,n}; {S为初始值}
termination=false;
while termination=false
begin
for i=1 to L do
begin
generate(S′form S); { 从当前回路S产生新回路S′}
Δt:=f(S′))-f(S);{f(S)为路径总长}
IF(Δt<0) OR (EXP(-Δt/T)>Random-of-[0,1])
S=S′;
IF the-halt-condition-is-TRUE THEN
termination=true;
End;
T_lower;
End;
End
模拟退火算法的应用很广泛,可以较高的效率求解最大截问题(Max Cut Problem)、0-1背包问题(Zero One
Knapsack Problem)、图着色问题(Graph Colouring Problem)、调度问题(Scheduling Problem)等等。