浙教版八年级数学下册单元测试题全套(含答案)
- 格式:pdf
- 大小:1.31 MB
- 文档页数:34
浙教版八年级数学下册单元测试题全套(含答案)第1章 达标检测卷 (满分100分 时间60分钟)一、选择题(每小题4分,共20分) 1.若为二次根式,则m 的取值范围为( )A .m ≤3B .m <3C .m ≥3D .m >3 2.下列式子中,二次根式的个数是( )⑴;⑵;⑶;⑷;⑸;⑹ ; ⑺.A .2 B.3C .4D.53是同类二次根式的是() 4.下列计算正确的有( )①;②; ③;④. A .1个 B .2个C .3个D .4个5,, 中最简二次根式 是( )A .①②B .③④C .①③D .①④ 二、填空题(每小题4分,共20分) 6.化简:. 7.计算:= . 8.在实数范围内分解因式: . 9.比较大小:(填“>”“<”或“=” ).m-3313-12+-x 382)31(-)1(1>-x x 322++x x 694)9)(4(=-⋅-=--694)9)(4(=⋅=--145454522=-⋅+=-145452222=-=-=<)0(82a b a =-322x --10,则它的周长是cm.三、解答题(共60分)11.计算:(每小题5分,共25分) (1)(2(3) (4)(512.(8分)已知一个矩形的长和宽分别是和,求这个矩形的面积.13.(8分)14.(9分) 已知,,求代数式的值.15.(10分)实数p 在数轴上的位置如图,化简 .n m 218)36)(16(3--⋅-1022的值。
互为相反数,求与已知:b a b a b a ∙-++-8632-=x 32+=y 22y xy x ++()222)1(p p -+-参考答案一、选择题1.A 2.C 3.D 4.A 5.C 二、填空题 6. 7. 8. 9.> 10.三、解答题11.(1) (2)6 (3)-24 (4) (5)第2章 达标检测卷 (100分 60分钟 )一、选择题(本大题共9个小题,每小题3分,共27分) 1.下列方程,是关于的一元二次方程的是( ). A. B.C. D.2.方程的根为( ). A. B. C. D.3.解下列方程:(1),(2),(3)x 2+2x +1=0,较适当的方法分别为( ). A.(1)直接开平法方,(2)因式分解法,(3)配方法 B.(1)因式分解法,(2)公式法,(3)直接开平方法 C.(1)公式法,(2)直接开平方法,(3)因式分解法 D.(1)直接开平方法,(2)公式法,(3)因式分解法4.方程的两根的情况是( ). A.没有实数根 B.有两个不相等的实数根 C.有两个相同的实数根 D.不能确定5.若与互为倒数,则实数为( ).b a 22-39194()()3232-+x x 3225+n m 233222b a 258+x 23(1)2(1)x x +=+21120x x+-=20ax bx c ++=2221x x x +=-()()24330x x x -+-=3x =125x =12123,5x x =-=12123,5x x ==()225x -=2320x x --=0322=-+x x 12+x 12-x xA. B. C. D.6.如果是方程的两个根,那么的值为( ).A. -1B. 2C.D.7.若方程有两个相等的实数根,则=( ).A. B. 0 C. 2 D.8.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有名同学,那么根据题意,列出方程为( ).A. B. C. D.9.某厂今年一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增率是,则可以列方程为( ).A. B.C. D.二、填空题(本大题共8个小题,每小题3分,共24分)10.方程的解是.11.如果二次三项式是一个完全平方式,那么的值是_______. 12.如果一元二方程有一个根为0,那么. 13.若方程的两个根是和3,则的值分别为.14是同类二次根式,则=____________. 15.已知方程的一个根是1,则另一个根是,的值是.16. 若一元二次方程有两根1和-1,则a +b +c =______,a -b +c =_____. 17.若,则=____________. 三、解答题(共49分)18.(9分)用适当的方法解下列方程:(1) ; (2) .12±1±2±21,x x 0122=--x x 21x x +21-21+0522=+-m x x m 2-813x (1)1035x x +=(1)10352x x -=⨯(1)1035x x -=2(1)1035x x +=x 720)21(500=+x 720)1(5002=+x 720)1(5002=+x 500)1(7202=+x 2310x x -+=221)16x m x -++(m 043)222=-++-m x x m (m =02=++q px x 2-q p ,x 022=-+kx x k 20ax bx c ++=2225120x xy y --=xy26730x x +-=22510x x +-=19.(10分)已知,求的值.20. (10分)已知关于的方程. (1) 当取何值时,方程有两个实数根;(2) 为选取一个适合的整数,使方程有两个不相等的实数根,并求出这两个实数根.21. (10分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图).(1)根据图中所提供的信息回答下列问题:2018年底的绿地面积为平方米,比2017年底增加了平方米;在2016年,2017年,2018年这三年中,绿地面积增加最多的 是年.(2)为满足城市发展的需要,政府加大绿化投入,到2020年底城区绿地面积达到72.6平方米,试问这两年绿地面积的年平均增长率是多少?22.(10分)阅读诗词解题:(通过列方程式,算出周瑜去世时的年龄) 大江东去浪涛尽,千古风流数人物;而立之年睿东吴,早逝英年两位数,)0(04322≠=-+y y xy x yx yx +-x 222(1)0x m x m -++=mm十位恰小个位三,个位平方与寿符;哪位学子算的快,多少年华属周瑜?参考答案一、选择题1.A2.D3.D4.B5.A6.B7.D8.B9.B 二、填空题 10.11. 12. 13. 14. 2或 15. 16. 0,0 17. 4或三、解答题 18.[解] (1) . (2) .19.[解]原方程可变形为: 即 ∴ 当 当 20.[解] (1)依题意得:△≥0即 ≥0 整理得:≥0 解得:当.(2) 当时,原方程可化为:解得:.21.(1) 60平方米 4平方米 2017年. (2)22.解:设周瑜逝世时的年龄的个位数字为x ,则十位数字为x -3,依题意得, x 2=10(x -3)+x ;即x 2-11x +30=0;解得x 1=5,x 2=6;当x 1=5时,周瑜的年龄是25岁,非而立之年,不合题意舍去;当x 2=6时,周瑜的年龄是36岁,完全符合题意.答:周瑜去世时的年龄是36岁.第3章 达标检测卷(时间:90分钟 满分:120分)253±125,3m m =-=2m =-1,6p q =-=-1222,1x k =-=32-1213,32x x ==-12x x ==(4)()0+-=x y x y (4)0()0+=-=或x y x y 4=-=或x y x y 45443---=-==+-+,x y y y x y x y y y 0--===++,x y y yx y x y y y224(1)4+-m m 84+m 12≥-m 4=m 210160-+=x x 122,8==x x 10%一、精心选一选(每小题3分,共30分)1.某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是( )A .3B .3.5C .4D .52.在端午节到来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家店的粽子做调查,以决定最终向哪家店采购.下面的统计量,最值得关注的是( )A .方差B .平均数C .中位数D .众数3.在样本方差的计算公式S 2=110[(x 1-20)2+(x 2-20)2+…+(x 10-20)2]中,数字10与20分别表示样本的( )A .容量,平均数B .平均数,容量C .容量,方差D .标准差,平均数4.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映的统计量是( )A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数5.某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是( )A.8 B .7 C .9 D .106.某市6月份日平均气温统计如图,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,227.今年,我省启动了“关爱留守儿童工程”.某村小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是()A .平均数是15B .众数是10C .中位数是17D .方差是4438.某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表,综合成绩按照数学、物理、化学、生物四科测试成绩的1.2∶1∶1∶0.8的比例计分,则综合成绩第一名是( )A.甲 B .乙 C .丙 D .不确定9.一组数据6,4,a ,3,2的平均数是5,这组数据的标准差为( ) A .2 2 B .5 C .8 D .310.在某中学举行的演讲比赛中,八年级5名参赛选手的成绩如下表,请你根据表中提供的数据,计算出这5名选手成绩的方差为( )A.2 B .6.8 C .34 D .93二、细心填一填(每小题3分,共24分)11.甲、乙两人进行射击测试,两人10次射击成绩的平均数都是8.5环,方差分别是:s 甲2=2,s 乙2=1.5,则射击成绩较稳定的是___.(填“甲”或“乙”)12.数据1,2,3,a 的平均数是3,数据4,5,b ,6的众数是5,则a +b =____. 13.已知一组数据3,1,5,x ,2,4的众数是3,那么这组数据的标准差是____.14.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算.已知小明数学得分为95分,综合得分为93分,那么小明物理得分是___分.15.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下的频数分布表,这个样本的中位数在第____组.16.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0,的整数,则x 的值为___.17.两组数据m ,6,n 与1,m ,2n ,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为____.18.已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s =____.(用只含有n ,k 的代数式表示)三、耐心做一做(共66分)19.(8分)在“全民读书月活动”中,小明调查了全班40名同学本学期计划购买课外书的花费情况,并将结果绘制如图的统计图.请根据相关信息,解答下列问题:(直接填写结果)(1)这次调查获取的样本数据的众数是___; (2)这次调查获取的样本数据的中位数是____;(3)若该校共有学生1 000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有____人. 20.(10分)为了了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A ,B ,C ,D 四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问:这次被抽检的电动汽车共有几辆?并补全条形统计图; (2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?21.(10分)某公司员工的月工资情况统计如下表:(1)分别计算该公司员工月工资的平均数、中位数和众数;(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由.22.(12分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为___,图①中m的值为___;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?23.(12分)甲、乙两人是NBA联盟凯尔特人队的两位明星球员,两人在前五个赛季的罚球命中率如下表:(1)分别求出甲、乙两位球员在前五个赛季罚球的平均命中率;(2)在某场比赛中,因对方球员技术犯规需要凯尔特人队选派一名队员进行罚球,你认为甲、乙两位球员谁来罚球更好?(请通过计算说明理由)24.(14分)如图,A,B两个旅游点从2012年至2016年“五一”的旅游人数变化情况分别用实线和虚线表示.根据图中所有示信息,解答以下问题:(1)B旅游点的旅游人数相对上一年来说,增长最快的是哪一年?(2)求A,B两个旅游点从2012年至2016年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y=5-x100.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?参考答案1.B2.D3.A4.D5.C6.C7.C8.A9.A 10.B 11. 乙 12.11 13.15314.90 15.2 16.4 17.7 18.nk 19.(1)30元 (2)50元 (3)25020. 解:(1)被抽检的电动汽车共有30÷30%=100(辆),补全条形统计图略. (2)x =1100(10×200+30×210+40×220+20×230)=217(千米).21. 解:(1)平均数=3 800元,中位数=3 500元,众数=3 500元.(2)用众数代表该公司员工的月工资水平更为合适,因为3 500出现的次数最多,能代表大部分人的工资水平.22.解:(1)40 15.(2)众数为35 中位数为36+362=36.(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例为30%,则计划购买200双运动鞋,有200×30%=60(双)为35号.23. 解:(1)x甲=(87+86+83+85+79)÷5=84;x乙=(87+85+84+80+84)÷5=84.所以甲、乙两位球员罚球的平均命中率都为84%.(2)S甲2=[(87-84)2+(86-84)2+(83-84)2+(85-84)2+(79-84)2]÷5=8,S乙2=[(87-84)2+(85-84)2+(84-84)2+(80-84)2+(84-84)2]÷5=5.2.由x甲=x乙,S甲2>S乙2可知,乙球员的罚球命中率比较稳定,建议由乙球员来罚球更好.24.解:(1)B旅游点的旅游人数相对上一年来说,增长最快的是2 013年.(2)x A=1+2+3+4+55=3(万人),x B=3+3+2+4+35=3(万人).S A2=15×[0+0+(-1)2+12+0]=25(万人2).从2012年至2016年,A,B两个旅游点平均每年的旅游人数均为3万人,但A旅游点较B旅游点的旅游人数波动大.(3)由题意得5-x100≤4,解得x≥100,100-80=20(元).答:门票价格至少应提高20元.第4章达标检测卷(120分120分钟)一、选择题(每小题3分,共30分)1.在平行四边形ABCD中,∠A:∠B:∠C=1:2:1,则∠D等于()A.0°B.60°C.120°D.150°2.在平行四边形ABCD中,对角线AC、BD交于点O,下列式子一定成立的是()A.AC⊥BD B.OA=OC C.AC=BD D.AO=OD3.若点P(a,2)与Q(-1,b)关于坐标原点对称,则a,b分别为()A.-1,2 B.1,-2 C.1,2 D.-1,-24.在美丽的明清宫广场中心地带整修工程中,计划采用同一种正多边形地板砖铺设地面,在下面的地板砖:①正方形,②正五边形,③正六边形,④正八边形中能够铺满地面的地板砖的种数是()A.1 B.2 C.3 D.45.已知下列命题:①对顶角相等;②垂直于同一条直线的两直线平行;•③相等的角是对顶角;④同位角相等,其中假命题有()A.1个B.2个C.3个D.4个6.下列图形,既是轴对称图形又是中心对称图形的是( )7.一个多边形的内角和是720°,那么这个多边形是( )A .四边形B .五边形C .六边形D .七边形 8.在四边形ABCD 中,AD ∥BC ,若ABCD 是平行四边形,则还应满足( ) A .∠A+∠C=180° B .∠B+∠D=180° C .∠A+∠B=180° D .∠A+∠D=180°9.已知平行四边形 ABCD 的周长为30cm ,AB :BC=2:3,则AB 的长为( ) A .6cm B .9cm C .12cm D .18cm10.如图,在平行四边形ABCD 中,EF ∥AB ,GH ∥AD ,EF 与GH 交于点O ,则该图中的平行四边形的个数是( )A .7B .8C .9D .11 二、填空题(每小题4分,共40分)11.在四边形ABCD 中,若∠A=∠C=100°,∠B=60°,则∠D=______.12.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45•°”时,应假设_______________. 13.“平行四边形的对角线互相平分”的逆命题是____________.14.如图,E ,F 是平行四边形ABCD 对角线BD 上的两点,请你添加一个条件,使四边形AECF •也是平行四边形.你添加的条件是:___________. 15.如图,在平行四边形ABCD 中,∠A 的平分线交BC 于点E .若AB=10cm ,CD=14cm , 则EC=_____.16.已知直角三角形的两边长分别是5,12,则第三边的长为_______.17.已知三角形的三边长分别是4,5,6,则它的三条中位线围成的三角形的周长是________. 18.在平行四边形ABCD 中,AC ,BD 交于点O ,若AB=6,AC=8,则BD 的取值范围是_______. 19.如图,在图(1)中,A 1、B 1、C 1分别是△ABC 的边BC 、CA 、AB 的中点,在图(2)中,A 2、B 2、C 2分别是△A 1B 1C 1的边B 1C 1、C 1 A 1、 A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数是.O20.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线交l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C n的坐标是.三、解答题(共50分)21.(6分)如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.22. (8分)如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.试判断AF与CE是否相等,并说明理由.23. (10分) 如图,E 、F 分别是平行四边形ABCD 对角线BD 所在直线上两点,DE = BF.请你以F 为一个端点,和图中已标有字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须研究一组线段相等即可).⑴连结_______________; ⑵猜想:_______________;⑶证明:(说明:写出证明过程中的重要依据)24. (12分) 如图,在□ABCD 中,AE 、BF 分别平分∠DAB 和∠ABC ,交CD 于点E 、F ,AE 、BF 相交于点M .(1)试说明:AE ⊥BF ;(2)判断线段DF 与CE 的大小关系,并予以说明.25. (14分)探究规律:如图1,已知直线m ∥n ,A 、B 为直线n 上的两点,C 、P 为直线m 上的两点。
第五章 特殊的平行四边形姓名:---------- 成绩:------ --- 一.选择题 (每小题4分,共40分)1. 若菱形ABCD 中,AE 垂直平分BC 于E,AE=1cm,则BC 的长是 A.1cm B.332cm C.3cm D.4cm 2. 如果a 表示一个菱形的对角线的平方和,b 表示这个菱形的一边的平方,那么 A.a =4b B.a =2b C .a =b D.b =4a3. .已知ABCD 是平行四边形,下列结论中,不一定正确的是 A.AB=CD B.AC=BD C.当AC ⊥BD 时,它是菱形 D.当∠ABC=90º时,它是矩形4. 如图,矩形ABCD 的边长AB=6,BC=8,将矩形沿EF 折叠,使C 点与A 点重合,则折痕EF 的长是 A.7.5 B.6 C.10 D.55. 如图所示,过四边形ABCD 的各顶点,作对角线BD 、AC 的平行线,围城四边形EFGH,若四边形EFGH 是菱形,则原四边形一定是A.菱形B.平行四边形 C.矩形 D.对角线相等的四边形6. 在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是. A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格7. 图1中有8个完全相同的直角三角形,则图中矩形的个数是A. 5B. 6C. 7D. 8A E DB FC 图(2)图(1)MNN M 图1 图2A C8. 如图,正方形ABCD 中,∠︒=25DAF ,AF 交对角线BD 于点E ,那么∠BEC 等于A.︒45B.︒60C.︒70D.︒759. Rt △ABC 的两边长分别是3和4,若一个正方形的边长是△ABC 的第三边,则这个正方形的面积是 A.25 B.7C.12D.25或7 10. 下列图形中,不能..经过折叠围成正方形的是A. B C. D.第Ⅱ卷(非选择题 共8道填空题8道解答题)请将你认为正确的答案代号填在下表中1 2 3 4 5 6 7 8 9 10 二.简答题 (每小题3分,共24分)11. 如图矩形,ABCD 中,AC 、BD 相交于O,AE 平分∠BAD 交BC 于E,若∠CAE=15º,则∠BOE=_________ 12. M 为矩形ABCD 中AD 的中点,P 为BC 上一点,PE ⊥MC,PF ⊥MB,当AB 、BC 满足_________时,四边形PEMF 为矩形 13. 给定下列命题:(1)对角线相等的四边形是矩形;(2)对角相等的四边形是矩形;(3)有一个角是直角的平行四边形是矩形;(4)一个角为直角,两条对角线相等的四边形是矩形;(5)对角线相等的平行四边形是矩形;其中不正确的命题的序号是____________14. 如图,矩形ABCD 中,E 、F 分别为AD 、AB 上一点,且EF=EC,EF ⊥EC,若DE=2,矩形周长为16,则矩形ABCD 的面积为_________15. 现有一张长52cm,宽28cm 的矩形纸片,要从中剪出长15cm 宽、12cm 的矩形小纸片(不能粘贴),则最多能剪出__________张16. 已知矩形的周长是40cm,被两条对角线分成的相邻两个三角形的周长的差是8cm,则较长的边长为________17. 已知菱形ABCD 的边长为6,∠A=60º,如果点P是菱形内一点,切PB=PD=32,那么AP 的长为____________18. 矩形ABCD 的对角线AC 、BD 相交于点O,AB=4cm,∠AOB=60º,则这个矩形的对角线的长是_________cmA DERBC D B E C三.解答题(共56分)19. 如图,菱形AB CD中,点M、N分别在B C、CD上,且CM=CN,求证:(1)△AB M≌△A DN(2)∠A MN=∠A NM20. 如图,在四边形ABCD中,AD∥BC,对角线AC与BD相交于点O,AC平分∠BAD,请你再添一个什么条件? 就能推出四边形ABCD是菱形,并给出证明.21. 某课外学习小组在设计一个长方形时钟钟面时,欲使长方形的宽为20厘米,时钟的中心在长方形对角线的交点上,数字2在长方形的顶点上,数字3、6、9、12标在所在边的中点上,如图所示。
第六章反比例函数单元检测卷姓名:__________ 班级:__________一、选择题(共11题;共33分)1.下列函数中y是x的反比例函数的是()A. B. xy=8 C. D.2.对于函数y=﹣,下列结论错误的是()A. 当x>0时,y随x的增大而增大B. 当x<0时,y随x的增大而增大C. 当x=1时的函数值大于x=﹣1时的函数值D. 在函数图象所在的象限内,y随x的增大而增大3.如果双曲线y=经过点(-2,3),那么此双曲线也经过点()A. (-2,-3)B. (3,2)C. (3,-2)D. (-3,-2)4.如图,反比例函数y=(x>0)的图象与一次函数y=ax+b的图象交于点A(1,6)和点B(3,2).当ax+b<时,则x的取值范围是()A. 1<x<3B. x<1或x>3C. 0<x<1D. 0<x<1或x>35.如图,直线AB与双曲线y=相交于A、B两点,过点A作AC⊥y轴于点C,过点B作BD⊥x轴于点D,连结AD、BC,分别记△ABC与△ABD的面积为S1、S2,则下列结论中一定正确的是()A. S1>S2B. S1<S2C. S1=S2D. 无法判断S1与S2的大小关系6.如图,点A是反比例函数y=(x>0)的图象上的一点,且点A的横坐标为2,连接OA并延长到点B,使AB=OA,过点B作x轴和y轴的垂线,垂足分别为C,D,则图中阴影部分的面积为()A. 23B. 18C. 11D. 87.如图,在平面直角坐标系中.矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB.如果OA=3,OC=2,则经过点E的反比例函数解析式为()A. B. C. D.8.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()A. 两条直角边成正比例B. 两条直角边成反比例C. 一条直角边与斜边成正比例D. 一条直角边与斜边成反比例9.如图,在函数y1=(x<0)和y2=(x>0)的图象上,分别有A、B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,S△AOC=,S△BOC=,则线段AB的长度是()A. 8B. 9C. 10D. 1110.若反比例函数y=的图象经过点(2,﹣1),则该反比例函数的图象在()A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限11.如图,A,B是函数y=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,如果△ABC的面积记为S,那么()A. S=4B. S=2C. 2<S<4D. S>4二、填空题(共11题;共33分)12.请写出一个图象经过点(﹣1,1),并且在第二象限内函数值随着自变量的增大而增大的函数的表达式:________13.若反比例函数y= 的图象过点(﹣2,1),则一次函数y=kx﹣k的图象不过第________ 象限.14.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为________ .15.如图,在反比例函数(x>0)的图象上,有点P1、P2、P3、P4,它们的横坐标依次是1、2、3、4,分别过这些点作x轴与y轴的垂线,若图中所构成的阴影部分的面积从左到右依次为S1、S2、S3,则S1+S2+S3=________.16.若点(3,1)在双曲线y= 上,则k=________.17.我们已经学习了反比例函数,在生活中,两个变量间具有反比例函数关系的实例有许多,例如:在路程s一定时,平均速度v是运行时间t的反比例函数,其函数关系式可以写为:v= (s为常数,s≠0).请你仿照上例,再举一个在日常生活、学习中,两个变量间具有反比例函数关系的实例:________;并写出这两个变量之间的函数解析式:________.18.反比例函数y=的图象如图所示,点M是该图象上一点,MN垂直于x轴,垂足是点N,如果S△MON=3,则k的值为________.19.如图,双曲线y=经过Rt△OMN斜边ON上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB 的面积为6,则k的值是________ .20.已知反比例函数y= ,当1<x≤3时,则y的取值范围是________.21.若函数y=4x与y=的图象有一个交点是(,2),则另一个交点坐标是________ .22.若反比例函数y=(2k﹣1)的图象位于二、四象限,则k=________三、解答题(共4题;共34分)23.当k为何值时,y=(k﹣1)x是反比例函数?24.若函数y=(m+2)是反比例函数,试确定其解析式.25.若反比例函数y=(m2﹣5)在每一个象限内,y随x的增大而增大.求m的值.26. 如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y= (k>0)经过边OB的中点C和AE 的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.参考答案一、选择题B C C D C D A B C D A二、填空题12.y=﹣13.三14.-6 15.3 16.317.矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数;a= (S为常数,且S≠0)18.-3 19.20.21.(﹣,﹣2)22.0三、解答题23.解:y=(k﹣1)是反比例函数,得解得k=﹣1,当k=﹣1时,y=(k﹣1)是反比例函数.24.解:由题意得:m2﹣5=﹣1且m+2≠0,解得:m=2.故其解析式为y=.25.解:根据题意,得m2﹣5<0,m2﹣m﹣7=﹣1,﹣,m1=3(不符合题意,舍),m2=﹣2,∴m=﹣2.26. (1)解:过点C作CG⊥OA于点G,∵点C是等边△OAB的边OB的中点,∴OC=2,∠AOB=60°,∴OG=1,CG=OG•tan60°=1• = ,∴点C的坐标是(1,),由 = ,得:k= ,∴该双曲线所表示的函数解析式为y=(2)解:过点D作DH⊥AF于点H,设AH=a,则DH= a.∴点D的坐标为(4+a,a),∵点D是双曲线y= 上的点,由xy= ,得a(4+a)= ,即:a2+4a﹣1=0,解得:a1= ﹣2,a2=﹣﹣2(舍去),∴AD=2AH=2 ﹣4,∴等边△AEF的边长是2AD=4 ﹣8。
浙教版八年级数学下册单元测试题全套(含答案)第1章达标检测卷(满分100分时间60分钟)一、选择题(每小题4分,共20分)1 .若t 3 - m为二次根式,则m的取值范围为()A . m< 3 B. m<3 C. m>3 D. m> 32 .下列式子中,二次根式的个数是()⑴ J—;⑵ J—3 ;⑶一J x +1 :⑷ V8 :⑸ J(—):⑹— x(x > 1);'3 3⑺ x22x 3.A . 2B . 3 C. 4 D. 53 •下列二次根式,与'24是同类二次根式的是()A. 18B. - 30C. - 48D. 544.下列计算正确的有()①..口)(二9) = -4-^6 :②、(二4)(二9) = • 4 • 9 =6 ;③\ 52 _42=「5+4 r5_4 =1 :④ \:52— 42= 丁52—(42 = 1A . 1个B. 2个C. 3个D. 4个5 .在根式① Ja2 +b , ②J孑,③J x2 -xy ,④J27abc中最简二次根式是()A .①②B .③④C .①③ D.①④二、填空题(每小题4分,共20分)6 .化简:.8a2b(a :: 0) = ____2&在实数范围内分解因式:2x - 3二______________________9. ------------------------------------------ 比较大小:_5・7_6\5 (填“〉”“<”或“=”)10. 一个三角形的三边长分别为'、8cm, J2cm, JBcm,则它的周长是 __________ c m.三、解答题(共60分)11. 计算:(每小题5分,共25分)(1)x18m2n(3) 一... 3 (-16)(-36)(5)、45 、“8 ,12512. (8分)已知一个矩形的长和宽分别是J0和2 2,求这个矩形的面积13. (8分)已知::''a - b + 6与和■'a + b - 8互为相反数,求a • b的值14. (9分)已知x = 2 —V3 ,旳二2 3,求代数式x ■ xy ■ y的值.15. (10分)实数p在数轴上的位置如图,化简J(1-P)2+(J百丫参考答案一、 选择题 I.A 2. C 3. D 4. A 5. C二、 填空题6. -2aj2b7. 空屈8.V 3) 9.> 10. 5^2 + 2"9三、 解答题 II.(1) 3m . 2n (2) 6 ( 3) -24、3(4) 2a 2b 2(5) 8.5.、2第2章 达标检测卷 (100分60分钟)一、选择题(本大题共 9个小题,每小题 3分,共27分) 1. 下列方程,是关于 x 的一元二次方程的是()•21 1A. 3(x 1)2 =2(x 1)B. 22=0x x2 2 2C. ax bx c = 0D. x 2x = x -122. 方程 4(x —3 ) +x (x —3 ) = 0 的根为( ).C.有两个相同的实数根D.不能确定23.解下列方程:(1)( x —2)=5 ,(2) x 2—3x —2=0,( 3) x 2+2x+仁0,较适当的方法分别为 ( ).A. (1)直接开平法方,(2)因式分解法,(3)配方法B. (1)因式分解法,(2)公式法,(3)直接开平方法C. (1)公式法,(2 )直接开平方法,(3)因式分解法D. (1)直接开平方法,(2)公式法,(3)因式分解法 4.方程x 2 • 2x -3 =0的两根的情况是()A.没有实数根B. 有两个不相等的实数根 A. X =3 B.12 x 二5C.x^ -3,x 212 5D.5.若2x 1与2x -1互为倒数,则实数x为(A._1B. _1C.D. _、22 26. 如果x「X2是方程X2-2X-1=0的两个根,那么X i X2的值为( ).A. -1B. 2C. 1-2D. 127. 若方程2x2 _5x,m=0有两个相等的实数根,则m=( ).1A. -2B. 0C. 2D. 388. 某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,那么根据题意,列出方程为( ).A.X(X 1)=1035B. x(x-1)=1035 2C. x(x -1) =1035D. 2x(x 1) =10359. 某厂今年一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增率是X ,则可以列方程为( ).A. 500(1 2x) =720B. 500(1 x)2=720C. 500(1 x2) =720D. 720(1 x)2=500二、填空题(本大题共8个小题,每小题3分,共24分)10. 方程x2 -3x • 1 =0的解是.11. 如果二次三项式x2-2( m+1)x+16是一个完全平方式,那么m的值是________ .12. 如果一元二方程(m —2)x2• 3x • m2—4 = 0有一个根为0,那么m =.13. 若方程x2• px • q = 0的两个根是-2和3,则p,q的值分别为.14. 已知最简二次根式J2x? -X与J4x-2是同类二次根式,则x= ____________________ .15. 已知方程x2• kx - 2 = 0的一个根是1,则另一个根是,k的值是.16. 若一元二次方程ax2 +bx +c =0 有两根1 和—1,则a+b+c= ________ , a-b+c= _____ .x17. 若2x2—5xy —12y2 = 0,则一= ___________ .y三、解答题(共49分)18. (9分)用适当的方法解下列方程:(1) 6x2+7x-3=0 ;(2) 2x2+5x-1 = 0.19. (10分)已知x2 3xy _4y2 =0(y =0),求匕丄的值. x + y20. (10分)已知关于x的方程x2 _2(m+1)x+m2 = 0(1) 当m取何值时,方程有两个实数根;(2) 为m选取一个适合的整数,使方程有两个不相等的实数根,并求出这两个实数根21. ( 10分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图)(1) 根据图中所提供的信息回答下列问题:2018年底的绿地面积为平方米,比2017年底增加了平方米;在2016年,2017年,2018年这三年中,绿地面积增加最多的是年•(2) 为满足城市发展的需要,政府加大绿化投入,到2020年底城区绿地面积达到72.6平方米,试问这两年绿地面积的年平均增长率是多少22. ( 10分)阅读诗词解题:(通过列方程式,算出周瑜去世时的年龄) 大江东去浪涛尽,千古风流数人物;而立之年睿东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符;哪位学子算的快,多少年华属周瑜?参考答案19.[解]原方程可变形为:(x • 4y)(x - y) = 0T ,U-yx + y -4y + y=020. [解]⑴依题意得:即 4(m 1)2 -4m 2> 0整理得:8m 4 > 0解得:当m — -丄2⑵ 当m =4时,原方程可化为: x 2 -10x 76 =0解得:X 1 = 2, X 2 = 821. (1) 60平方米 4平方米 2017年.(2) 10%22. 解:设周瑜逝世时的年龄的个位数字为 x,则十位数字为x-3,依题意得,X 2=10(X -3)+X ;即x 2-11x+30=0 ; 解得X 1=5,x 2=6;当X 1=5时,周瑜的年龄是25岁,非而立之年,不合题意舍去;当x 2=6时,周瑜的年龄是 36岁,完全符合题意.答:周瑜去世时的年龄是 36岁.第3章达标检测卷 (时间:90分钟 满分:120分)一、选择题1.A2.D3.D4.B5.A6.B7.D _、填空题10.3 二、511. mn - -5,m 2 : =32114. 2或215. X ? - -2, k = 1三、解答题18. [解]⑴ 为=],X 2 =-3 .3 28. B 9.B12. m = -2 13. p - -1,q - -6316. 0, 017. 4 或 2(2) x^5_23,x^^-^344即(x 4y) = 0或(x -y)=0••• x-_4y 或x = y一、精心选一选(每小题3分,共30分)1.某校对九年级6个班学生平均一周的课外阅读时间进行了统计, 分别为(单位:h ): 3.5,4, 3.5, 5,5, 3.5•这组数据的众数是()A . 3B . 3.5C . 4D . 52 •在端午节到来之前,学校食堂推荐了 A , B , C 三家粽子专卖店,对全校师生爱吃哪家店的粽子做 调查,以决定最终向哪家店采购•下面的统计量,最值得关注的是()A .方差B .平均数C .中位数D .众数2 1 2 2 23 .在样本方差的计算公式 S = 10[(x i — 20) +(X 2— 20) +…+ (X i 。
浙教版八年级数学下册单元测试题全套(含答案)第1章 达标检测卷 (满分100分 时间60分钟)一、选择题(每小题4分,共20分) 1.若为二次根式,则m 的取值范围为( )A .m ≤3B .m <3C .m ≥3D .m >3 2.下列式子中,二次根式的个数是( )⑴;⑵;⑶;⑷;⑸;⑹ ; ⑺.A .2B .3C .4D .53是同类二次根式的是( ) 4.下列计算正确的有( )①;②; ③;④. A .1个 B .2个C .3个D .4个 5, ,中最简二次根式 是( )A .①②B .③④C .①③D .①④ 二、填空题(每小题4分,共20分) 6.化简:.7.计算:= . 8.在实数范围内分解因式: . 9.比较大小:(填“>”“<”或“=” ).m-3313-12+-x 382)31(-)1(1>-x x 322++x x 694)9)(4(=-⋅-=--694)9)(4(=⋅=--145454522=-⋅+=-145452222=-=-=<)0(82a b a =-322x --10.一个三角形的三边长分别为,则它的周长是 cm.三、解答题(共60分)11.计算:(每小题5分,共25分) (1) (2)(3) (4) (5)12.(8分)已知一个矩形的长和宽分别是和,求这个矩形的面积.13.(8分)14.(9分) 已知,,求代数式的值.15.(10分)实数p 在数轴上的位置如图,化简 .8,12,18cm cm cm n m 218232⨯)36)(16(3--⋅-33142ab a b •45188125+-+1022的值。
互为相反数,求与已知:b a b a b a •-++-8632-=x 32+=y 22y xy x ++()222)1(p p -+-参考答案一、选择题1.A 2.C 3.D 4.A 5.C 二、填空题 6. 7. 8. 9.> 10.三、解答题11.(1) (2)6 (3)-24 (4) (5)第2章 达标检测卷 (100分 60分钟 )一、选择题(本大题共9个小题,每小题3分,共27分) 1.下列方程,是关于的一元二次方程的是( ).A. B.C. D.2.方程的根为( ). A. B. C. D.3.解下列方程:(1),(2),(3)x 2+2x +1=0,较适当的方法分别为( ). A.(1)直接开平法方,(2)因式分解法,(3)配方法 B.(1)因式分解法,(2)公式法,(3)直接开平方法 C.(1)公式法,(2)直接开平方法,(3)因式分解法 D.(1)直接开平方法,(2)公式法,(3)因式分解法4.方程的两根的情况是( ). A.没有实数根 B.有两个不相等的实数根 C.有两个相同的实数根 D.不能确定5.若与互为倒数,则实数为( ).b a 22-39194()()3232-+x x 3225+n m 233222b a 258+x 23(1)2(1)x x +=+21120x x+-=20ax bx c ++=2221x x x +=-()()24330x x x -+-=3x =125x =12123,5x x =-=12123,5x x ==()225x -=2320x x --=0322=-+x x 12+x 12-x xA. B. C. D.6.如果是方程的两个根,那么的值为( ).A. -1B. 2C.D.7.若方程有两个相等的实数根,则=( ).A. B. 0 C. 2 D.8.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有名同学,那么根据题意,列出方程为( ).A. B. C. D.9.某厂今年一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增率是,则可以列方程为( ).A. B.C. D.二、填空题(本大题共8个小题,每小题3分,共24分)10.方程的解是.11.如果二次三项式是一个完全平方式,那么的值是_______. 12.如果一元二方程有一个根为0,那么. 13.若方程的两个根是和3,则的值分别为.14是同类二次根式,则=____________. 15.已知方程的一个根是1,则另一个根是,的值是.16. 若一元二次方程有两根1和-1,则a +b +c =______,a -b +c =_____. 17.若,则=____________. 三、解答题(共49分)18.(9分)用适当的方法解下列方程:(1) ; (2) .12±1±2±21,x x 0122=--x x 21x x +21-21+0522=+-m x x m 2-813x (1)1035x x +=(1)10352x x -=⨯(1)1035x x -=2(1)1035x x +=x 720)21(500=+x 720)1(5002=+x 720)1(5002=+x 500)1(7202=+x 2310x x -+=221)16x m x -++(m 043)222=-++-m x x m (m =02=++q px x 2-q p ,x 022=-+kx x k 20ax bx c ++=2225120x xy y --=xy26730x x +-=22510x x +-=19.(10分)已知,求的值.20. (10分)已知关于的方程. (1) 当取何值时,方程有两个实数根;(2) 为选取一个适合的整数,使方程有两个不相等的实数根,并求出这两个实数根.21. (10分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图).(1)根据图中所提供的信息回答下列问题:2018年底的绿地面积为平方米,比2017年底增加了平方米;在2016年,2017年,2018年这三年中,绿地面积增加最多的 是年.(2)为满足城市发展的需要,政府加大绿化投入,到2020年底城区绿地面积达到72.6平方米,试问这两年绿地面积的年平均增长率是多少?22.(10分)阅读诗词解题:(通过列方程式,算出周瑜去世时的年龄) 大江东去浪涛尽,千古风流数人物;而立之年睿东吴,早逝英年两位数,)0(04322≠=-+y y xy x yx yx +-x 222(1)0x m x m -++=m m十位恰小个位三,个位平方与寿符;哪位学子算的快,多少年华属周瑜?参考答案一、选择题1.A2.D3.D4.B5.A6.B7.D8.B9.B 二、填空题 10.11. 12. 13. 14. 2或 15. 16. 0,0 17. 4或三、解答题 18.[解] (1) . (2) .19.[解]原方程可变形为: 即 ∴ 当 当 20.[解] (1)依题意得:△≥0即 ≥0 整理得:≥0 解得:当.(2) 当时,原方程可化为:解得:.21.(1) 60平方米 4平方米 2017年. (2)22.解:设周瑜逝世时的年龄的个位数字为x ,则十位数字为x -3,依题意得, x 2=10(x -3)+x ;即x 2-11x +30=0;解得x 1=5,x 2=6;当x 1=5时,周瑜的年龄是25岁,非而立之年,不合题意舍去;当x 2=6时,周瑜的年龄是36岁,完全符合题意.答:周瑜去世时的年龄是36岁.第3章 达标检测卷(时间:90分钟 满分:120分)253±125,3m m =-=2m =-1,6p q =-=-1222,1x k =-=32-1213,32x x ==-12x x ==(4)()0+-=x y x y (4)0()0+=-=或x y x y 4=-=或x y x y 45443---=-==+-+,x y y y x y x y y y 0--===++,x y y yx y x y y y224(1)4+-m m 84+m 12≥-m 4=m 210160-+=x x 122,8==x x 10%一、精心选一选(每小题3分,共30分)1.某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是( )A .3B .3.5C .4D .52.在端午节到来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家店的粽子做调查,以决定最终向哪家店采购.下面的统计量,最值得关注的是( )A .方差B .平均数C .中位数D .众数3.在样本方差的计算公式S 2=110[(x 1-20)2+(x 2-20)2+…+(x 10-20)2]中,数字10与20分别表示样本的( )A .容量,平均数B .平均数,容量C .容量,方差D .标准差,平均数4.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映的统计量是( )A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数5.某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是( )A.8 B .7 C .9 D .106.某市6月份日平均气温统计如图,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,227.今年,我省启动了“关爱留守儿童工程”.某村小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是( )A .平均数是15B .众数是10C .中位数是17D .方差是4438.某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表,综合成绩按照数学、物理、化学、生物四科测试成绩的1.2∶1∶1∶0.8的比例计分,则综合成绩第一名是( )A.甲 B .乙 C .丙 D .不确定9.一组数据6,4,a ,3,2的平均数是5,这组数据的标准差为( ) A .2 2 B .5 C .8 D .310.在某中学举行的演讲比赛中,八年级5名参赛选手的成绩如下表,请你根据表中提供的数据,计算出这5名选手成绩的方差为( )A.2 B .6.8 C .34 D .93二、细心填一填(每小题3分,共24分)11.甲、乙两人进行射击测试,两人10次射击成绩的平均数都是8.5环,方差分别是:s 甲2=2,s 乙2=1.5,则射击成绩较稳定的是___.(填“甲”或“乙”)12.数据1,2,3,a 的平均数是3,数据4,5,b ,6的众数是5,则a +b =____. 13.已知一组数据3,1,5,x ,2,4的众数是3,那么这组数据的标准差是____.14.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算.已知小明数学得分为95分,综合得分为93分,那么小明物理得分是___分.15.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下的频数分布表,这个样本的中位数在第____组.16.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0,的整数,则x 的值为___.17.两组数据m ,6,n 与1,m ,2n ,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为____.18.已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s =____.(用只含有n ,k 的代数式表示)三、耐心做一做(共66分)19.(8分)在“全民读书月活动”中,小明调查了全班40名同学本学期计划购买课外书的花费情况,并将结果绘制如图的统计图.请根据相关信息,解答下列问题:(直接填写结果)(1)这次调查获取的样本数据的众数是___; (2)这次调查获取的样本数据的中位数是____;(3)若该校共有学生1 000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有____人. 20.(10分)为了了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A ,B ,C ,D 四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问:这次被抽检的电动汽车共有几辆?并补全条形统计图; (2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?21.(10分)某公司员工的月工资情况统计如下表:(1)分别计算该公司员工月工资的平均数、中位数和众数;(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由.22.(12分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为___,图①中m的值为___;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?23.(12分)甲、乙两人是NBA联盟凯尔特人队的两位明星球员,两人在前五个赛季的罚球命中率如下表:(1)分别求出甲、乙两位球员在前五个赛季罚球的平均命中率;(2)在某场比赛中,因对方球员技术犯规需要凯尔特人队选派一名队员进行罚球,你认为甲、乙两位球员谁来罚球更好?(请通过计算说明理由)24.(14分)如图,A,B两个旅游点从2012年至2016年“五一”的旅游人数变化情况分别用实线和虚线表示.根据图中所有示信息,解答以下问题:(1)B旅游点的旅游人数相对上一年来说,增长最快的是哪一年?(2)求A,B两个旅游点从2012年至2016年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y=5-x100.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?参考答案1.B2.D3.A4.D5.C6.C7.C8.A9.A 10.B 11. 乙 12.11 13.15314.90 15.2 16.4 17.7 18.nk 19.(1)30元 (2)50元 (3)25020. 解:(1)被抽检的电动汽车共有30÷30%=100(辆),补全条形统计图略. (2)x =1100(10×200+30×210+40×220+20×230)=217(千米).21. 解:(1)平均数=3 800元,中位数=3 500元,众数=3 500元.(2)用众数代表该公司员工的月工资水平更为合适,因为3 500出现的次数最多,能代表大部分人的工资水平.22.解:(1)40 15.(2)众数为35 中位数为36+362=36.(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例为30%,则计划购买200双运动鞋,有200×30%=60(双)为35号.23. 解:(1)x甲=(87+86+83+85+79)÷5=84;x乙=(87+85+84+80+84)÷5=84.所以甲、乙两位球员罚球的平均命中率都为84%.(2)S甲2=[(87-84)2+(86-84)2+(83-84)2+(85-84)2+(79-84)2]÷5=8,S乙2=[(87-84)2+(85-84)2+(84-84)2+(80-84)2+(84-84)2]÷5=5.2.由x甲=x乙,S甲2>S乙2可知,乙球员的罚球命中率比较稳定,建议由乙球员来罚球更好.24.解:(1)B旅游点的旅游人数相对上一年来说,增长最快的是2 013年.(2)x A=1+2+3+4+55=3(万人),x B=3+3+2+4+35=3(万人).S A2=15×[0+0+(-1)2+12+0]=25(万人2).从2012年至2016年,A,B两个旅游点平均每年的旅游人数均为3万人,但A旅游点较B旅游点的旅游人数波动大.(3)由题意得5-x100≤4,解得x≥100,100-80=20(元).答:门票价格至少应提高20元.第4章达标检测卷(120分120分钟)一、选择题(每小题3分,共30分)1.在平行四边形ABCD中,∠A:∠B:∠C=1:2:1,则∠D等于()A.0°B.60°C.120°D.150°2.在平行四边形ABCD中,对角线AC、BD交于点O,下列式子一定成立的是()A.AC⊥BD B.OA=OC C.AC=BD D.AO=OD3.若点P(a,2)与Q(-1,b)关于坐标原点对称,则a,b分别为()A.-1,2 B.1,-2 C.1,2 D.-1,-24.在美丽的明清宫广场中心地带整修工程中,计划采用同一种正多边形地板砖铺设地面,在下面的地板砖:①正方形,②正五边形,③正六边形,④正八边形中能够铺满地面的地板砖的种数是()A.1 B.2 C.3 D.45.已知下列命题:①对顶角相等;②垂直于同一条直线的两直线平行; ③相等的角是对顶角;④同位角相等,其中假命题有()A.1个B.2个C.3个D.4个6.下列图形,既是轴对称图形又是中心对称图形的是( )7.一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形8.在四边形ABCD中,AD∥BC,若ABCD是平行四边形,则还应满足()A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠B=180°D.∠A+∠D=180°9.已知平行四边形ABCD的周长为30cm,AB:BC=2:3,则AB的长为()A.6cm B.9cm C.12cm D.18cm10.如图,在平行四边形ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数是()A.7 B.8 C.9 D.11O二、填空题(每小题4分,共40分)11.在四边形ABCD中,若∠A=∠C=100°,∠B=60°,则∠D=______.12.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45 °”时,应假设_______________.13.“平行四边形的对角线互相平分”的逆命题是____________.14.如图,E,F是平行四边形ABCD对角线BD上的两点,请你添加一个条件,使四边形AECF 也是平行四边形.你添加的条件是:___________.15.如图,在平行四边形ABCD中,∠A的平分线交BC于点E.若AB=10cm,CD=14cm,则EC=_____.16.已知直角三角形的两边长分别是5,12,则第三边的长为_______.17.已知三角形的三边长分别是4,5,6,则它的三条中位线围成的三角形的周长是________.18.在平行四边形ABCD中,AC,BD交于点O,若AB=6,AC=8,则BD的取值范围是_______.19.如图,在图(1)中,A1、B1、C1分别是△ABC的边BC、CA、AB的中点,在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,…,按此规律,则第n个图形中平行四边形的个数是.20.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线交l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C n的坐标是.三、解答题(共50分)21.(6分)如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.22. (8分)如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.试判断AF与CE是否相等,并说明理由.23. (10分) 如图,E 、F 分别是平行四边形ABCD 对角线BD 所在直线上两点,DE = BF.请你以F 为一个端点,和图中已标有字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须研究一组线段相等即可).⑴连结_______________; ⑵猜想:_______________;⑶证明:(说明:写出证明过程中的重要依据)24. (12分) 如图,在□ABCD 中,AE 、BF 分别平分∠DAB 和∠ABC ,交CD 于点E 、F ,AE 、BF 相交于点M .(1)试说明:AE ⊥BF ;(2)判断线段DF 与CE 的大小关系,并予以说明.25. (14分)探究规律:如图1,已知直线m ∥n ,A 、B 为直线n 上的两点,C 、P 为直线m 上的两点。
八年级数学下册第一章单元测试卷-浙教版(含答案)时间:100分钟满分:120分班级:________姓名:________一、选择题(每小题3分,共30分)1.下列各式一定是二次根式的是()A.-7B.32m C.a2+b2D.ab2.下列二次根式中,最简二次根式是( )A.15B.0.5 C. 5 D.503.若式子m+2(m-1)2有意义,则实数m的取值范围是( )A.m>-2 B.m>-2且m≠1 C.m≥-2 D.m≥-2且m≠1 4.下面计算正确的是( )A.3+3=3 3 B.27÷3=3 C.2·3= 5 D.(-2)2=-2 5.若a<1,化简(a-1)2-1=( )A.a-2 B.2-a C.a D.-a6.方程|4x-8|+x-y-m=0,当y=1时,m的值是( )A.-2 B.-1 C.1 D.27.如图,一个小球由地面沿着坡比为1∶2的坡面向上前进了10 m,此时小球距离地面的高度为( )A.5 m B.103m C.4 5 m D.2 5 m8.如果x+y=2xy,那么yx的值为( )A.-1 B.1 C.2 D.以上答案都不对9.下列选项错误的是( )A.3-2的倒数是3+ 2B.x2-x一定是非负数C.若x<2,则(x-1)2=1-x;D.当x<0时,-2x在实数范围内有意义10.如图,数轴上A,B两点对应的实数分别是1和3,若A点关于B点的对称点为点C,则点C所对应的实数为( )A.23-1 B.1+ 3 C.2+ 3 D.23+1【解析】设点C所对应的实数是x.则有x-3=3-1,x=23-1.二、填空题(每小题4分,共24分)11.18-8=___.12.已知矩形的长为2 5 cm,宽为10 cm,则面积为____ cm2.13.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=a+ba-b,如3※2=3+23-2=5,那么12※4=____.14.已知a,b为等腰三角形的两条边长,且a,b满足b=3-a+2a-6+4,则此三角形的周长为____.15.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=14[a2b2-(a2+b2-c22)2].现已知△ABC的三边长分别为1,2,5,则△ABC的面积为_____.16.若|2 021-a|+a-2 022=a,则a-2 0212=___.三、解答题(共66分)17.(12分)计算:(1)(-144)×(-169);(2)-1 3225;(3)-12 1 024×5;(4)18m2n.18.(8分)(1)解方程:(3+1)(3-1)x=72-18.(2)先化简,再求值:(1x+1-1)÷x2-xx+1,其中x=2+1.19.(8分)作图题:如图,是一个边长为1的正方形网格,请在网格中画出一个边长为22,5和3的三角形.(要求三角形的顶点在小格的顶点处).20.(8分)如图,港口A在观测站O的正东方向,OA=4 km.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向.求该船航行的距离AB的长(结果保留根号).21.(10分)细心观察图形,认真分析各式,然后解答问题.如图,OA22=(1)2+1=2,S1=12;OA23=12+(2)2=3,S2=22;OA24=12+(3)2=4,S3=3 2;…(1)请用含有n(n为正整数)的等式表示上述变化规律:OA2n=________;S n=________;(2)若一个三角形的面积是22,计算说明它是第几个三角形?(3)求出S21+S22+S23+…+S29的值.22.(10分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在的直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC =∠CDE=30°,DE=80 cm,AC=165 cm.求:(1)支架CD的长;(2)真空热水管AB的长(结果保留根号).23.(10分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a,b,m,n均为整数),则有a+b2=m2+2n2+22mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得:a=________,b=________;(2)若a+63=(m+n3)2,且a,m,n均为正整数,求a的值.参考答案一、选择题(每小题3分,共30分)1.C2.C3.D4.B5.D6.C7.D8.B9.C10.A二、填空题(每小题4分,共24分)11.212.10213.214.10或1115.116.2 022【解析】由题意可得a-2 022≥0,解得a≥2 022,∴2 021-a<0,∴a-2 021+a-2 022=a,∴原式=2 022.三、解答题(共66分)17.解:原式=144×169=144×169=12×13=156;(2)-13225;解:原式=-13×15=-5;(3)-12 1 024×5; 解:原式=-12322×5=-12×325=-165; =3|m |2n=±3m 2n .(4)18m 2n .解:原式=32×m 2×2n18.(8分)(1)解方程:(3+1)(3-1)x =72-18.解:2x =62-32x =322.(2)先化简,再求值:(1x +1-1)÷x 2-x x +1,其中x =2+1. 解:原式=1-(x +1)x +1·x +1x (x -1)=1-x -1x (x -1)=-x x (x -1) =11-x . 当x =2+1时,原式=11-2-1=-22. 19.(8分)作图题:【解析】22看作是2,2为直角边的直角三角形的斜边.5可看作是以2和1为直角边的直角三角形的斜边,从而可画出三角形.AB=22,AC=5,BC=3.△ABC符合要求.20.解:如图,过点A作AD⊥OB于点D.∵∠ADO=90°,∠AOD=30°,OA=4 km,∴AD=12OA=2(km).∵∠ADB=90°,∠B=∠CAB-∠AOB=45°,∴BD=AD=2(km).∴AB=22+22=22(km).∴该船航行的距离(即AB的长)为2 2 km. 21.解:(1)∵每一个三角形都是直角三角形,由勾股定理,得OA1=1,OA2=2,OA3=3,OA n=n,∴OA2n=n,S n=12·1·n=n2;(2)当S n=22时,有22=n2,解得n=32,即说明它是第32个三角形;(3)原式=14+24+…+94=454.即S21+S22+S23+…+S29的值为454.22.解:(1)在Rt△CDE中,∵∠CDE=30°,DE=80 cm,∴CE=12DE=40 cm,∴CD=802-402=403(cm).(2)在Rt△OAC中,∵∠BAC=30°,∴OA=2OC.设OC=x(cm),则OA=2x(cm).由勾股定理,得OC2+AC2=OA2,即x2+1652=(2x)2,解得x=553,∴OC=55 3 cm,∴OD=OC-CD=553-403=153(cm),∴AB=AO-OB=2OC -OD=2×553-153=953(cm).23.解:(1)(m+n3)2=m2+3n2+23mn,∴a=m2+3n2,b=2mn;(2)a=m2+3n2,2mn=6,∵a,m,n均为正整数,∴m=3,n=1或m=1,n=3,当m=3,n=1时,a=9+3=12,当m=1,n=3时,a=1+3×9=28,∴a的值为12或28.。
浙教版八年级(下册)数学第1章二次根式测试题(时间:100分钟 满分:120分) 题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题(共10小题 每3分 共30分) 1、使二次根式243+-x x有意义的x 的取值范围是( ) A .43≥x B .43≤x 且x ≠-2 C .34≥x D .34≤x 且x ≠-2 2、下列二次根式中,能与6合并的是( ).A .60B .12C .24D .363、256的算术平方根为( ). A .-4 B .±4 C .2D .-24、下列各式计算正确的是( ) A .2541254125=⨯= B .4940940922=+=+ C .a a a a a --=---=--11)1(11)1(2 D .63136=⨯÷ 5、一次函数y =ax +b 的图象如图所示,则化简22222b b ab a a ++--的结果为( ) A .2bB .-2aC .2(a -b )D .2(b -a )6、已知n 是正整数,n 117是整数,则n 的最小值是为( ) A .3B .5C .9D .137、已知25+=a ,ab =1则代数式622-+b a 的值是( ). A .23 B .4 C .14 D .32 8、若实数m 满足02=+m m ,则m 的取值范围是( )A .m ≥0B .m ≤0C .m >0D .m <09、若代数式173)(16222----x x x 有意义,而0222173)(16⎪⎪⎭⎫⎝⎛----x x x 无意义,则x 的值为( ) A. 4± B. 4C.-4D. ±2第5题图10、化简262625+++的结果是( ) A .6B .26-C .62D .2二、填空题(共10小题 每题3分 共30分) 11、当x=3时,222212x x x --= . 12、计算365aa ÷的结果是 . 13、方程333322+=x 的解是 . 14、已知最简二次根式23432+-a 与2722-a 是同类二次根式,则a 的值为 . 15、若x ,y 分别为811-整数部分和小数部分,则2xy -y 2= . 16、一个长方形的面积为6283+,其中一边长为22,则另一边为 .17、已知22)3(83)6(38m n n m n ---=++-,则一次函数y =mx +n 的图象与坐标轴相交构成的三角形的面积是 .18、若xx x x y 15252522---+-=,则(-y -x )的平方根是 .19、化简1532102356--+-= .20、如图,将一条直角边长为1的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为 ;同上操作,若连续将图1的等腰直角三角形折叠n 次后所得到的等腰直角三角形(如图n +1)的一条腰长为 .三、解答题(共6题 共60分)21、(满分9分)比较下列四个算式结果的大小:(在横线上选填“>”、“<”或“=” ) (1) ①22)3()2(-+______)3(22-⨯⨯;②22)32()23(+______32232⨯⨯;第20题图③22)6()6(+______662⨯⨯.(2)通过观察归纳,写出反映这一规律的一般结论.通过观察上述关系式发现,等式的左边都是两个数的平方和的形式,右边是前面两数不平方乘积的2倍,通过几个例子发现两个数的平方的和大于等于这两个数乘积的2倍.设两个实数a 、b ,则a 2 +b 2 ≥2ab . 22、(满分10分)计算: (1)6)4872(23223÷+--⨯÷(2) )41(3)64(35ab abab b a a b a b ---23、(满分10分)先阅读理解下面的材料,再按要求解答问题:m b a =+22)()(,n b a =⋅,那么便有n m 2±=b a b a ±=±2)((a >b ).例如:化简625+.解∵625+=2623+-, ∴m =+22)2()3(,n =⨯23∴625+=2623++=.23)23(2+=+ 利用上述方法化简下列各式: (1) 124-; (2) 215-.24、(满分10分)已知3535+-=x ,3535-+=y ,求下列各式的值:(1)x 2y +xy 2; (2) x 2+y 2-3xy .25、(满分9分)物体自由下落时,下落距离h (m )与物体所经过的时间t (s )之间的关系是5ht =.一个物体从240m 高的塔顶自由下落,落到地面需要多久(精确到0.1s )?26、(满分12分)在一平直河岸l 同侧有A ,B 两个村庄,A ,B 到l 的距离分别是3km 和2km ,AB =a km (a >1),现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水。
浙教版八年级下数学第二章 一元二次方程 单元测试一、选择题:1、下列方程中,是关于x 的一元二次方程为 ( )A .3157x x +=+B .2110x x +-= C .)(为常数和b a bx ax 52=- D .)1(2)1(32+=+x x2、方程2x x =的解是 ( )A .1x =B .0x =C .1210x x ==,D .1210x x =-=,3、方程 x 2的解的个数为 ( )A .0B .1C .2D .1或24、已知m是方程x2-x-1=0的一个根,则代数 m2-m=( )A ..-1B .0C .1D .25、用配方法解一元二次方程2870x x ++=,则方程可化为( )A .2(4)9x +=B .2(4)9x -=C .23)8(2=+xD .9)8(2=-x6、下列方程中,有两个不等实数根的是 ( )A .238x x =-B .2510x x +=-C .271470x x -+=D .2753x x x -=-+ 7、已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( )A .1B .1-C .2D .2-8、某市2009年国内生产总值(GDP )比2008年增长了12%,由于受到国际金融危机的影响,预计今年比2009年增长7%,若这两年GDP 年平均增长率为%x ,则%x 满足的关系式是 ( )A .12%7%%x +=B .()()()112%17%21%x ++=+C .12%7%2%x +=·D .()()()2112%17%1%x ++=+二、填空题:9、方程(x –1)(2x +1)=2化成一般形式是 ,它的二次项系数是 ,一次项是 .10、方程()052=-x 的根是 . 11、关于x 的方程是(m 2-1)x 2+(m -1)x -2=0,当m 时,方程为一元二次方程;当m 时,方程为一元一次方程.12、 已知x =1是关于x 的一元二次方程2x 2 + kx -1=0的一个根,则实数k = .13、请你给出一个c 值, c = ,使方程x 2-3x +c =0无实数根.14、若一元二次方程ax 2+bx+c=0一个根是1,且a 、b 满足等式333+-+-=a a b 则c= .15、由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 .三、解答题16、用适当的方法解下列方程(1)0362=--x x ; (2)()x x x 21=+;(3)22)21()3(x x -=+; (4)012022=-+x x .17、已知方程111=-x 的解是k ,求关于x 的方程x 2 + kx = 0 解.18、(1)对于二次三项式2 -1036x x +,小明同学得到如下结论:无论x 取何值,它的值都不可能是10.你是否同意他的说法?请你说明理由.(2)当x 取何值时,代数式752+-x x 取得最大(小)值,这个最大(小)值是多少?19、西瓜经营户以2元/千克的价格购进一批西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多出售40千克。
浙教版初中数学八年级下册第二章 一元二次方程单元测试一、单选题1.下列方程是一元二次方程的是 ( )A. −6x +2=0B. 2x 2−y +1=0C. x 2+2x =0D. 1x 2+x =22.如果关于x 的一元二次方程(m+1)x 2+x+m 2﹣2m ﹣3=0有一个根为0,则m 的值( ) A. ﹣1 B. 3 C. ﹣1或3 D. 以上答案都不对3.将方程x(x-2)=x+3化成一般形式后,二次项系数和常数项分别为( ) A. -3,3 B. -1,-3 C. 1,3 D. 1,-34.一元二次方程2x 2+6x +3= 0 经过配方后可变形为( )A. (x +3)2 =6B. (x −3)2 =12C. (x +32)2=34 D. (x −32)2=1545.用公式法解方程 √2 x 2+4 √3 x=2 √2 ,其中求的Δ的值是( ) A. 16 B. ± 4 C. √32 D. 646.方程x (x ﹣1)=5(x ﹣1)的解是( )A. 1B. 5C. 1或5D. 无解 7.如果关于x 的方程x 2﹣ √k x+1=0有实数根,那么k 的取值范围是( ) A. k >0 B. k≥0 C. k >4 D. k≥48.受新冠肺炎疫情影响,某企业生产总值从1月份的300万元,连续两个月降至260万元,设每月平均下降率为x ,则可列方程( )A. 300(1+x)2=260B. 300(1−x 2)=260C. 300(1−2x)=260D. 300(1−x)2=260 9.如图,有一长方形鸡场,鸡场的一边靠墙(墙长 18 米),另三边用竹篱笆围成,竹篱笆的总长为 35 米,与墙平行的边留有 1 米宽的门(门用其它材料做成),若鸡场的面积为 160 平方米,则鸡场与墙垂直的边长为( )A. 7.5 米B. 8米C. 10米D. 10米或8米 10.若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2+αβ的值为( ) A. 10 B. 9 C. 7 D. 5二、填空题11.关于x 的一元二次方程ax 2+bx -2020=0有一个根为x =-1,写出一组满足条件的实数a ,b 的值:a =________,b =________.12.若关于x 的一元二次方程 2x 2+(2k +1)x −(4k −1)=0 的二次项系数、一次项系数、常数项的和是0,则 k = ________.13.若2(x-1)2-8=0,则x的值为________.14.关于x的一元二次方程(a+1)x2-2x+3=0有实数根,则整数a的最大值是________.15.某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场预测发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价____________元.16.如图,已知AB⊥BC,AB=12cm,BC=8cm.一动点N从C点出发沿CB方向以1cm/s的速度向B点运动,同时另一动点M由点A沿AB方向以2cm/s的速度也向B点运动,其中一点到达B点时另一点也随之停止,当△MNB的面积为24cm2时运动的时间t为________秒.三、解答题17.已知x1,x2是关于x的方程x2﹣kx+5(k﹣5)=0的两个正实数根,且满足2x1+x2=7,求实数k的值.18.解方程:(1)(x+2)2=4(自选方法) (2)2x²-x-1=0(配方法)、(3)x²-1=4x(公式法) (4)x²-1=2x+2(因式分解法)19.已知m是方程x2−3x=0的一个根,求(m−3)2+(m+2)(m−2)的值.20.阅读第(1)题的解题过程,再解答第(2)题:( 1 )例:解方程x2﹣|x|﹣2=0.解:当x≥0时,原方程可化为x2﹣x﹣2=0.解得:x1=2,x2=﹣1(不合题意.舍去)当x<0时,原方程可化为x2+x﹣2=0.解得:x1=﹣2,x2=1(不合题意.舍去)∴原方程的解是x1=2,x1=﹣2.( 2 )请参照上例例题的解法,解方程x2﹣x|x﹣1|﹣1=0.21.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论:设其中一根为t,则另一个根为2t,因ac=0;我们记“ K=b2−此ax2+bx+c=a(x−t)(x−2t)=ax2−3atx+2t2a,所以有b2−929ac”即K=0时,方程ax2+bx+c=0为倍根方程;2下面我们根据此结论来解决问题:这几个方程中,是倍根(1)方程①2x2−3x+1=0;方程②x2−2x−8=0;方程③x2+x=−29方程的是________(填序号即可);的值为________;(2)若(x−1)(mx−n)=0是倍根方程,则2nm22.将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成 |b a |d c ,定义 |b a |d c=ad -bc ,上述记号就叫做2阶行列式.(1)若 |492x |3x 1 =0,求x 的值; (2)若 |1−x x+1|x+1x−1 =6,求x 的值.23.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G 等为代表的战略性新兴产业.据统计,目前广东5G 基站的数量约1.5万座,计划到2020年底,全省5G 基站数量是目前的4倍,到2022年底,全省5G 基站数量将达到17.34万座.(1)计划到2020年底,全省5G 基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G 基站数量的年平均增长率; (3)求2021年底全省5G 基站的数量.24.如图,在△ABC中,∠B=90°,AB=12cm,BC=16cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为t秒.(1)当t为何值时,△PBQ的面积等于35cm2?(2)当t为何值时,PQ的长度等于8 √2cm?(3)若点P,Q的速度保持不变,点P在到达点B后返回点A,点Q在到达点C后返回点B,一个点停止,另一个点也随之停止.问:当t为何值时,△PCQ的面积等于32cm2?答案解析一、单选题 1.【答案】 C【考点】一元二次方程的定义及相关的量【解析】【解答】解:A .是一元一次方程,故A 不符合题意; B .是二元二次方程,故B 不符合题意; C .是一元二次方程,故C 符合题意; D .是分式方程,故D 不符合题意. 故答案为:C .【分析】只含有一个未知数,且未知数的次数最高是2的整式方程,叫做一元二次方程,据此逐一判断即可.2.【答案】 B【考点】一元二次方程的根【解析】【解答】解:把x =0代入方程(m +1)x 2+x +m 2﹣2m ﹣3=0中,得 m 2﹣2m ﹣3=0, 解得m =3或﹣1,当m =﹣1时,原方程二次项系数m +1=0,舍去, 故答案为:B .【分析】把x =0代入方程(m 2﹣1)x 2+(m +1)x ﹣2=0中,解关于m 的一元二次方程即可求得m 的值. 3.【答案】 D【考点】一元二次方程的定义及相关的量 【解析】【解答】去括号:x 2-2x =x +3, 移项合并:x 2-3x -3=0. 二次项系数1,常数项-3. 故选D .【分析】先将方程化为一般式,然后求出结论即可. 4.【答案】 C【考点】配方法解一元二次方程 【解析】【解答】解:∵2x 2+6x +3= 0 ∴ x 2+3x =−32 ∴ x 2+3x +94=−32+94 ∴ (x +32)2=34 故答案为:C【分析】先把常数项移到方程的右边,再把二次项系数变为1,然后配方,方程两边都加上一次项系数一半的平方,即可得到答案.5.【答案】D【考点】公式法解一元二次方程【解析】【解答】解:∴√2x2+4√3x−2√2=0⋅a=√2,b=4√3,c=−2√2∴b2−4ac=(4√3)2−4×√2×(−2√2)=64故答案为:D【分析】首先把方程化简为一般形式,再得出a、b、c的值,最后求出判别式的值即可.6.【答案】C【考点】因式分解法解一元二次方程【解析】【解答】解:原方程可化为x(x﹣1)﹣5(x﹣1)=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.故答案为:C.【分析】先把方程右边的因式移到左边,再提取公因式x﹣1,即可利用因式分解法求出x的值.7.【答案】D【考点】一元二次方程根的判别式及应用【解析】【解答】∵关于x的方程x2- √k x+1=0有实数根,∴{k≥0Δ=(√k)2−4×1×1≥0,解得:k≥4.故答案为:D.【分析】由被开方数非负结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.8.【答案】D【考点】一元二次方程的实际应用-百分率问题【解析】【解答】设每月平均下降率为x,得300(1−x)2=260故答案为:D.【分析】设每月平均下降率为x,根据1月份生产总值×(1-平均下降率)2=3月份生产总值列出方程即可.•9.【答案】C【考点】一元二次方程的实际应用-几何问题【解析】【解答】解:设鸡场的长为x,因为篱笆总长为35米,由图可知宽为:35−(x−1)2米,则根据题意列方程为:x·35−(x−1)2=160,解得:x1=16,x2=20(大于墙长,舍去),宽为:35−(16−1)2=10(米),所以鸡场的长为16米,宽为10米,即鸡场与墙垂直的边长为10米.故答案为:C.【分析】设长为x,则根据图可知一共有三面用到了篱笆,长用的篱笆为(x−1)米,与2倍的宽长的总和为篱笆的长35米,长×宽=面积160平方米,根据这两个式子可解出长和宽的值.10.【答案】C【考点】一元二次方程的根与系数的关系【解析】【解答】解:根据题意得α+β=2,αβ=﹣3,所以α2+β2+αβ=(α+β)2﹣αβ=22﹣(﹣3)=7.故答案为:C.【分析】根据根与系数的关系得到α+β=2,αβ=﹣3,再利用完全平方公式得到α2+β2+αβ=(α+β)2﹣αβ,然后利用整体代入的方法计算.二、填空题11.【答案】1;-2019 答案不唯一【考点】一元二次方程的根【解析】【解答】解:把x=-1代入ax2+bx−2020=0得a-b−2020=0,当a=1时,b=-2019.故答案为:1,-2019.答案不唯一【分析】根据一元二次方程的解的定义,把x=-1代入方程得到a-b−2020=0,于是a取1时,计算对应的b的值.答案不唯一12.【答案】2【考点】一元二次方程的定义及相关的量【解析】【解答】∵关于x的一元二次方程2x2+(2k+1)x−(4k−1)=0的二次项系数、一次项系数、常数项的和是0,∴2+2k+1+[−(4k−1)]=0,解得:k=2.故答案为:2.【分析】根据ax2+bx+c=0(a,b,c是常数且a≠0),a,b,c分别叫二次项系数,一次项系数,常数项,利用二次项系数、一次项系数、常数项的和是0列关于k的方程即可得答案.13.【答案】3或-1【考点】直接开平方法解一元二次方程【解析】【解答】解:2(x-1)2-8=0(x-1)2=4x-1=±2x1=3,x2=-1故答案为:3或-1.【分析】由题意解方程,求出方程的解即可求出答案. 14.【答案】 -2【考点】一元二次方程根的判别式及应用【解析】【解答】∵关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根, ∴△=4-4(a +1)×3≥0,且a +1≠0, 解得a ≤- 23 ,且a ≠-1, 则a 的最大整数值是-2. 故答案为:-2.【分析】若一元二次方程有实数根,则根的判别式△=b 2-4ac ≥0,建立关于a 的不等式,求出a 的取值范围.还要注意二次项系数不为0. 15.【答案】 4【考点】一元二次方程的实际应用-销售问题 【解析】【解答】解:设每件应降价x 元,根据题意得 (20+5x )(44-x )=1600 解之:x 1=36,x 2=4. ∵x ≤10 ∴x =4 故答案为:4.【分析】设每件应降价x 元,用含x 的代数式表示出销售量及每一件的利润,再根据销售量×每一件的利润=1600,列方程求出方程的解,即可得到符合题意的x 的值。
浙教版八年级数学下册《第2章一元二次方程》单元综合练习(附答案)一.选择题1.下列方程属于一元二次方程的是()A.x3+x2+2=0B.y=5﹣x C.x+=5D.x2+2x=32.已知关于x的一元二次方程x2﹣x﹣4=0,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定3.关于x的方程x(x﹣5)=3(x﹣5)的根是()A.x=5B.x=﹣5C.x1=﹣5;x2=3D.x1=5;x2=3 4.若x=1是关于x的一元二次方程ax2﹣bx﹣1=0的一个根,则2020+2a﹣2b的值为()A.2018B.2020C.2022D.20245.若关于x的方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1B.m>﹣1且m≠0C.m>﹣1D.m≥﹣1且m≠0 6.有一块矩形铁皮,长50cm,宽30cm,在它的四个角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,要制作的无盖方盒的底面积为800cm2.设切去的正方形的边长为xcm,可列方程为()A.4x2=800B.50×30﹣4x2=800C.(50﹣x)(30﹣x)=800D.(50﹣2x)(30﹣2x)=8007.等腰三角形的两条边长分别是方程x2﹣8x+12=0的两根,则该等腰三角形的周长是()A.10B.12C.14D.10或148.若x=是某个一元二次方程的根,则这个一元二次方程是()A.3x2+2x﹣1=0B.2x2+4x﹣1=0C.﹣x2﹣2x+3=0D.3x2﹣2x﹣1=0 9.已知x1,x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值为()A.﹣3或1B.﹣1或3C.﹣1D.310.对于实数m,n,先定义一种新运算“⊗”如下:m⊗n=,若x⊗(﹣2)=10,则实数x等于()A.3B.﹣4C.8D.3或8二.填空题11.若(m+2)x|m|+(m﹣1)x﹣1=0是关于x的一元二次方程,则m的值是.12.代数式﹣x2+2x﹣4有最值,最值是.13.已知(a2+b2)(a2+b2﹣2)=8,那么a2+b2=.14.设α、β是方程(x+1)(x﹣4)=﹣5的两实数根,则=.三.解答题15.解方程:(1)4x2+2x﹣1=0;(2)2y(y﹣2)=y2﹣2.16.用适当的方法解下列方程:(1)2x2﹣3x﹣1=0;(2)3x(x﹣1)=2﹣2x;(3)(x+1)2=(2x﹣1)2.17.已知方程x2﹣3x+m=0的一个根是x1=1,求方程的另一个根x2.18.已知关于x的方程(m﹣1)+2x﹣3=0是一元二次方程.(1)求m的值;(2)解该一元二次方程.19.已知m和n是方程2x2﹣5x﹣3=0的两根,求:(1)+的值;(2)m2﹣mn+n2的值.20.已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a、b、c分别为△ABC 三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.21.已知:关于x的一元二次方程x2﹣(m+2)x+4(m﹣2)=0.(1)求证:方程总有两个实数根;(2)若方程有两个相等的实数根,求m的值及方程的根.22.用一面足够长的墙为一边,其余各边用总长42米的围栏建成如图所示的生态园,中间用围栏隔开.由于场地限制,垂直于墙的一边长不超过7米.(围栏宽忽略不计)(1)若生态园的面积为144平方米,求生态园垂直于墙的边长;(2)生态园的面积能否达到150平方米?请说明理由.23.白银市各级公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨0.5元/个,则月销售量将减少5个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?参考答案一.选择题1.解:A.未知数的最高次数是3,不是一元二次方程,故该选项不符合题意;B.方程中未知数个数为2,不是一元二次方程,故该选项不符合题意;C.是分式方程,故该选项不符合题意;D.该方程是一元二次方程,故该选项符合题意;故选:D.2.解:∵关于x的一元二次方程x2﹣x﹣4=0,∴Δ=(﹣1)2﹣4×1×(﹣4)=1+16=17>0,∴方程有两个不相等的实数根.故选:A.3.解:∵x(x﹣5)=3(x﹣5),∴x(x﹣5)﹣3(x﹣5)=0,则(x﹣5)(x﹣3)=0,∴x﹣5=0或x﹣3=0,解得x1=5,x2=3,故选:D.4.解:∵x=1是关于x的一元二次方程ax2﹣bx﹣1=0的一个根,∴a﹣b﹣1=0,∴a﹣b=1,∴2020+2a﹣2b=2(a﹣b)+2020=2×1+2020=2022.故选:C.5.解:∵关于x的方程mx2+2x﹣1=0有两个不相等的实数根,∴,解得:m>﹣1且m≠0.故选:B.6.解:设正方形的边长为xcm,则盒子底的长为(50﹣2x)cm,宽为(30﹣2x)cm,根据题意得:(50﹣2x)(30﹣2x)=800,故选:D.7.解:x2﹣8x+12=0,(x﹣6)(x﹣2)=0,x﹣6=0或x﹣2=0,所以x1=6,x2=2,因为2+2=4<6,所以等腰三角形的腰长为6,底边长为2,所以这个等腰三角形的周长=6+6+2=14.故选:C.8.解:∵x=是某个一元二次方程的根,∴此一元二次方程二次项系数a=3,一次项系数b=﹣2,常数项c=﹣1,∴这个一元二次方程可以是3x2﹣2x﹣1=0,故选:D.9.解:∵x1、x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,∴x1+x2=2m+3,x1x2=m2,∴+===1,解得:m=3或m=﹣1,把m=3代入方程得:x2﹣9x+9=0,Δ=(﹣9)2﹣4×1×9>0,此时方程有解;把m=﹣1代入方程得:x2+x+1=0,Δ=1﹣4×1×1<0,此时方程无解,即m=﹣1舍去.故选:D.10.解:当x≥﹣2时,x2+x﹣2=10,解得:x1=3,x2=﹣4(不合题意,舍去);当x<﹣2时,(﹣2)2+x﹣2=10,解得:x=8(不合题意,舍去);∴x=3.故选:A.二.填空题11.解:由题意得,|m|=2,m+2≠0,解得m=2.故答案为:2.12.解:﹣﹣x2+2x﹣4=﹣(x2﹣2x)﹣4=﹣(x2﹣2x+1)+1﹣4=﹣(x﹣1)2﹣3=﹣3﹣(x﹣1)2,∵(x﹣1)2≥0,∴﹣(x﹣1)2≤0,∴﹣3﹣(x﹣1)2≤﹣3,∴x=1时,代数式有最大值﹣3.故答案为:﹣3.13.解:设a2+b2=t(t≥0),则t(t﹣2)=8,整理,得(t﹣4)(t+2)=0,解得t=4或t=﹣2(舍去),则a2+b2=4.故答案是:4.14.解:方程(x+1)(x﹣4)=﹣5可化为x2﹣3x+1=0,∵α、β是方程(x+1)(x﹣4)=﹣5的两实数根,∴α+β=3,αβ=1,∴α2+β2=(α+β)2﹣2αβ=7,α4+β4=(α2+β2)2﹣2α2•β2=47,∴==47,故答案为:47.三.解答题15.解:(1)4x2+2x﹣1=0,这里:a=4,b=2,c=﹣1,∵Δ=b2﹣4ac=22﹣4×4×(﹣1)=4+16=20>0,∴x===,解得:x1=,x2=;(2)2y(y﹣2)=y2﹣2整理为y2﹣4y+2=0,这里:a=1,b=﹣4,c=2,∵Δ=b2﹣4ac=(﹣4)2﹣4×1×2=16﹣8=8>0,∴y===2±,解得:y1=2﹣,y2=2+.16.解:(1)2x2﹣3x﹣1=0,∵a=2,b=﹣3,c=﹣1,∴Δ=(﹣3)2﹣4×2×(﹣1)=17>0,∴x==,∴x1=,x2=;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,∴x1=1,x2=﹣;(3)(x+1)2=(2x﹣1)2,(x+1)2﹣(2x﹣1)2=0,=0,3x(2﹣x)=0,∴3x=0或2﹣x=0,∴x1=0,x2=2.17.解:依题意得:x1+x2=3,即1+x2=3,解得:x2=2.∴方程的另一个根x2=2.18.解:(1)∵关于x的方程(m﹣1)+2x﹣3=0是一元二次方程,∴,解得m=﹣1;(2)方程为﹣2x2+2x﹣3=0,即2x2﹣2x+3=0,∵a=2,b=﹣2,c=3,∴b2﹣4ac=(﹣2)2﹣4×2×3=4﹣24=﹣20<0,故原方程无解.19.解:(1)∵m和n是方程2x2﹣5x﹣3=0的两根,∴m+n=,mn=﹣,∴+===﹣;(2)m2﹣mn+n2=(m+n)2﹣3mn=()2﹣3×(﹣)=+=10.20.解:(1)△ABC是等腰三角形,理由是:∵把x=1代入方程(a+c)x2﹣2bx+(a﹣c)=0得:a+c﹣2b+a﹣c=0,∴2a=2b,∴a=b,∴△ABC的形状是等腰三角形;(2)∵△ABC是等边三角形,∴a=b=c,∵(a+c)x2﹣2bx+(a﹣c)=0,∴(a+a)x2﹣2ax+a﹣a=0,即x2﹣x=0,解得:x1=0,x2=1,即这个一元二次方程的根是x1=0,x2=1.21.(1)证明:∵Δ=(m+2)2﹣16(m﹣2)=m2﹣12m+36=(m﹣6)2≥0,∴方程总有两个实数根;(2)解:∵方程有两个相等的实数根,∴Δ=(m﹣6)2=0,解得m=6,此时方程为x2﹣8x+16=0,∴(x﹣4)2=0,∴x1=x2=4.22.解:(1)设生态园垂直于墙的边长为x米,则平行于墙的边长为(42﹣3x)米,依题意,得(42﹣3x)x=144.解得x1=6,x2=8.由于x2=8>7,所以不合题意,舍去.所以x=6符合题意.答:生态园垂直于墙的边长为6米;(2)依题意,得(42﹣3x)x=150.整理,得x2﹣14x+50=0.因为Δ=(﹣14)2﹣4×1×50=﹣4<0.所以该方程无解.所以生态园的面积不能达到150平方米.23.解:(1)设该品牌头盔销售量的月增长率为x,依题意,得:150(1+x)2=216,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%.(2)设该品牌头盔的实际售价为y元,依题意,得:(y﹣30)(600﹣×5)=10000,整理,得:y2﹣130y+4000=0,解得:y1=80(不合题意,舍去),y2=50,答:该品牌头盔的实际售价应定为50元.。
浙教版八年级数学下册单元质量检测卷(一)第2章一元二次方程姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共27题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.方程(x+3)2=4的根是()A.x1=﹣1,x2=﹣5 B.x1=1,x2=﹣5C.x1=x2=﹣1 D.x1=﹣1,x2=52.若关于x的方程ax2﹣2ax+1=0的一个根是﹣1,则a的值是()A.1 B.﹣1 C.﹣D.﹣33.有两个人患了流感,经过两轮传染后共有242个人患了流感,设每轮传染中平均一个人传染了x个人,则x满足的方程是()A.(1+x)2=242 B.(2+x)2=242C.2(1+x)2=242 D.(1+2x)2=2424.已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为()A.k=4 B.k=﹣4 C.k=±4 D.k=±25.关于x的一元二次方程x2+2x+k+1=0的两根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围是()A.k>﹣2 B.k>2 C.﹣2<k≤0 D.0≤k<26.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a﹣1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3 B.4 C.5 D.67.在《代数学》中记载了求方程x2+8x=33正数解的几何方法:如图1,先构造一个面积为x2的正方形,再以正方形的边为一边向外构造四个面积为2x的矩形,得到大正方形的面积为33+16=49,则该方程的正数解为7﹣4=3.小明尝试用此方法解关于x的方程x2+10x+c=0时,构造出如图2所示正方形.已知图2中阴影部分的面积和为39,则该方程的正数解为()A.2B.2 C.3 D.48.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到点C后停止,点P也随之停止运动,若使△PBQ的面积为15cm2,则点P运动的时间是()A.2s B.3s C.4s D.5s9.自然数n满足等式,这样n的个数是()A.3 B.4 C.5 D.710.两个关于x的一元二次方程ax2+bx+c=0和cx2+bx+a=0,其中a,b,c是常数,且a+c=0.如果x=2是方程ax2+bx+c=0的一个根,那么下列各数中,一定是方程cx2+bx+a=0的根的是()A.B.﹣C.2 D.﹣2二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.关于x的方程(m+2)x|m|+2mx+2=0是一元二次方程,则m的值为.12.如果ax2+3x+=(3x+)2+m,则a,m的值分别是.13.若a,b是方程x2﹣x﹣5=0的两个不同的实数根,则a3﹣a2+5b﹣2=.14.设x1,x2是方程2x2+3x﹣4=0的两个实数根,则+的值为.15.某电子产品的首发价为8000元,在经历一年的两次降价后(每次降价的百分率相同),此产品目前的售价已降到6480元,则该产品每次降价的百分率为.16.如图,邻边不等的矩形花园ABCD,它的一边AD利用已有的围墙(墙足够长),另外三边所围的栅栏的总长度是18m,若矩形的面积为36m2,则AB的长度是m.17.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx ﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.18.对于一切正整数n,关于x的一元二次方程x2﹣(n+3)x﹣3n2=0的两个根记为a n、b n,则++…+=﹣.三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.解下列方程:(1)(y﹣2)(y﹣3)=12;(2)2x2+3x﹣1=0(请用配方法解).20.已知m是方程x2﹣2016x+1=0的一个不为0的根,求m2﹣2015m+的值.21.(1)已知x和y满足:4x2+12x+y2﹣4y+13=0,求(x+y)﹣2.(2)解方程:﹣=1.(3)若关于x的分式方程=2﹣的解为正数,求正整数m的值.22.去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.23.如图,在长为50米,宽为30米的矩形地面上修建三条同样宽的道路,余下部分种植草坪,草坪总面积为1392平方米.(1)求道路宽多少米;(2)现需要A、B两种类型的步道砖,A种类型的步道砖每平方米原价300元,现打八折出售,B种类型的步道板每平方米价格是200元,若铺路费用不高于23600元,(不考虑步道砖损失的情况下)最多选A种类型步道砖多少平方米?24.如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?25.先阅读,再解决问题.阅读:材料一配方法可用来解一元二次方程.例如,对于方程x2+2x﹣1=0可先配方(x+1)2=2,然后再利用直接开平方法求解方程.其实,配方还可以用它来解决很多问题.材料二对于代数式3a2+1,因为3a2≥0,所以3a2+1≥1,即3a2+1有最小值1,且当a=0时,3a2+1取得最小值为1.类似地,对于代数式﹣3a2+1,因为﹣3a2≤0,所以﹣3a2+1≤1,即﹣3a2+1有最大值1,且当a=0时,﹣3a2+1取得最大值为1.解答下列问题:(1)填空:①当x=时,代数式2x2﹣1有最小值为;②当x=时,代数式﹣2(x+1)2+1有最大值为.(2)试求代数式2x2﹣4x+1的最小值,并求出代数式取得最小值时的x的值.(要求写出必要的运算推理过程)参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.方程(x+3)2=4的根是()A.x1=﹣1,x2=﹣5 B.x1=1,x2=﹣5C.x1=x2=﹣1 D.x1=﹣1,x2=5【答案】A【分析】利用直接开平方法解方程即可.【解答】解:(x+3)2=4,∴x+3=±2,∴x1=﹣1,x2=﹣5,故选:A.【知识点】解一元二次方程-直接开平方法2.若关于x的方程ax2﹣2ax+1=0的一个根是﹣1,则a的值是()A.1 B.﹣1 C.﹣D.﹣3【答案】C【分析】根据关于x的方程ax2﹣2ax+1=0的一个根是﹣1,可以得到a+2a+1=0,然后即可得到a的值.【解答】解:∵关于x的方程ax2﹣2ax+1=0的一个根是﹣1,∴a+2a+1=0,∴3a+1=0,解得a=﹣,故选:C.【知识点】一元二次方程的解3.有两个人患了流感,经过两轮传染后共有242个人患了流感,设每轮传染中平均一个人传染了x个人,则x满足的方程是()A.(1+x)2=242 B.(2+x)2=242C.2(1+x)2=242 D.(1+2x)2=242【答案】C【分析】根据经过两轮传染后患病的人数,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意得:2(1+x)2=242.故选:C.【知识点】由实际问题抽象出一元二次方程4.已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为()A.k=4 B.k=﹣4 C.k=±4 D.k=±2【答案】C【分析】根据方程的系数结合根的判别式△=0,即可得出关于k的方程,解之即可得出k值.【解答】解:∵一元二次方程x2﹣kx+4=0有两个相等的实数根,∴△=(﹣k)2﹣4×1×4=0,解得:k=±4.故选:C.【知识点】根的判别式5.关于x的一元二次方程x2+2x+k+1=0的两根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围是()A.k>﹣2 B.k>2 C.﹣2<k≤0 D.0≤k<2【答案】C【分析】根据根与系数的关系以及不等式的解法即可求出答案.【解答】解:由题意可知:x1+x2=﹣2,x1x2=k+1,∵x1+x2﹣x1x2<﹣1,∴﹣2﹣k﹣1<﹣1,∴k>﹣2,∵△=4﹣4(k+1)≥0,∴k≤0,∴﹣2<k≤0,故选:C.【知识点】根的判别式、根与系数的关系6.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a﹣1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3 B.4 C.5 D.6【答案】C【分析】先根据根的判别式和一元二次方程的定义求出a的范围,再求出不等式组的解集,再根据题意得出a的值,最后得出选项即可.【解答】解:∵整数a使得关于x的一元二次方程(a+2)x2+2ax+a﹣1=0有实数根,∴△=(2a)2﹣4(a+2)(a﹣1)≥0且a+2≠0,解得:a≤2且a≠﹣2,∴解不等式组得:a<x≤3,∵关于x的不等式组有解且最多有6个整数解,∴﹣3≤a<3,∴a可以为2,1,0,﹣1,﹣3,共5个,故选:C.【知识点】一元二次方程的定义、根的判别式、一元一次不等式组的整数解7.在《代数学》中记载了求方程x2+8x=33正数解的几何方法:如图1,先构造一个面积为x2的正方形,再以正方形的边为一边向外构造四个面积为2x的矩形,得到大正方形的面积为33+16=49,则该方程的正数解为7﹣4=3.小明尝试用此方法解关于x的方程x2+10x+c=0时,构造出如图2所示正方形.已知图2中阴影部分的面积和为39,则该方程的正数解为()A.2B.2 C.3 D.4【答案】C【分析】根据已知的数学模型,同理可得空白小正方形的边长为,先计算出大正方形的面积等于阴影部分的面积+4个小正方形的面积,从而可得大正方形的边长,再用其减去两个空白正方形的边长即可得解.【解答】解:如图2,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x 的矩形,得到大正方形的面积为:39+()2×4=39+25=64,∴该方程的正数解为﹣×2=3.故选:C.【知识点】一元二次方程的应用8.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到点C后停止,点P也随之停止运动,若使△PBQ的面积为15cm2,则点P运动的时间是()A.2s B.3s C.4s D.5s【答案】B【分析】设出动点P,Q运动t秒,能使△PBQ的面积为15cm2,用t分别表示出BP和BQ的长,利用三角形的面积计算公式即可解答.【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).∴动点P,Q运动3秒时,能使△PBQ的面积为15cm2.故选:B.【知识点】一元二次方程的应用9.自然数n满足等式,这样n的个数是()A.3 B.4 C.5 D.7【答案】B【分析】分①n2﹣2n=1;②n2﹣2n=﹣1;③n2﹣2n≠±1④n=0⑤当n=0,五种情况讨论即可确定n的所有可能的值.【解答】解:①当n2﹣2n=1 时,无论指数为何值等式成立.解方程得n=1±(不合题意,舍去);②当n2﹣2n=﹣1 时,解得:n=1;③当n2﹣2n≠±1 时,当n为自然数,则n2﹣2n≠0,所以n2+47=16n﹣16等式成立.解方程得n1=7,n2=9.④当n=2时,左边=051=0,右边=016=0,所以左边=右边,n=2成立,⑤当n=0,无意义,综上所述,满足条件的n值有4个.故选:B.【知识点】一元二次方程的应用10.两个关于x的一元二次方程ax2+bx+c=0和cx2+bx+a=0,其中a,b,c是常数,且a+c=0.如果x=2是方程ax2+bx+c=0的一个根,那么下列各数中,一定是方程cx2+bx+a=0的根的是()A.B.﹣C.2 D.﹣2【答案】D【分析】根据一元二次方程的定义以及一元二次方程的解法即可求出答案.【解答】解:∵a≠0,c≠0,∴=﹣1,∴x2+x+=0,x2+x+1=0,∴x2+x﹣1=0,x2﹣x﹣1=0,∵x=2是方程ax2+bx+c=0的一个根,∴x=2是方程x2+x﹣1=0的一个根,∴x=﹣2是方程x2﹣x﹣1=0的一个根,即x=﹣2时方程cx2+bx+a=0的一个根故选:D.【知识点】一元二次方程的解二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.关于x的方程(m+2)x|m|+2mx+2=0是一元二次方程,则m的值为.【答案】2【分析】根据一元二次方程的定义得到|m|=2且m+2≠0,由此求得m的值.【解答】解:∵关于x的方程(m+2)x|m|+3mx+1=0是一元二次方程,∴|m|=2且m+2≠0,解得m=2.故答案是:2.【知识点】一元二次方程的定义、绝对值12.如果ax2+3x+=(3x+)2+m,则a,m的值分别是.【分析】根据完全平方公式把等式的右边变形,根据题意列式计算即可.【解答】解:(3x+)2+m=9x2+3x++m,则a=9,+m=,解得,m=,故答案为:9,.【知识点】配方法的应用13.若a,b是方程x2﹣x﹣5=0的两个不同的实数根,则a3﹣a2+5b﹣2=.【答案】3【分析】根据一元二次方程的解及根与系数的关系可得出a2﹣a=5,a+b=1,进而可得出a3﹣a2=5a,再结合a3﹣a2+5b﹣2=5(a+b)﹣2即可求出结论.【解答】解:∵a,b是方程x2﹣x﹣5=0的两个不同的实数根,∴a2﹣a=5,a+b=1,∴a3﹣a2=5a,∴a3﹣a2+5b﹣2=5a+5b﹣2=5(a+b)﹣2=5×1﹣2=3.故答案为:3.【知识点】根与系数的关系14.设x1,x2是方程2x2+3x﹣4=0的两个实数根,则+的值为.【分析】先根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,再把+通分得到,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=﹣,x1x2=﹣2,所以+===.故答案为.【知识点】根与系数的关系15.某电子产品的首发价为8000元,在经历一年的两次降价后(每次降价的百分率相同),此产品目前的售价已降到6480元,则该产品每次降价的百分率为.【答案】10%【分析】解答此题利用的数量关系是:电子产品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.【解答】解:设这种电子产品平均每次降价的百分率为x,根据题意列方程得,8000×(1﹣x)2=6480,解得x1=0.1,x2=﹣1.9(不合题意,舍去);答:这种电子产品平均每次降价的百分率为10%.故答案为:10%.【知识点】一元二次方程的应用16.如图,邻边不等的矩形花园ABCD,它的一边AD利用已有的围墙(墙足够长),另外三边所围的栅栏的总长度是18m,若矩形的面积为36m2,则AB的长度是m.【答案】3【分析】根据栅栏的总长度是18m,AB=xm,则BC=(18﹣2x)m,再根据矩形的面积公式列方程,解一元二次方程即可.【解答】解:设AB=xm,则BC=(18﹣2x)m.根据题意可得,x(18﹣2x)=36.解得x1=6(舍去),x2=3.答:AB的长为3m.故答案是:3.【知识点】一元二次方程的应用17.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx ﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.【知识点】因式分解的应用、一元二次方程的解18.对于一切正整数n,关于x的一元二次方程x2﹣(n+3)x﹣3n2=0的两个根记为a n、b n,则++…+=﹣.【分析】由根与系数的关系得a n+b n=n+3,a n•b n=﹣3n2,所以(a n﹣3)(b n﹣3)=a n b n﹣3(a n+b n)+9=﹣3n2﹣3(n+3)+9=﹣3n(n+1),则==﹣(﹣),然后代入即可求解.【解答】解:由根与系数的关系得a n+b n=n+3,a n•b n=﹣3n2,所以(a n﹣3)(b n﹣3)=a n b n﹣3(a n+b n)+9=﹣3n2﹣3(n+3)+9=﹣3n(n+1),则==﹣(﹣),∴原式=﹣(1﹣+﹣+﹣+…+﹣)=﹣×(1﹣)=﹣×=﹣,故答案为:﹣【知识点】根与系数的关系三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.解下列方程:(1)(y﹣2)(y﹣3)=12;(2)2x2+3x﹣1=0(请用配方法解).【分析】(1)根据因式分解法即可求出答案.(2)根据配方法即可求出答案.【解答】解:(1)∵(y﹣2)(y﹣3)=12,∴y2﹣5y﹣6=0,∴(y﹣6)(y+1)=0,∴y1=6或y2=﹣1.(2)∵2x2+3x﹣1=0,∴2(x2+x)=1,2(x2+x+﹣)=1,∴2(x+)2﹣=1,∴2(x+)2=,∴(x+)2=,∴x=.∴x1=或x2=.【知识点】解一元二次方程-配方法、解一元二次方程-公式法20.已知m是方程x2﹣2016x+1=0的一个不为0的根,求m2﹣2015m+的值.【分析】把x=m代入方程x2﹣2016x+1=0有m2﹣2016m+1=0,变形得m2﹣2015m=m﹣1,m2+1=2016m,再将所求代数式m2﹣2015m+变形为﹣1,将=2016代入,计算即可求出结果.【解答】解:∵m是方程x2﹣2016x+1=0的一个不为0的根,∴m2﹣2016m+1=0,∴m2﹣2015m=m﹣1,m2+1=2016m,∴==,∴m2﹣2015m+=m﹣1+=﹣1=2016﹣1=2015.【知识点】一元二次方程的解21.(1)已知x和y满足:4x2+12x+y2﹣4y+13=0,求(x+y)﹣2.(2)解方程:﹣=1.(3)若关于x的分式方程=2﹣的解为正数,求正整数m的值.【分析】(1)利用配方法对4x2+12x+y2﹣4y+13=0进行变形,由偶次方的非负性可得x与y的值,再代入(x+y)﹣2计算即可.(2)先去分母,将原方程转化为整式方程,求得方程的解,再检验即可得出答案.(3)先去分母,将原方程转化为整式方程,求得方程的解,再根据解为正数及m为正整数求得答案即可.【解答】解:(1)∵4x2+12x+y2﹣4y+13=0,∴4[x2+3x+]+(y2﹣4y+4)(y﹣2)2=0,∴4(x+)2+(y﹣2)2=0,∵4(x+)2≥0,(y﹣2)2≥0,∴x+=0,y﹣2=0,∴x=﹣,y=2,∴(x+y)﹣2=(﹣+2)﹣2==4.(2)在方程﹣=1两边同时乘以(x+1)2得:x2﹣(x+1)=(x+1)2,∴x2﹣x﹣1=x2+2x+1,∴﹣3x=2,∴x=﹣.检验:当x=﹣时,(x+1)2≠0,∴x=﹣是原方程的解.∴原方程的解是x=﹣.(3)方程=2﹣两边同时乘以(x﹣2)得:x=2(x﹣2)+m,∴x=2x﹣4+m,∴x=4﹣m,∵解为正数,∴4﹣m>0,∴m<4,又∵m为正整数,∴m=1或m=2或m=3.∵当x=4﹣m=2时,x﹣2=0,∴m=2不符合题意.∴正整数m的值为1或3.【知识点】负整数指数幂、分式方程的解、非负数的性质:偶次方、配方法的应用、解一元一次不等式、解分式方程22.去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.【分析】(1)根据该商店去年“十一黄金周”这七天的总营业额=前六天的总营业额+第七天的营业额,即可求出结论;(2)设该商店去年8、9月份营业额的月增长率为x,根据该商店去年7月份及9月份的营业额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.【知识点】一元二次方程的应用23.如图,在长为50米,宽为30米的矩形地面上修建三条同样宽的道路,余下部分种植草坪,草坪总面积为1392平方米.(1)求道路宽多少米;(2)现需要A、B两种类型的步道砖,A种类型的步道砖每平方米原价300元,现打八折出售,B种类型的步道板每平方米价格是200元,若铺路费用不高于23600元,(不考虑步道砖损失的情况下)最多选A种类型步道砖多少平方米?【分析】(1)设道路宽x米,根据题意列出方程,求出方程的解即可得到结果.(2)设选A种类型步道砖y平方米,根据铺路费用不高于23600元,列出不等式求解即可.【解答】解:(1)设道路宽x米,根据题意得:(50﹣2x)(30﹣x)=1392,整理得:x2﹣55x+54=0,解得:x=1或x=54(不合题意,舍去),故道路宽1米.(2)设选A种类型步道砖y平方米,根据题意得:300×0.8y+200×[50×1+(30﹣1)×1×2﹣y]≤23600,解得:y≤50.故最多选A种类型步道砖50平方米.【知识点】一元二次方程的应用24.如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?【分析】(1)如图,过点P作PE⊥CD于E,设x秒后PQ=10cm,利用勾股定理得出即可.(2)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.【解答】解:(1)过点P作PE⊥CD于E.则根据题意,得设x秒后,点P和点Q的距离是10cm.(16﹣2x﹣3x)2+62=102,即(16﹣5x)2=64,∴16﹣5x=±8,∴x1=,x2=;∴经过s或sP、Q两点之间的距离是10cm;(2)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤时,则PB=16﹣3y,∴PB•BC=12,即×(16﹣3y)×6=12,解得y=4;②当<x≤时,BP=3y﹣AB=3y﹣16,QC=2y,则BP•CQ=(3y﹣16)×2y=12,解得y1=6,y2=﹣(舍去);③<x≤8时,QP=CQ﹣PQ=22﹣y,则QP•CB=(22﹣y)×6=12,解得y=18(舍去).综上所述,经过4秒或6秒△PBQ的面积为 12cm2.【知识点】一元二次方程的应用25.先阅读,再解决问题.阅读:材料一配方法可用来解一元二次方程.例如,对于方程x2+2x﹣1=0可先配方(x+1)2=2,然后再利用直接开平方法求解方程.其实,配方还可以用它来解决很多问题.材料二对于代数式3a2+1,因为3a2≥0,所以3a2+1≥1,即3a2+1有最小值1,且当a=0时,3a2+1取得最小值为1.类似地,对于代数式﹣3a2+1,因为﹣3a2≤0,所以﹣3a2+1≤1,即﹣3a2+1有最大值1,且当a=0时,﹣3a2+1取得最大值为1.解答下列问题:(1)填空:①当x=时,代数式2x2﹣1有最小值为;②当x=时,代数式﹣2(x+1)2+1有最大值为.(2)试求代数式2x2﹣4x+1的最小值,并求出代数式取得最小值时的x的值.(要求写出必要的运算推理过程)【答案】【第1空】0【第2空】-1【第3空】-1【第4空】1【分析】(1)根据材料二得出的规律,可直接得出答案;(2)先把代数式2x2﹣4x+1变形为2(x﹣1)2﹣1,再根据2(x﹣1)2≥0,得出2(x﹣1)2﹣1≥﹣1,即可求出代数式取得最小值时的x的值.【解答】解:(1)根据题意得:①当x=0时,代数式2x2﹣1有最小值为﹣1;②当x=﹣1时,代数式﹣2(x+1)2+1有最大值为1;故答案为:0,﹣1;﹣1,1.(2)∵2x2﹣4 x+1=2(x2﹣2x)+1=2(x2﹣2x+1﹣1)+1=2(x﹣1)2﹣1,2(x﹣1)2≥0,∴2(x﹣1)2﹣1≥﹣1,即2(x﹣1)2﹣1有最小值﹣1,当x=1时,2(x﹣1)2﹣1取得最小值﹣1.【知识点】配方法的应用。
数学浙教版八年级下第二单元检测卷(附答案)八年级(下)数学单元检测(二)第二章一元二次方程班级学号姓名得分一、选择题(每小题3分,共30分)1.下列方程中,关于x的一元二次方程是()B)3x+1=2x-32.方程2x2+3x-1=0的二次项系数,一次项系数,常数项分别为()A)2,3,-13.一元二次方程x2=4的根是()B)x=24.方程x2=x的根是()A)x=15.已知一元二次方程x2+x-1=0,下列判断正确的是()B)该方程有两个不相等的实数根6.如果3是一元二次方程x2=c的一个根,那么常数c是()C)97.用配方法解方程x2-4x+2=0,下列配方正确的是()A)(x-2)2=28.XXX的某纪念品原价200元,连续两次降价a%后售价为148元。
下列所列方程中正确的是()B)200(1-a)2=1489.若三角形ABC两边的长分别是8和6,第三边的长是一元二次方程x2-16x+60=0的一个实数根,则该三角形的面积是()C)4810.观察下列方程及其解的特征:1)x2-15x+2=0的解为x1=1,x2=15;2)x2+x-6=0的解为x1=2,x2=-3;3)x3+x2-37x+30=0的解为x1=3,x2=5,x3=6;请猜想:方程x4+x3-52x2+51x-12=0的解为()D)x1=4,x2=5,x3=6,x4=1二、填空题(每小题3分,共30分)1.解方程x2+2x-3=0,得到的两个根之和为(-2)。
2.解方程2x2-3x-2=0,得到的两个根之积为(-1/2)。
3.解方程x2-4x+3=0,得到的两个根分别为(1,3)。
4.解方程x2-5x+6=0,得到的两个根之和为(5)。
5.解方程x2-5x+6=0,得到的两个根之积为(6)。
6.解方程x2-6x+8=0,得到的两个根分别为(2,4)。
7.解方程x2-8x+12=0,得到的两个根之和为(8)。
8.解方程x2-8x+15=0,得到的两个根之积为(15)。
浙教版八年级数学下册单元测试题全套(含答案)第1章达标检测卷(满分100分时间60分钟)一、选择题(每小题4分,共20分)1.若m-3为二次根式,则m 的取值范围为()A .m ≤3B .m <3C .m ≥3D .m >32.下列式子中,二次根式的个数是()⑴31;⑵3-;⑶12+-x ;⑷38;⑸2)31(-;⑹)1(1>-x x ;⑺322++x x .A .2B .3C .4D .53是同类二次根式的是()4.下列计算正确的有()①694)9)(4(=-⋅-=--;②694)9)(4(=⋅=--;③145454522=-⋅+=-;④145452222=-=-.A .1个B .2个C .3个D .4个5,,,中最简二次根式是()A .①②B .③④C .①③D .①④二、填空题(每小题4分,共20分)6.化简:=<)0(82a b a .7.计算:-=.8.在实数范围内分解因式:=-322x .9.比较大小:______--(填“>”“<”或“=”).10.一个三角形的三边长分别为,则它的周长是cm.三、解答题(共60分)11.计算:(每小题5分,共25分)(1)nm 218(2(3))36)(16(3--⋅-(4)(5)+12.(8分)已知一个矩形的长和宽分别是10和22,求这个矩形的面积.13.(8分)的值。
互为相反数,求与已知:b a b a b a ∙-++-8614.(9分)已知32-=x,32+=y ,求代数式22y xy x ++的值.15.(10分)实数p 在数轴上的位置如图,化简()222)1(pp -+-.参考答案一、选择题1.A 2.C 3.D 4.A 5.C二、填空题6.b a 22-7.391948.()()3232-+x x 9.>10.3225+三、解答题11.(1)n m 23(2)6(3)-243(4)222ba (5)258+第2章达标检测卷(100分60分钟)一、选择题(本大题共9个小题,每小题3分,共27分)1.下列方程,是关于x 的一元二次方程的是().A.23(1)2(1)x x +=+ B.21120x x+-=C.2ax bx c ++= D.2221x x x +=-2.方程()()24330x x x -+-=的根为().A.3x = B.125x =C.12123,5x x =-=D.12123,5x x ==3.解下列方程:(1)()225x -=,(2)2320x x --=,(3)x 2+2x +1=0,较适当的方法分别为().A.(1)直接开平法方,(2)因式分解法,(3)配方法B.(1)因式分解法,(2)公式法,(3)直接开平方法C.(1)公式法,(2)直接开平方法,(3)因式分解法D.(1)直接开平方法,(2)公式法,(3)因式分解法4.方程0322=-+x x 的两根的情况是().A.没有实数根B.有两个不相等的实数根C.有两个相同的实数根D.不能确定5.若12+x 与12-x 互为倒数,则实数x 为().A.12±B.1± C.22±D.6.如果21,x x 是方程0122=--x x 的两个根,那么21x x +的值为().A.-1B.2C.21-D.21+7.若方程0522=+-m x x 有两个相等的实数根,则m =().A.2- B.0C.2D.8138.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,那么根据题意,列出方程为().A.(1)1035x x += B.(1)10352x x -=⨯C.(1)1035x x -= D.2(1)1035x x +=9.某厂今年一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增率是x ,则可以列方程为().A.720)21(500=+x B.720)1(5002=+x C.720)1(5002=+x D.500)1(7202=+x 二、填空题(本大题共8个小题,每小题3分,共24分)10.方程2310x x -+=的解是.11.如果二次三项式221)16x m x -++(是一个完全平方式,那么m 的值是_______.12.如果一元二方程043)222=-++-m x x m (有一个根为0,那么m =.13.若方程02=++q px x 的两个根是2-和3,则q p ,的值分别为.14.已知最简二次根式是同类二次根式,则x =____________.15.已知方程022=-+kx x 的一个根是1,则另一个根是,k 的值是.16.若一元二次方程20ax bx c ++=有两根1和-1,则a +b +c =______,a -b +c =_____.17.若2225120x xy y --=,则xy=____________.三、解答题(共49分)18.(9分)用适当的方法解下列方程:(1)26730x x +-=;(2)22510x x +-=.19.(10分)已知)0(04322≠=-+y y xy x ,求yx yx +-的值.20.(10分)已知关于x 的方程222(1)0x m x m -++=.(1)当m 取何值时,方程有两个实数根;(2)为m 选取一个适合的整数,使方程有两个不相等的实数根,并求出这两个实数根.21.(10分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图).(1)根据图中所提供的信息回答下列问题:2018年底的绿地面积为平方米,比2017年底增加了平方米;在2016年,2017年,2018年这三年中,绿地面积增加最多的是年.(2)为满足城市发展的需要,政府加大绿化投入,到2020年底城区绿地面积达到72.6平方米,试问这两年绿地面积的年平均增长率是多少?22.(10分)阅读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪涛尽,千古风流数人物;而立之年睿东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符;哪位学子算的快,多少年华属周瑜?参考答案一、选择题1.A 2.D3.D4.B5.A6.B7.D8.B9.B二、填空题10.253±11.125,3m m =-=12.2m =-13.1,6p q =-=-14.2或1215.22,1x k =-=16.0,017.4或32-三、解答题18.[解](1)1213,32x x ==-.(2)1255,44x x -+--==.19.[解]原方程可变形为:(4)()0+-=x y x y 即(4)0()0+=-=或x y x y ∴4=-=或x y x y 当45443---=-==+-+,x y y y x y x y y y 当0--===++,x y y yx y x y y y20.[解](1)依题意得:△≥0即224(1)4+-m m ≥0整理得:84+m ≥0解得:当12≥-m .(2)当4=m 时,原方程可化为:210160-+=x x 解得:122,8==x x .21.(1)60平方米4平方米2017年.(2)10%22.解:设周瑜逝世时的年龄的个位数字为x ,则十位数字为x -3,依题意得,x 2=10(x -3)+x ;即x 2-11x +30=0;解得x 1=5,x 2=6;当x 1=5时,周瑜的年龄是25岁,非而立之年,不合题意舍去;当x 2=6时,周瑜的年龄是36岁,完全符合题意.答:周瑜去世时的年龄是36岁.第3章达标检测卷(时间:90分钟满分:120分)一、精心选一选(每小题3分,共30分)1.某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是()A .3B .3.5C .4D .52.在端午节到来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家店的粽子做调查,以决定最终向哪家店采购.下面的统计量,最值得关注的是()A .方差B .平均数C .中位数D .众数3.在样本方差的计算公式S 2=110[(x 1-20)2+(x 2-20)2+…+(x 10-20)2]中,数字10与20分别表示样本的()A .容量,平均数B .平均数,容量C .容量,方差D .标准差,平均数4.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映的统计量是()A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数5.某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是()A.8B .7C .9D .106.某市6月份日平均气温统计如图,则在日平均气温这组数据中,众数和中位数分别是()A .21,21B .21,21.5C .21,22D .22,227.今年,我省启动了“关爱留守儿童工程”.某村小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是()一周内累计的读书时间/时581014人数/个1432A.平均数是15B.众数是10C.中位数是17D.方差是4438.某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表,综合成绩按照数学、物理、化学、生物四科测试成绩的1.2∶1∶1∶0.8的比例计分,则综合成绩第一名是()学科数学物理化学生物甲95858560乙80809080丙70908095A.甲B.乙C.丙D.不确定9.一组数据6,4,a,3,2的平均数是5,这组数据的标准差为()A.22B.5C.8D.310.在某中学举行的演讲比赛中,八年级5名参赛选手的成绩如下表,请你根据表中提供的数据,计算出这5名选手成绩的方差为()选手1号2号3号4号5号平均成绩得分9095■898891A.2B.6.8C.34D.93二、细心填一填(每小题3分,共24分)11.甲、乙两人进行射击测试,两人10次射击成绩的平均数都是8.5环,方差分别是:s甲2=2,s乙2=1.5,则射击成绩较稳定的是___.(填“甲”或“乙”)12.数据1,2,3,a的平均数是3,数据4,5,b,6的众数是5,则a+b=____.13.已知一组数据3,1,5,x,2,4的众数是3,那么这组数据的标准差是____.14.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算.已知小明数学得分为95分,综合得分为93分,那么小明物理得分是___分.15.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下的频数分布表,这个样本的中位数在第____组.组别时间(小时)频数(人)第1组0≤t<0.512第2组0.5≤t<124第3组1≤t<1.518第4组 1.5≤t<21016.一组数据3,4,6,80,0,的整数,则x的值为___.17.两组数据m,6,n与1,m,2n,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为____.18.已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n).设这组数据的各数之和是s,中位数是k,则s=____.(用只含有n,k的代数式表示)三、耐心做一做(共66分)19.(8分)在“全民读书月活动”中,小明调查了全班40名同学本学期计划购买课外书的花费情况,并将结果绘制如图的统计图.请根据相关信息,解答下列问题:(直接填写结果)(1)这次调查获取的样本数据的众数是___;(2)这次调查获取的样本数据的中位数是____;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有____人.20.(10分)为了了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问:这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?21.(10分)某公司员工的月工资情况统计如下表:员工人数2482084月工资(元)700060004000350030002700(1)分别计算该公司员工月工资的平均数、中位数和众数;(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由.22.(12分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为___,图①中m的值为___;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?23.(12分)甲、乙两人是NBA联盟凯尔特人队的两位明星球员,两人在前五个赛季的罚球命中率如下表:甲球员的命中率(%)8786838579乙球员的命中率(%)8785848084(1)分别求出甲、乙两位球员在前五个赛季罚球的平均命中率;(2)在某场比赛中,因对方球员技术犯规需要凯尔特人队选派一名队员进行罚球,你认为甲、乙两位球员谁来罚球更好?(请通过计算说明理由)24.(14分)如图,A,B两个旅游点从2012年至2016年“五一”的旅游人数变化情况分别用实线和虚线表示.根据图中所有示信息,解答以下问题:(1)B旅游点的旅游人数相对上一年来说,增长最快的是哪一年?(2)求A,B两个旅游点从2012年至2016年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y=5-x100.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?参考答案1.B2.D3.A4.D5.C6.C7.C8.A9.A10.B14.9015.216.417.718.nk11.乙12.1113.15319.(1)30元(2)50元(3)25020.解:(1)被抽检的电动汽车共有30÷30%=100(辆),补全条形统计图略.(10×200+30×210+40×220+20×230)=217(千米).(2)x=110021.解:(1)平均数=3800元,中位数=3500元,众数=3500元.(2)用众数代表该公司员工的月工资水平更为合适,因为3500出现的次数最多,能代表大部分人的工资水平.22.解:(1)4015.(2)众数为35中位数为36+362=36.(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例为30%,则计划购买200双运动鞋,有200×30%=60(双)为35号.23.解:(1)x甲=(87+86+83+85+79)÷5=84;x乙=(87+85+84+80+84)÷5=84.所以甲、乙两位球员罚球的平均命中率都为84%.(2)S 甲2=[(87-84)2+(86-84)2+(83-84)2+(85-84)2+(79-84)2]÷5=8,S 乙2=[(87-84)2+(85-84)2+(84-84)2+(80-84)2+(84-84)2]÷5=5.2.由x 甲=x 乙,S 甲2>S 乙2可知,乙球员的罚球命中率比较稳定,建议由乙球员来罚球更好.24.解:(1)B 旅游点的旅游人数相对上一年来说,增长最快的是2013年.(2)x A =1+2+3+4+55=3(万人),x B =3+3+2+4+35=3(万人).S A 2=15×[0+0+(-1)2+12+0]=25(万人2).从2012年至2016年,A ,B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游点较B 旅游点的旅游人数波动大.(3)由题意得5-x100≤4,解得x ≥100,100-80=20(元).答:门票价格至少应提高20元.第4章达标检测卷(120分120分钟)一、选择题(每小题3分,共30分)1.在平行四边形ABCD 中,∠A :∠B :∠C=1:2:1,则∠D 等于()A .0°B .60°C .120°D .150°2.在平行四边形ABCD 中,对角线AC 、BD 交于点O ,下列式子一定成立的是()A .AC ⊥BDB .OA=OCC .AC=BDD .AO=OD3.若点P (a ,2)与Q (-1,b )关于坐标原点对称,则a ,b 分别为()A .-1,2B .1,-2C .1,2D .-1,-24.在美丽的明清宫广场中心地带整修工程中,计划采用同一种正多边形地板砖铺设地面,在下面的地板砖:①正方形,②正五边形,③正六边形,④正八边形中能够铺满地面的地板砖的种数是()A .1B .2C .3D .45.已知下列命题:①对顶角相等;②垂直于同一条直线的两直线平行; ③相等的角是对顶角;④同位角相等,其中假命题有()A .1个B .2个C .3个D .4个6.下列图形,既是轴对称图形又是中心对称图形的是()7.一个多边形的内角和是720°,那么这个多边形是()A .四边形B .五边形C .六边形D .七边形8.在四边形ABCD 中,AD ∥BC ,若ABCD 是平行四边形,则还应满足()A .∠A+∠C=180°B .∠B+∠D=180°C .∠A+∠B=180°D .∠A+∠D=180°9.已知平行四边形ABCD 的周长为30cm ,AB :BC=2:3,则AB 的长为()A .6cmB .9cmC .12cmD .18cm10.如图,在平行四边形ABCD 中,EF ∥AB ,GH ∥AD ,EF 与GH 交于点O ,则该图中的平行四边形的个数是()A .7B .8C .9D .11二、填空题(每小题4分,共40分)11.在四边形ABCD 中,若∠A=∠C=100°,∠B=60°,则∠D=______.12.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45 °”时,应假设_______________.13.“平行四边形的对角线互相平分”的逆命题是____________.14.如图,E ,F 是平行四边形ABCD 对角线BD 上的两点,请你添加一个条件,使四边形AECF 也是平行四边形.你添加的条件是:___________.15.如图,在平行四边形ABCD 中,∠A 的平分线交BC 于点E .若AB=10cm ,CD=14cm ,则EC=_____.16.已知直角三角形的两边长分别是5,12,则第三边的长为_______.17.已知三角形的三边长分别是4,5,6,则它的三条中位线围成的三角形的周长是________.18.在平行四边形ABCD 中,AC ,BD 交于点O ,若AB=6,AC=8,则BD 的取值范围是_______.19.如图,在图(1)中,A 1、B 1、C 1分别是△ABC 的边BC 、CA 、AB 的中点,在图(2)中,A 2、B 2、C 2分别是△A 1B 1C 1的边B 1C 1、C 1A 1、A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数是.O20.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线交l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C n的坐标是.三、解答题(共50分)21.(6分)如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.22.(8分)如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.试判断AF与CE是否相等,并说明理由.23.(10分)如图,E 、F 分别是平行四边形ABCD 对角线BD 所在直线上两点,DE =BF.请你以F 为一个端点,和图中已标有字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须研究一组线段相等即可).⑴连结_______________;⑵猜想:_______________;⑶证明:(说明:写出证明过程中的重要依据)24.(12分)如图,在□ABCD 中,AE 、BF 分别平分∠DAB 和∠ABC ,交CD 于点E 、F ,AE 、BF 相交于点M .(1)试说明:AE ⊥BF ;(2)判断线段DF 与CE 的大小关系,并予以说明.25.(14分)探究规律:如图1,已知直线m ∥n ,A 、B 为直线n 上的两点,C 、P 为直线m 上的两点。