第六节 变压器的零序电流保护
- 格式:doc
- 大小:196.50 KB
- 文档页数:11
主变零序保护的知识1 概述变压器的零序电流保护、变压器间隙电流保护与变压器零序电压保护一起构成了反应零序故障分量的变压器零序保护,是变压器后备保护中的重要组成部分,同时也是整个电网接地保护中不可分割的一部分。
本文就变压器的零序电流保护的一些特点进行介绍。
2 零序电流互感器安装位置对保护的影响零序电流的产生,对保护所体现的故障范围会有很大的影响(对于自耦变压器,零序电流只能由变压器断路器安装处零序电流互感器产生,本文不做讨论)。
下面按故障点的不同展开如下分析(见图1):由上面的三种故障情况我们可以看到,变压器断路器处零序电流保护只能对安装处母线两侧的故障进行区分,变压器中性点处的零序电流保护只能对变压器高压侧与低压侧故障进行区分。
如果采用断路器处的零序电流保护,则与线路的零序保护概念上基本是相同的,只不过零序方向可以根据电流互感器的极性选择指向主变或指向母线,指向母线则保护的范围只是断路器电流互感器安装处开始,需与线路零序保护配合且范围较小;指向主变,则要同主变另一侧的出线接地保护相配合,比较麻烦。
如果采用主变中性点处的零序电流保护,则保护的范围比断路器处零序电流保护宽一些,同样根据主变中性点零序电流互感器的极性接线可以将中性点零序电流保护分为指向本侧母线或对侧母线,一般采用指向本侧母线,整定配合较清晰方便。
我局目前运行的都是主变中性点零序电流保护,断路器处零序电流保护只有在旁路断路器带主变运行时才可能碰到,但如上面提到,对于主变其他侧有出线接地保护的因为整定配合的困难,此时旁路的零序电流保护宜退出,如为了对主变引线段进行保护,也可对旁路零序电流保护段进行适当保留。
3 变压器中性点电流互感器极性试验一般情况下,零序功率方向要求做带负荷测试,但对于接于变压器中性点套管电流互感器的零序保护,其极性显然是无法用电流二次回路短接人为制造零序电流来检验接线极性正确与否的,因而整组极性试验就显得极为重要。
可以利用直接励磁冲击,在电流互感器线圈二次侧产生的直流响应,用直流毫安或微安表观察指针的摆动来确定极性关系,具体做法见图2。
变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理(2007-01-07 22:41:40)转载▼分类:工作目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。
为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。
由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。
为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。
这两种保护的原理接线如图23所示中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。
第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。
定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。
中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。
间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。
零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。
一次启动电流通常取100A 左右,时间取0.5s。
110kV变压器中性点放电间隙长度根据其绝缘可取115~ 158mm ,击穿电压可取63kV(有效值)。
变压器的零序保护的配置原则是什么?变压器的零序保护的配置原则是什么?答:(1)中性点直接接地电网的变压器应装设零序(接地)保护作为变压器主保护的后备保护和相邻元件接地短路的后备保护。
(2)当变压器中性点同时装设有避雷器和放电间隙时,应装设零序电流保护作为变压器中性点直接接地运行时的保护,并增设一套反映间隙放电电流的零序电流保护和一套零序电压保护作为变压器中性点不接地运行时的保护。
后者作为间隙放电电流的零序电流保护的后备保护。
(3)自耦变压器的零序保护的不能接在中性线回路的电流互感器上,应接在本侧的零序电流滤过器上,并且高、中压侧加装方向元件,以保证选择性。
110kV、220kV中性点直接接地电力网装设保护的一般规定英文词条名:1 全绝缘变压器。
应按规定装设零序电流保护,并增设零序过电压保护。
当电力网单相接地且失去接地中性点时,零序过电压保护经0.3~0.5S 时限动作于断开变压器各侧断路器。
2A.中性点装设放电间隙时,应按规定装设零序电流保护,并增设反应零序电压和间隙放电电流的零序电流电压保护。
当电力网单相接地且失去接地中性点时,零序电流电压保护约经0.3~0.5S 时限动作于断开变压器各侧断路器。
B.中性点不装设放电间隙时,应装设两段零序电流保护和一套零序电流电压保护。
零序电流保护第一段设置一个时限,第二段设置两个时限,当每组母线上至少有一台中性点接地变压器时,第一段和第二段的较小时限动作于缩小故障影响范围。
零序电流电压保护用于变压器中性点不接地运行时保护变压器,其动作时限与零序电流保护第二段时限相配合,用以先切除中性点不接地变压器,后切除中性点接地变压器。
当某一组母线上的变压器中性点都不接地时,则不应动作于断开母线联络断路器,而应当首先断开中性点不接地的变压器,此时零序电流保护可采用一段,并带一个时限在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电气量构成保护接地短路的继电保护装置统称为零序保护保护间隙1.保护间隙protective gap带电部分与地之间用以限制可能发生最大过电压的间隙。
什么是零序电流、什么是剩余电流、零序电流保护与剩余电工知识 2009-06-14 05:36 阅读557 评论0字号:大中小为了防止人身间接触电以及配电线路由于各种原因而遭损坏,引起火灾等事故,保证设备和线路的热稳定性,我国现行的电气设计、施工等有关规范都提出了在低压配电线路中需设置接地故障保护。
在国家标准GB50054-95《低压配电设计规范》第4.4.10条明确指出了采用接地故障保护的两种方法,零序电流保护与剩余电流保护(亦称漏电电流保护)。
这两种电流保护的基本工作原理相同,但使用范围、安装等要求却有所不同)。
零序电流保护具体应用可在三相线路上各装一个电流互感器(C.T),或让三相导线一起穿过一零序C.T,也可在中性线N上安装一个零序C.T,利用这些C.T来检测三相的电流矢量和,即零序电流Io,IA+IB +IC=IO,当线路上所接的三相负荷完全平衡时(无接地故障,且不考虑线路、电器设备的泄漏电流),IO=0;当线路上所接的三相负荷不平衡,则IO=IN,此时的零序电流为不平衡电流IN;当某一相发生接地故障时,必然产生一个单相接地故障电流Id,此时检测到的零序电流IO=IN+Id,是三相不平衡电流与单相接地电流的矢量和。
剩余电流保护的具体做法是在被测的三相导线路上与中性N上各装一个C.T,或让三相导线与N线一起穿过一个零序C.T,得到三相导线与中性线N的电流矢量和IA+IB+IC+IN,当设有发生单相接地故障时,无论三相负荷平衡与否,则此矢量和为零(严格讲为线路与设备的正常泄漏电流);当发生某一相接地故障时,故障电流中会通过保护线PE及与地相关连的金属构件,即IA+IB+IC+IN≠0,此时数值为接地故障电流Id加正常泄漏电流。
从以上分析可看出,零序电流保护和剩余电流保护两者的基本原理都是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零,即ΣI=0,并且都用零序C.T作为取样元件。
变压器保护整定中的零序电流保护配置要点在变压器保护整定中,零序电流保护是一项关键的配置要点。
零序电流是指正、负序电流和零序电流的矢量和。
它的存在可能意味着线路中存在故障或其他问题,因此保护系统需要能够准确地检测和识别零序电流,并采取适当的措施来解决问题。
本文将介绍一些重要的变压器保护整定中的零序电流保护配置要点。
1. 零序电流保护原理变压器保护系统中的零序电流保护是通过使用差动保护装置来实现的。
差动保护装置监测变压器两侧电流的差异,当存在零序电流时,差异将超过设定的阈值,触发保护系统采取相应的动作。
因此,正确配置差动保护装置是实现零序电流保护的关键。
2. 零序电流保护配置要点在变压器保护整定中,配置零序电流保护时需要考虑以下要点:a. 阈值的选择零序电流保护的阈值应根据变压器的额定容量和特性进行选择。
通常情况下,阈值设置在变压器额定容量的1-2%之间。
但在实际应用中,也需要根据具体情况进行调整。
b. 动作延时设置为了避免误动作和滤除瞬态零序电流,保护系统应该设置适当的动作延时。
动作延时的设置应该根据变压器的特性和负载情况进行调整,以确保保护系统的准确性和可靠性。
c. 灵敏度设置正确设置零序电流保护的灵敏度对于及时检测故障和准确识别零序电流至关重要。
灵敏度设置应根据变压器的特性和所需保护水平进行调整,以确保保护系统的可靠性和灵活性。
3. 零序电流保护的其他考虑因素除了以上的配置要点外,还有一些其他考虑因素应该被纳入变压器保护整定中的零序电流保护:a. 双重地锁定零序电流保护应采用双重地锁定,以确保保护系统在地故障发生时能够正确地动作。
b. 高阻抗接地系统的特殊配置在一些特殊情况下,变压器的中性点可能采用高阻抗接地系统。
此时,对零序电流保护的配置要求更为复杂,需要根据实际情况进行详细分析和设计。
4. 零序电流保护的实施与测试零序电流保护的实施和测试是保证其有效性和可靠性的重要环节。
在实施过程中,应确保电流传感器的正确安装和连接,保护装置的正确配置和设定。
变压器的零序电流保护、变压器间隙电流保护与变压器零序电压保护一起构成了反应零序故障分量的变压器零序保护,是变压器后备保护中的重要组成部分,同时也是整个电网接地保护中不可分割的一部分。
本文就变压器的零序电流保护的一些特点进行介绍。
2零序电流互感器安装位置对保护的影响零序电流的产生,对保护所体现的故障范围会有很大的影响(对于自耦变压器,零序电流只能由变压器断路器安装处零序电流互感器产生,本文不做讨论)。
下面按故障点的不同展开如下分析(见图1):由上面的三种故障情况我们可以看到,变压器断路器处零序电流保护只能对安装处母线两侧的故障进行区分,变压器中性点处的零序电流保护只能对变压器高压侧与低压侧故障进行区分。
如果采用断路器处的零序电流保护,则与线路的零序保护概念上基本是相同的,只不过零序方向可以根据电流互感器的极性选择指向主变或指向母线,指向母线则保护的范围只是断路器电流互感器安装处开始,需与线路零序保护配合且范围较小;指向主变,则要同主变另一侧的出线接地保护相配合,比较麻烦。
如果采用主变中性点处的零序电流保护,则保护的范围比断路器处零序电流保护宽一些,同样根据主变中性点零序电流互感器的极性接线可以将中性点零序电流保护分为指向本侧母线或对侧母线,一般采用指向本侧母线,整定配合较清晰方便。
我局目前运行的都是主变中性点零序电流保护,断路器处零序电流保护只有在旁路断路器带主变运行时才可能碰到,但如上面提到,对于主变其他侧有出线接地保护的因为整定配合的困难,此时旁路的零序电流保护宜退出,如为了对主变引线段进行保护,也可对旁路零序电流保护段进行适当保留。
3变压器中性点电流互感器极性试验一般情况下,零序功率方向要求做带负荷测试,但对于接于变压器中性点套管电流互感器的零序保护,其极性显然是无法用电流二次回路短接人为制造零序电流来检验接线极性正确与否的,因而整组极性试验就显得极为重要。
可以利用直接励磁冲击,在电流互感器线圈二次侧产生的直流响应,用直流毫安或微安表观察指针的摆动来确定极性关系,具体做法见图2。
变压器零序电流保护原理
听说变压器零序电流保护?这就是个高手,专门对付接地短路的。
当系统出现接地故障,零序电流就会猛增,超过保护装置的设
定值,它就会跳出来,保护变压器不受伤害。
你知道吗?在正常运行或者系统振荡的时候,零序过流保护可
是个“聋子”和“瞎子”,因为这些情况下它可是不会反应的。
这
就是它的聪明之处,专门盯着接地故障,其他的故障它可不理。
说到零序电流保护,它可是个有脾气的家伙。
它喜欢简单直接,不喜欢复杂的环网,因为在那种情况下,它的反应速度可能会变慢,灵敏度也会下降。
所以,我们在用的时候得特别注意这一点。
所以啊,零序电流保护就是这么个东西,它守护着我们的变压器,确保电力系统的稳定运行。
一旦有接地故障,它就会迅速反应,保护我们的设备不受伤害。
真是个不可或缺的好帮手!。
目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。
为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。
由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。
为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。
中性点零序CT一般在变压器中性点套管内,而间隙CT一般在间隙后面。
当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。
中性点直接接地时间隙保护起不到作用,为了防止误动应该退出;而中性点不接地时,零序电流没有通路,零序电流保护不起作用,为了防止误动,应该退出,间隙零序过压的问题请问为什么间隙零序过压的定值为什么要整定为180V?是为了躲过什么?间隙零序过压时间一般整定为0.5s,动作后跳各侧开关。
这么短的动作时间为什么是跳各侧开关而不是跳本侧开关?还有就是间隙零序过压和零序过压有何不同?为什么整定值会差那么远(例如在110kV系统中,零序过压可整定为15~30V)?110kV系统的PT辅助绕组为什么是100V先请看系统运行中的过电压:电力系统的过电压一般可分为下面三类,暂时过电压(工频过电压、谐振过电压) ,操作过电压,雷电过电压。
对于中性点雷击过电压处理,人们比较容易形成统一意见。
一般按变压器的标准雷电波的耐受水平,考虑绝缘老化累计效应乘0. 85 的系数,得出的实际绝缘耐受水平大于避雷器的标称雷电冲击放电电压或残压,取合理的系数即可。
变压器零序电流保护整定计算
变压器是电力系统中常见的重要设备,它起着电能变换和传输的关键作用。
在变压器运行过程中,由于各种原因可能会导致零序电流的产生,而这些零序电流可能会对变压器造成损坏,因此需要对变压器的零序电流进行保护。
在进行零序电流保护时,整定计算是至关重要的一环。
首先,整定计算需要考虑的主要因素包括变压器的额定容量、变比、短路阻抗、接地方式等。
通过对这些参数的综合考虑,可以确定变压器零序电流保护的整定值。
其次,整定计算还需要根据实际运行情况和变压器的特性进行调整,以确保零序电流保护的可靠性和灵敏性。
在进行整定计算时,需要注意的是不同类型的变压器可能需要采用不同的整定方法。
例如,对于星形接地变压器和接地变压器,其零序电流保护的整定计算方法也各有不同。
在进行整定计算时,需要充分考虑变压器的接线方式和接地方式,以确定最合适的整定值。
除了考虑变压器本身的特性外,整定计算还需要考虑系统的其他保护装置和保护配合性。
在实际运行中,变压器的零序电流保护可能需要与其他保护装置(如过流保护、差动保护等)进行配合,因此在进行整定计算时,还需要考虑这些配合关系,以确保保护系统的全面性和完整性。
总之,变压器零序电流保护整定计算是确保变压器安全运行的关键环节。
在进行整定计算时,需要充分考虑变压器的特性、系统的其他保护装置和配合关系,以确定最合适的整定值。
只有通过科学合理的整定计算,才能确保变压器的零序电流保护具有可靠性、灵敏性和全面性。
主变零序过流保护的作用1.引言1.1 概述主变零序过流保护是电力系统中重要的保护措施之一。
电力系统中的主变厂电压等级高,承担着电能的传输和配电任务,因此对主变进行保护显得尤为重要。
而零序过流保护则是针对主变中可能出现的零序故障所设计的一项保护手段。
在电力系统中,零序故障是指电流中存在非平衡的情况,即三相电流不相等。
主变零序过流保护主要是为了防止这种非平衡电流导致主变故障和设备损坏,进而保护系统的安全稳定运行。
主变零序过流保护的作用主要体现在以下几个方面。
首先,它能够及时地检测零序故障,并迅速切除故障分支,防止故障扩大和蔓延,从而避免了设备的损坏和系统的停电。
其次,主变零序过流保护还能够在故障发生时及时报警,提醒运维人员进行检修和排除故障,保证电力系统的安全运行。
此外,主变零序过流保护还能够提高电力系统的可靠性和稳定性,保障用户的用电需求得到满足。
综上所述,主变零序过流保护在电力系统中扮演着至关重要的角色。
它不仅可以保护主变及相关设备的安全运行,还能提高系统的可靠性和稳定性。
为了确保电力系统的正常运行,必须高度重视主变零序过流保护的作用,加强对其原理和操作方法的研究与应用。
只有这样,才能更好地保障电力系统的安全稳定运行,服务于社会经济的发展。
1.2文章结构1.2 文章结构本文将分为以下几个部分来探讨主变零序过流保护的作用:第一部分为引言,主要概述本文的主题和内容,并介绍主变零序过流保护的背景和重要性。
第二部分为正文,主要分为两个子部分来介绍主变零序过流保护的定义、原理和作用。
在2.1节中,将对主变零序过流保护的定义和原理进行详细解读,包括其基本概念、工作原理以及常见的保护方式。
在2.2节和2.3节中,将分别探讨主变零序过流保护的两个主要作用。
其中,2.2节将重点介绍主变零序过流保护在保护主变正常运行和延长设备寿命方面的作用,包括防止主变过载和短路故障的影响。
而2.3节将重点探讨主变零序过流保护在提高电网稳定性和保障供电可靠性方面的作用,包括对电网故障的快速检测和隔离,以及对系统负荷均衡的调节能力。
变压器对零序电流的限制变压器对零序电流的限制每个空气开关都铭牌都有标注,主要是标注它的脱扣电流、短路电流等,下面详细介绍:1、按线路预期短路电流的计算来选择断路器的分断能力精确的线路预期短路电流的计算是一项极其繁琐的工作。
因此便有一些误差不很大而工程上可以被接受的简捷计算方法:(1)对于10/0.4KV电压等级的变压器,可以考虑高压侧的短路容量为无穷大(10KV侧的短路容量一般为200~400MVA甚至更大,因此按无穷大来考虑,其误差不足10%)。
(2)GB50054-95《低压配电设计规范》的2.1.2条规定:“当短路点附近所接电动机的额定电流之和超过短路电流的1%时,应计入电动机反馈电流的影响”,若短路电流为30KA,取其1%,应是300A,电动机的总功率约在150KW,且是同时启动使用时此时计入的反馈电流应是6.5∑In。
(3)变压器的阻抗电压UK表示变压器副边短接(路),当副边达到其额定电流时,原边电压为其额定电压的百分值。
因此当原边电压为额定电压时,副边电流就是它的预期短路电流。
(4)变压器的副边额定电流Ite=Ste/1.732U式中Ste 为变压器的容量(KVA),Ue为副边额定电压(空载电压),在10/0.4KV 时Ue=0.4KV因此简单计算变压器的副边额定电流应是变压器容量x1.44~1.50。
(5)按(3)对Uk的定义,副边的短路电流(三相短路)为I(3)对Uk的定义,副边的短路电流(三相短路)为I(3)=Ite/Uk,此值为交流有效值。
(6)在相同的变压器容量下,若是两相之间短路,则I(2)=1.732I(3)/2=0.866I(3)(7)以上计算均是变压器出线端短路时的电流值,这是最严重的短路事故。
如果短路点离变压器有一定的距离,则需考虑线路阻抗,因此短路电流将减小。
例如SL7系列变压器(配导线为三芯铝线电缆),容量为200KVA,变压器出线端短路时,三相短路电流I(3)为7210A。
变压器保护变压器的保护有:瓦斯保护、差动保护、过电流保护、复合电压启动的过电流保护、低电压起动的过电流保护、零序接地保护。
1.瓦斯保护:是变压器内部故障的主要保护元件,对变压器匝间和层间短路、铁芯故障、套管内部故障、绕组内部断线及绝缘劣化和油面下降等故障均能灵敏动作。
当油浸式变压器的内部发生故障时,由于电弧将使绝缘材料分解并产生大量的气体,从油箱向油枕流动,其强烈程度随故障的严重程度不同而不同,反应这种气流与油流而动作的保护称为瓦斯保护,也叫气体保护。
在气体保护继电器内,上部是一个密封的浮筒,下部是一块金属档板,两者都装有密封的水银接点。
浮筒和档板可以围绕各自的轴旋转。
在正常运行时,继电器内充满油,浮筒浸在油内,处于上浮位臵,水银接点断开;档板则由于本身重量而下垂,其水银接点也是断开的。
当变压器内部发生轻微故障时,气体产生的速度较缓慢,气体上升至储油柜途中首先积存于气体继电器的上部空间,使油面下降,浮筒随之下降而使水银接点闭合,接通延时信号,这就是所谓的“轻瓦斯”;当变压器内部发生严重故障时,则产生强烈的瓦斯气体,油箱内压力瞬时突增,产生很大的油流向油枕方向冲击,因油流冲击档板,档板克服弹簧的阻力,带动磁铁向干簧触点方向移动,使水银触点闭合,接通跳闸回路,使断路器跳闸,这就是所谓的“重瓦斯”。
重瓦斯动作,立即切断与变压器连接的所有电源,从而避免事故扩大,起到保护变压器的作用。
气体继电器有浮筒式、档板式、开口杯式等不同型号。
目前大多采用QJ-80型继电器,其信号回路接上开口杯,跳闸回路接下档板。
所谓瓦斯保护信号动作,即指因各种原因造成继电器内上开口杯的信号回路接点闭合,光字牌灯亮。
瓦斯保护是变压器的主要保护,它可以反映油箱内的一切故障。
包括:油箱内的多相短路、绕组匝间短路、绕组与铁芯或与外壳间的短路、铁芯故障、油面下降或漏油、分接开关接触不良或导线焊接不良等。
瓦斯保护动作迅速、灵敏可靠而且结构简单。
一、零序电流保护I段的整定
(一)常规零序电流保护I段的整定
(1)按躲过本线路末端接地短路的最大零序电流整定
Kk
可靠系数,取1.25--1.3I0max 线路末端接地短路时流过保护的最大零序电流
(2)按躲开线路断路器三相不同时合闸的最大零序电流整定
Kk
可靠系数,取1.1--1.2I0btmax 断路器三相不同时合闸所产生的零序电流最大值,
(二)几种特殊情况的整定
(1)线路末端变压器组的情况,包括变压器低压侧有电源的情况,零序保护I段一般可按不伸出变压器整定范围
末端变压器中性点不接地运行,只按躲开变压器低压侧母线相间短路的最大不平衡电流整定
Kk
可靠系数,取1.3Kbp
不平衡系数,取0.1Kfzq
非周期分量系数,取2Idmax 变压器低压侧三相短路最大短路电流
线路末端变压器中性点接地运行时,应满足以下三个条件
1)按躲开变压器空载投入的励磁涌流整定,即
Kyl 考虑涌流的系数,取3--4;当保护带有躲非周期分量性能时,则取1.3a 考虑变压器端电压下降的系数;
Xxt Xb Xxl 分别为系统、变压器、线路的正序电抗
Ie 变压器高压侧额定电流max
03⋅=I K I k dz max
03⋅⋅=bt k dz I K I )3(max
⋅=d fzq hp k dz I K K K I e
yl dz aI K I =Xxl
Xb Xxt Xb
a ++=。
变压器零序等值电路及其参数
首先,零序电抗用于描述正序电压引起的零序电流与零序电压之间的
相位差。
它是由变压器内部的漏抗和互抗组成。
漏抗是变压器的铁心和导
线阻抗,在零序电流的流动中起到阻碍作用;互抗是指变压器的主绕组与
绕组之间的互相耦合阻抗,同时也包括各相之间的互相耦合阻抗。
其次,零序电阻指的是电压引起的零序电流通过变压器内部的电阻部分。
零序电阻通常由变压器的主绕组和副绕组的电阻组成。
零序互感是用来描述正序电压与零序电流之间的电感耦合关系。
它通
常由变压器内部的主绕组和副绕组之间的耦合电感组成。
正序电压激励会
在变压器内部引起零序电流的流动,而这种电流又会通过零序互感传导到
相邻的变压器,从而影响整个电力系统的稳态和暂态运行。
综上所述,变压器零序等值电路的参数包括零序电抗、零序电阻和零
序互感。
这些参数在电力系统中的稳态和暂态分析中起到了重要的作用,
能够帮助工程师们更好地了解和解决变压器在系统中引起的零序故障问题。
二、变电所多台变压器的零序电流保护每台变压器都装有同样的零序电流保护,它是由电流元件和电压元件两部分组成。
正常时零序电流及零序电压很小,零序电流继电器及零序电压继电器皆不动作,不会发出跳闸脉冲。
发生接地故障时,出现零序电流及零序电压,当它们大于起动值后,零序电流继电器及零序电压继电器皆动作。
电流继电器起动后,常开触点闭合,起动时间继电器KT1。
时间继电器的瞬动触点闭合,给小母线A接通正电源,将正电源送至中性点不接地变压器的零序电流保护。
不接地的变压器零序电流保护的零序电流继电器不会动作,常闭触点闭合。
小母线A的正电源经零序电压继电器的常开触点、零序电流继电器的常闭触点起动有较短延时的时间继电器KT2经较短时限首先切除中性点不接地的变压器。
若接地故障消失,零序电流消失,则接地变压器的零序电流保护的零序电流继电器返回,保护复归。
若接地故障没有消失,接地点在接地变压器处,零序电流继电器不返回,时间继电器KT1一直在起动状态,经过较长的延时KT1跳开中性点接地的变压器。
零序电流保护的整定计算:动作电流:(1)与被保护侧母线引出线零序电流第三段保护在灵敏度上相配合,所以(2)与中性点不接地变压器零序电压元件在灵敏度上相配合,以保证零序电压元件的灵敏度高于零序电流元件的灵敏度。
设零序电压元件的动作电压为U dz.0,则U dz.0=3I0X0.T零序电流元件的动作电流为动作电压整定:按躲开正常运行时的最大不平衡零序电压进行整定。
根据经验,零序电压继电器的动作电压一般为5V。
当电压互感器的变比为nTV时,电压继电器的一次动作电压为U dz.0=5n TV变压器零序电流保护作为后备保护,其动作时限应比线路零序电流保护第三段动作时限长一个时限阶段。
即灵敏度校验:按保证远后备灵敏度满足要求进行校验返回第二节微机保护的硬件框图简介微机保护硬件示意框图如下图所示。
一、电压形成回路微机保护要从被保护的电力线路或设备的电流互感器、电压互感器或其他变换器上取得信息,但这些互感器的二次数值、输入范围对典型的微机电路却不适用,故需要降低和变换。
在微机保护中通常要求输入信号为±5V或±10V的电压信号,具体决定于所用的模数转换器。
电压变换常采用小型中间变压器。
电流变换有两种方式,一种是采用小型中间变流器,其二次侧并电阻以取得所需电压的方式,另一种是采用电抗变压器。
这些中间变换器还起到屏蔽和隔离的作用,以提高保护的可靠性。
二、采样保持电路与模拟低通滤波器1.采样保持器(S/H)采样就是将连续变化的模拟量通过采样器加以离散化。
其过程如下图所示。
2.模拟低通滤波器(ALF)按照奈奎斯特(Nyquist)采样定理:“如果被采样信号频率(或信号中要保留的最高次谐波频率)为ƒ0,则采样频率ƒs(每秒钟采样次数)必须大于2ƒ0,否则,由采样值就不可能拟合还原成原来的曲线。
”对微机保护系统来说,在故障初瞬,电压、电流中可能含有相当高的频率分量,在采样前用一个低通模拟滤波器(ALF)将高频分量滤掉,这样就可以降低ƒs ,以防混叠。
微机保护是一个实时系统,数据采集系统以采样频率不断地向CPU输入数据,CPU必须要来得及在两个相邻采样间隔时间T s内处理完对每一组采样值所必须作的各种操作和运算,否则CPU将跟不上实时节拍而无法工作。
而采样频率过低将不能真实地反映被采样信号的情况。
三、多路转换开关(MUX)多路转换开关又称多路转换器。
在实际的数据采集系统中,被模数转换的模拟量可能是几路或十几路,利用多路开关MUX轮流切换各被测量与A/D转换电路的通路,达到分时转换的目的。
在微机保护中,各个通道的模拟电压是在同一瞬间采样并保持记忆的,在保持期间各路被采样的模拟电压依次取出并进行模数转换,但微机所得到的仍可认为是同一时刻的信息,这样按保护算法由微机计算得出正确结果。
四、模数转换器(A/D)模数转换器A/D是数据采集系统的核心,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机进行处理、存储、控制和显示。
逐位比较(逐位逼近)型积分型以及计数型A/D转换器主要有并行比较型电压频率(即V/F)型等就微机保护而言,选择A/D转换芯片时主要考虑两个指标:一是转换时间,二是数字输出的位数。
对于转换时间,由于各通道共用一个A/D,至少要求所有的通道轮流转换所需的时间总和小于采样间隔Ts。
微机保护对A/D转换芯片的位数要求较苛刻,因为保护在工作时输入电压和电流的动态范围很大。
返回第三节微机保护的算法一、数字滤波数字滤波器不同于模拟滤波器,它不是一种纯硬件构成的滤波器,而是由软件编程去实现,改变算法或某些系数即可改变滤波性能,即滤波器的幅频特性和相频特性。
在微机保护中广泛使用的简单的数字滤波器,是一类用加减运算构成的线性滤波单元。
差分滤波它们的基本形式 加法滤波 积分滤波等以差分滤波为例做简单介绍。
差分滤波器输出信号的差分方程形式为)()()(k n x n x n y --= (8—1)式中,x (n )、y (n )分别是滤波器在采样时刻n (或n )的输入与输出;x (n -k )是n 时刻以前第k 个采样时刻的输入,k ≥1。
对式(8-1)进行Z变换,可得传递函数H (z))1)(()(k z z x z y --=kz z X z Y z H --==1)()()( (8—2)将 ST j ez ω=代入式(8-2)中,即得差分滤波器的幅频特性和相频特性分别为式(8-3)及式(8-4)2sin2sin )cos 1()(22SS S T j T k T k T k e H S ωωωω=+-= (8—3)(8—4)由式(8-3)可知,设需滤除谐波次数为m ,差分步长为k (k 次采样),则此时ω=m ω1=m ·2ƒ1,应使)(ST j e H ω=0。
令 0sin21=sf kmf π则有ππl f kmf s=1 )3,2,1,0(⋅⋅⋅⋅⋅⋅=l 01lm K N l kf f l m s ===;k N m =0 (8—5) 当N (即ƒs 和ƒ1)取值已定时,采用不同的l 和k 值,便可滤除m 次谐波。
二、正弦函数模型算法1.半周积分算法半周积分算法的依据是mm T mT m U TU tU tdt U S πωωωω==-==⎰2cos sin 2020(8—6)即正弦函数半周积分与其幅值成正比。
式(8-6)的积分可以用梯形法则近似求出:sN N k k T u u u S ]2121[2/1210++≈∑-= (8—7)式中k u ——第K 次采样值; N ——一周期T 内的采样点数; k u ——k =0时的采样值;2Nu ——k =N /2时的采样值。
求出积分值S 后,应用式(8-6)可求得幅值。
2.导数算法导数算法是利用正弦函数的导数为余弦函数这一特点求出采样值的幅值和相位的一种算法。
设 t U u m ωsin =()θω-=t I i m sin 则tU u m ωωcos =' (8—8)()θωω-='t I i m cos t U u m ωωsin 2-=''()θωω--=''t I i m sin 2很容易得出或m 222U )u (u =ω'+2222)()mU u u =''+'ωω( (8—9)2m22"22m 2'2I )i ()i I )i (i =ω+ω'=ω+或( (8—10)和 222222222i i u u I U z m m '+'+==ωω (8—11)根据式(8-8),我们也可推导出R I U i i i i u i u m m=='-''''-''θcos 2(8—12)L XI U i i i i u i u m m ==='-'''-'ωθωsin 2(8—13)式(8-9)~式(8-13)中,u 、i 对应t k 时为u k 、i k ,均为已知数,而对应t k-1和t k+1的u 、i 为u k-1、u k +1、i k -1、i k +1,也为已知数,此时sk k kT u u u 211-+-=' (8—14)sk k kT i i i 211-+-=' (8—15) )2()(1)(111211-+-++-=---=''k k k s s k k s k k s ku u u T T u u T u u T u (8—16))2()(1)(111211-+-++-=---=''k k k s s k k s k k s k i i i T T i i T i i T i (8—17)导数算法最大的优点是它的“数据窗”即算法所需要的相邻采样数据是三个,即计算速度快。
导数算法的缺点是当采样频率较低时,计算误差较大。
3.两采样值积算法两采样值积算法是利用2个采样值以推算出正弦曲线波形,即用采样值的乘积来计算电流、电压、阻抗的幅值和相角等电气参数的方法,属于正弦曲线拟合法。
这种算法的特点是计算的判定时间较短。
设有正弦电压、电流波形在任意二个连续采样时刻t k 、t k+1(=t k +s T)进行采样,并设被采样电流滞后电压的相位角为θ,则t k 和t k +1时刻的采样值分别表示为式(8-18)和式(8-19)。
)sin(sin 11θωω-==k m km t I i t U u (8—18)])(sin[)sin()(sin sin 1212θωθωωω-+=-=+==++s k m k m s k m k m T t I t I i T t U t U u (8—19)式中,T S 为两采样值的时间间隔,即T S =t k+1-t k 。
由式(8-18)和式(8-19),取两采样值乘积,则有)]2cos([cos 2111θωθ--=k m m t I U i u (8—20) )]22cos([cos 2122θωωθ-+-=s k m m T t I U i u (8—21) )]2cos()[cos(2121θωωωθ-+--=s k s m m T t T I U i u (8—22) )]2cos()[cos(2112θωωωθ-+-+=s k s m m T t T I U i u (8—23)式(8-20)和式(8-21)相加,得)]2cos(cos 2cos 2[212211θωωωθ-+-=+s k s m m T t T I U i u i u (8—24)式(8-22)和(8-23)相加,得)]2cos(2cos cos 2[211221θωωθω-+-=+s k s m m T t T I U i u i u (8—25)将式(8-25)乘以cos ωT S 再与式(8-24)相减,可消去ωt k 项,得ssm m T T i u i u i u i u I U ωωθ212212211sin cos )(cos +-+=(8—26) 同理,由式(8-22)与式(8-23)相减消去ωt k 项,得s 1221m m T sin i u i u sin I U ϖ-=θ (8—27)在式(8-26)中,如用同一电压的采样值相乘,或用同一电流的采样值相乘,则θ =0︒,此时可得s2s 2122212mT sin T cos u u 2u u U ϖω-+= (8—28)ssmT T i i i i I ωω22122212sin cos 2-+=(8—29) 由于T S 、sin ωT S 、cos ωT S 均为常数,只要送入时间间隔T S 的两次采样值,便可按式(8-28)和式(8-29)计算出U m 、I m 。