物块(可视为质点)置于粗糙水平面上的 O 点,O 点距离斜面顶端 P 点
为 s。每次用水平拉力 F ,将物块由 O 点从静止开始拉动,当物块运动
到 P 点时撤去拉力 F 。实验时获得物块在不同拉力作用下落在斜面
上的不同水平射程,作出了如图乙所示的图象,若物块与水平部分的
2
动摩擦因数为 0 .5,斜面与水平地面之间的夹角 θ= 45°,g 取 10 m /s ,
联立解得 x= 1 .2 m ,h= 1 .7 m 。
(2)在时间 t内,滑块的位移为 x1
x1=L-
cos 37°
1
2
且 x1= at ,a=g sin 37°-μg cos 37°
2
联立解得 μ= 0 .125。
【答案】(1)1 .7 m
(2)0 .125
斜面底端正上方的 O 点将一小球以速度 v0= 3 m /s 水平抛出,与此同
时释放在斜面顶端的滑块,经过一段时间后小球恰好能以垂直斜面的
2
方向击中滑块(小球和滑块均可视为质点,重力加速度 g= 10 m /s ,sin
37° = 0 .6,cos 37° = 0 .8)。求:
(1)抛出点 O 离斜面底端的高度。
1
2
对于石块:竖直方向有(l+s)sin 37° = gt
2
水平方向有(l+s)cos 37° =v0t
代入数据,由上式可得 v0= 20 m /s。
(2)对于物块:x1=vt
1
2
对于石块:竖直方向 h= gt
2
解得 t=
2ℎ
水平方向
=4 s
ℎ
tan 37°
+x1=v1t,联立可得 v1= 41 .7 m /s。