Predicting feature interactions in component-based systems
- 格式:pdf
- 大小:36.36 KB
- 文档页数:8
一种新的业务冲突检测和解决方案李旭;胡国庆【摘要】详细分析了下一代网络(Next Generation Network,NGN)中的业务冲突问题,给出了现有的各种业务冲突检测和解决方法,并对业务交互管理模块(Feature Interaction Management,FIM)进行了重新设计,针对离线业务冲突和在线业务冲突分别进行检测和解决。
针对离线业务,采用二维分析表方法进行冲突检测和解决;针对在线业务,采用循环检测算法进行冲突的检测和解决。
该架构还可以扩展其冲突检测算法,以处理新的业务冲突,可以提高冲突检测解决的成功率。
%This paper analyses the feature interactions in the next generation network,and summarizes all the existing ways of feature interactions detection and resolution.A new architecture of feature interaction management is also present in this paper.The online feature interactions and offline feature interactions are detected and resolved separately.The offline problems are dealt with by dynamic two-dimension table and the online problems by circle detection.This new architecture can expend its interaction detection algorithm to deal with new feature interactions,so it can be more effective.【期刊名称】《无线电工程》【年(卷),期】2012(042)005【总页数】4页(P12-14,26)【关键词】IMS;业务冲突;SCIM【作者】李旭;胡国庆【作者单位】中国电子科技集团公司第五十四研究所,河北石家庄050081;总参信息化部驻石家庄地区军事代表室,河北石家庄050081【正文语种】中文【中图分类】TN960 引言随着通信技术和网络技术的快速发展,能够融合多种异构网络、提供多媒体综合业务和开放网络资源能力的下一代网络体系结构逐渐形成。
多模态生成关键技术主要涉及以下几个方面:
1. 多模态数据的融合:多模态生成要求模型能够处理来自不同来源和格式的数据,例如文本、图像、音频和视频等。
这需要一种高效的数据融合策略,以便在不丢失信息的情况下将不同模态的数据整合在一起。
2. 多模态注意力机制:注意力机制能够让模型在处理不同模态的数据时,根据其他模态的信息来调整其输出。
在多模态生成任务中,这种机制可以帮助模型更好地理解不同模态之间的关系,从而生成更准确和连贯的输出。
3. 跨模态迁移学习:在多模态生成中,模型可能需要在不同模态之间迁移学习。
例如,一个模型可能需要从文本生成图像,或者从音频生成文本。
这需要一种跨模态迁移学习的策略,以便在不同模态之间共享知识和能力。
4. 对抗训练和鲁棒性:多模态生成任务往往涉及到对抗性攻击和噪声,例如在图像中添加干扰或修改文本。
这需要一种对抗训练和鲁棒性的策略,以便提高模型的稳健性和可靠性。
5. 可解释性和可信任性:多模态生成任务需要模型具有一定的可解释性和可信任性。
这可以通过可视化技术和元学习等方法来实现,以便让用户理解模型的决策过程并信任其输出。
总的来说,多模态生成关键技术涉及数据融合、注意力机制、迁移学习、对抗训练和可信任性等方面,需要综合运用多种方法和策略来实现高质量的多模态生成任务。
多模态生物特征融合技术研究与应用概述多模态生物特征融合技术是指通过同时利用多个生物特征进行识别和认证的技术。
传统的生物特征识别技术常常只使用单一的生物特征,如指纹、面部或虹膜等。
然而,随着科技的发展,融合多个生物特征的技术正在逐渐成为识别和认证领域的研究热点。
本文将重点探讨多模态生物特征融合技术的研究进展和应用前景。
1. 多模态生物特征融合技术的原理与方法多模态生物特征融合技术通过综合利用多个生物特征,旨在提高识别和认证系统的准确性和可靠性。
这些生物特征可以包括指纹、面部、虹膜、声音、书写、步态等等。
生物特征的融合可以通过以下两种主要方法实现:1.1 特征级融合特征级融合主要是将不同生物特征的信息进行融合。
例如,将指纹和面部特征进行融合,可以使用融合算法将两者的特征表示进行合并,创建一个新的特征向量。
这样可以综合利用不同生物特征的优势,提高系统的准确性。
1.2 决策级融合决策级融合是通过融合不同特征的决策结果来进行最终的判断。
例如,可以分别使用指纹和虹膜进行识别,并将它们的决策结果进行融合,从而得到更可靠的识别结果。
决策级融合主要依赖于多个生物特征的独立识别算法和决策规则。
2. 多模态生物特征融合技术的研究进展多模态生物特征融合技术的研究在过去几十年中取得了显著的进展。
下面介绍几个关键的研究方向:2.1 特征选择与提取在融合不同生物特征之前,首先需要对每个特征进行选择和提取。
特征选择的目标是选取具有代表性和互补性的特征,以提高融合系统的性能。
特征提取则是从原始生物数据中提取出具有判别性的特征表示。
当前的研究主要集中在开发高效的特征选择和提取方法,以满足多模态融合的需求。
2.2 融合算法融合算法是实现多模态生物特征融合的关键。
不同生物特征的融合算法可以分为基于特征的和基于决策的两种类型。
基于特征的融合算法通过将不同特征的表示进行融合,从而得到一个综合的特征向量,进而进行识别和认证。
而基于决策的融合算法则通过融合不同特征的决策结果,从而得到最终的判断。
前馈神经网络是一种常见的人工智能模型,它在自然语言生成领域有着广泛的应用。
自然语言生成是人工智能领域的一个重要分支,它涉及到计算机系统如何理解和生成人类语言。
在这篇文章中,我们将探讨如何使用前馈神经网络进行自然语言生成,并介绍其中的一些关键概念和技术。
神经网络是一种模仿人类大脑神经元运作方式的计算模型。
前馈神经网络是其中的一种类型,它由一个或多个神经元层组成,每一层都与下一层全连接。
这种网络结构使得神经网络能够从输入数据中提取特征并进行预测。
在自然语言生成中,前馈神经网络可以被用来生成文本、回答问题、进行对话等任务。
首先,为了使用前馈神经网络进行自然语言生成,我们需要准备一个数据集。
这个数据集可以是大量的文本数据,比如文章、小说、对话记录等。
然后,我们需要对数据进行预处理,包括分词、去除停用词、标记化等操作。
接下来,我们可以利用前馈神经网络模型来训练这些数据。
在训练过程中,我们需要将文本数据转换成数字向量形式,以便于神经网络的处理。
这个过程被称为嵌入(embedding),它可以将文本数据映射到一个高维空间中。
这样一来,我们就可以将文本数据输入到神经网络中进行训练。
在训练过程中,神经网络会不断地调整模型参数,使得模型能够更好地拟合数据。
在训练完成后,我们就可以使用训练好的前馈神经网络模型来进行自然语言生成。
这时,我们可以将一个输入文本传入模型中,然后模型会生成一个对应的输出文本。
这个输出文本可以是对输入文本的回答、对话的继续、文章的续写等等。
当然,在实际应用中,使用前馈神经网络进行自然语言生成还涉及到许多其他技术和方法。
比如,我们可以使用注意力机制(attention mechanism)来提高模型的生成能力,使得模型能够更好地理解输入文本的上下文信息。
我们还可以使用循环神经网络(recurrent neural network)来处理长文本序列的生成任务,以及使用生成对抗网络(generative adversarial network)来提高生成文本的质量。
多模态生物特征
多模态生物特征是指采用多种生物特征识别技术来对个体进行
身份识别或辨认。
这些生物特征可以包括指纹、人脸、虹膜、声纹、手掌纹、视网膜等。
多模态生物特征识别技术的优势在于可以提高识别的准确性和可靠性,同时也可以降低识别误差率和欺骗率。
多模态生物特征识别技术在安防领域、公安领域、金融领域和医疗领域等有着广泛的应用。
在安防领域,多模态生物特征识别技术可以用于门禁系统、智能家居系统等场景,以提高安全性和便捷性。
在公安领域,多模态生物特征识别技术可以用于刑侦破案、警务管理等方面,以提高工作效率和准确性。
在金融领域,多模态生物特征识别技术可以用于身份验证、交易授权等场景,以提高交易的安全性和可靠性。
在医疗领域,多模态生物特征识别技术可以用于患者身份验证、医疗记录管理等方面,以提高医疗服务的质量和可靠性。
与传统的单一生物特征识别技术相比,多模态生物特征识别技术的识别准确性更高,同时也能够克服单一生物特征识别技术的局限性。
但是,多模态生物特征识别技术的应用还面临着技术成本高、隐私保护等问题,需要在实际应用中加以解决。
- 1 -。
2021年3月计算机工程与设计Mar.2021第42卷第3期COMPUTER ENGINEERING AND DESIGN Vol.42No.3基于注意力机制的人脸表情识别迁移学习方法亢洁,李思禹+(陕西科技大学电气与控制工程学院,陕西西安710021)摘要:针对现有的在人脸表情识别中应用的卷积神经网络结构不够轻量,难以精确提取人脸表情特征,且需要大量表情标记数据等问题,提出一种基于注意力机制的人脸表情识别迁移学习方法。
设计一个轻量的网络结构,在其基础上进行特征分组并建立空间增强注意力机制,突出表情特征重点区域,利用迁移学习在目标函数中构造一个基于log-Euclidean距离的损失项来减小迁移学习中源域与目标域之间的相关性差异。
在数据集JAFFE和CK十上的实验结果表明,该方法相比其它人脸表情识别方法具有更优的识别能力&关键词:人脸表情识别;卷积神经网络;注意力机制;特征分组;迁移学习中图法分类号:TP391文献标识号:A文章编号:1000-7024(2021)03-0797-08doi:10.16208/j.issnl000-7024.2021.03.029Transfer learning method for facial expression recognitionbased on attention mechanismKANG Jie,LI Si-yu;(School of Electrical and Control Engineering,Shaanxi University of Science and Technology,Xi'an710021,China) Abstract:To solve the problems that the existing convolutional neural network structure used in facial expression recognition is not lightweight enough to extract facial expression features accurately,and that a large amount of expression labeled data is required&a transfer learning method for facial expression recognition based on attention mechanism was proposed.A lightweight networkstructurewasdesigned andfeaturegroupsweregroupedonthebasisofit afterwardsaspatialenhanceda t ention mechanism was established to highlight the key areas of facial expression features.At the same time&transfer learning was used to construct a loss term based on log-Euclidean distance in the objective function to reduce the correlation difference between the source domain and the target domain.Experimental results on the data sets JAFFE and CK+show that the proposed method has better recognition ability than other facial expression recognition methods.Key words:facial expression recognition;convolutional neural network;attention mechanism;feature grouping;transfer learning1引言人脸表情⑴2识别最核心的部分是特征提取。
注意力机制提取极化特征首先,我们需要明确什么是极化特征。
在情感分析、意见挖掘等任务中,我们通常需要判断一段文本或一张图像中所表达的情感极性,即正面、负面或中性。
极化特征表示的是文本或图像中包含的与情感相关的信息。
为了提取极化特征,我们可以使用注意力机制来自适应地选择输入数据中与情感极性有关的部分。
注意力机制可以根据输入数据的不同部分给予不同的权重,使得模型能够更加关注最重要的部分。
在自然语言处理任务中,我们常常使用循环神经网络(RNN)和注意力机制来提取极化特征。
以情感分类任务为例,我们可以使用双向长短时记忆网络(BiLSTM)作为编码器,将文本序列转化为向量序列。
然后,我们可以使用一个注意力机制来对这些向量序列进行加权求和,得到一个固定长度的向量表示,即极化特征。
具体地,我们可以使用一个全连接层来计算每个时间步上的注意力权重。
这个全连接层的输入是BiLSTM的输出,输出是一个权重向量。
然后,我们可以使用这个权重向量对BiLSTM的输出进行加权求和,得到一个加权后的表示。
最后,我们可以将这个加权后的表示作为极化特征输入给后续的分类器。
在计算机视觉任务中,我们也可以使用注意力机制来提取极化特征。
以图像情感分析为例,我们可以使用卷积神经网络(CNN)来提取图像的特征。
然后,我们可以使用一个注意力机制来对这些特征进行加权求和,得到一个固定长度的向量表示,即极化特征。
具体地,我们可以使用一个全连接层来计算每个图像区域的注意力权重。
这个全连接层的输入是CNN的输出,输出是一个权重向量。
然后,我们可以使用这个权重向量对CNN的输出进行加权求和,得到一个加权后的表示。
最后,我们可以将这个加权后的表示作为极化特征输入给后续的分类器。
总之,注意力机制在提取极化特征方面有着重要的应用。
通过使用注意力机制,我们可以自适应地选择输入数据中与情感极性有关的部分,从而提高模型对关键信息的关注度。
注意力机制已经在许多任务中取得了良好的效果,并成为深度学习中不可或缺的一环。
混合词汇特征和LDA的语义相关度计算方法一、背景简介在自然语言处理和文本挖掘领域,语义相关度计算是一个重要而复杂的问题。
传统的基于词袋模型的相似度计算往往无法很好地捕捉词语之间的语义关联,因此引入了深度学习和主题模型等方法来提高语义相关度的计算精度。
混合词汇特征和LDA的语义相关度计算方法就是其中之一,它结合了词汇特征和主题模型的优势,能够更准确地评估文本之间的语义相关性。
二、混合词汇特征和LDA的基本原理混合词汇特征和LDA的语义相关度计算方法的基本原理是将词汇特征和LDA主题模型结合起来,利用它们各自的优势来计算文本之间的语义相关度。
通过词袋模型和词嵌入模型等方法提取文本的词汇特征,将文本表示为向量;利用LDA主题模型来挖掘文本的主题分布,将文本表示为主题分布的向量;将词汇特征向量和主题分布向量进行融合,通过一定的计算方法得到文本之间的语义相关度。
三、混合词汇特征和LDA的计算方法1. 词汇特征提取词汇特征提取是语义相关度计算的基础,包括词袋模型、TF-IDF、词嵌入等方法。
在混合词汇特征和LDA的计算方法中,可以使用词袋模型将文本表示为词频向量,也可以利用词嵌入模型将词语转换为稠密的向量表示。
这些词汇特征能够捕捉文本中词语的语义信息,为后续的语义相关度计算奠定了基础。
2. LDA主题模型LDA主题模型是一种用于挖掘文本主题分布的概率生成模型,能够将文本表示为主题分布的向量。
在混合词汇特征和LDA的计算方法中,利用LDA主题模型可以发现文本隐含的语义主题,从而更好地表征文本的语义信息。
3. 混合计算方法混合词汇特征和LDA的计算方法采用了词汇特征向量和主题分布向量的融合策略,常见的计算方法包括余弦相似度、欧氏距离等。
这些方法能够将词汇特征和主题信息进行有效地整合,得到文本之间的语义相关度。
四、实际应用与案例分析混合词汇特征和LDA的语义相关度计算方法在文本相似度计算、信息检索、推荐系统等领域有着广泛的应用。
英语教学术语库Introduction to Online Courses导论adapt/adaptation 改编advancement 前进,进步aim 总目标,教学的基本目的alternative 可供选择的applied linguistics 应用语言学approach 教学路子,教学方针assessment 评估attitude 态度audio material 听力材料autonomy 自主,独立awareness 意识bank 语料库classroom management 课堂组织collaboration 合作mon core 语言共核mon sense 常识munication 交际municative skills 交际技能conceptualize 概念化constructivism 构建主义course content 课程内容cultivate independence 培养独立性custom-built 定制的demonstrate 示范design 设计domain 领域educational experiment 教育实验ELT=English Language Teaching 英语教学evaluation 评价explicit 显形的expertise 专业性,专业知识或技能exploration 探索facilitate 帮助,减少困难feedback 反馈fringe approach 边缘方法,非主流方法general proficiency 综合水平glossary 术语表implicit 隐性的individualized teaching 因材施教information access 得到信息的便利条件in-service training 在职培训insight 见解integrate 结合interest 兴趣intuition 本能issue 问题,议题justify 表明(某人/某事)是正当的learner-centered 以学生为中心的learning effect 学习效果language form 语言形式lesson planning 备课life enhancing 终生有益的linguistic petence 语言能力menu 菜单methodology 教学法methods 教学方法modular structure 由独立单元组成的,可供学生选修的模式motivation 动机multi-perspective 多视角的normal pattern 常规模式objective 具体教学目标operation 操作outside classroom activity 课外活动overlap 重叠pedagogical skill 教学技能policy making 决策practical training 实用的训练practicing teacher 在职教师pre-service training 职前培训principle 原则prior knowledge 已有知识privacy 私下process 过程processor 加工人/器product 产品professionalism 专业技能,职业特性qualification 资格,资历rationale 理论基础recycling 循环reflection 反思relaxing environment 轻松的环境research method 研究方法research projects 科研项目resource sharing 资源共享self-contained 独立的situated learning 有情景的学习skill-getting 获得技能skill-using 使用技能strategies 策略subject 科目Suggestopedia 暗示法supervise 监控,指导syllabus 大纲target language 目的语target user 用户teacher education 教师专业教育teacher training 教师(技能)培训teacher-trainer 培训者teaching aids 教具technical terms 术语technique 技术TEFL=Teaching English as a Foreign Language 英语作为外语的教学法testing 测试The Silent Way 沉默法trainee 受训者trend 倾向tutorial 指导课unknown area 未知领域user-friendly 便于使用的user-orientated 为使用者专门设计的visual material 视觉教材web site 网址web-based instruction 网络教学well-developed 发达的The Teaching of Phonetics语音教学1. allophonic : 音位变体的,语音变体的。
前馈神经网络中的特征嵌入技巧神经网络已经成为了各种机器学习任务中的重要工具,而前馈神经网络(feedforward neural network)是其中最常见的一种结构。
特征嵌入(feature embedding)是神经网络中的一个重要技巧,它能够将原始的高维特征映射到低维空间中,从而更好地表示数据的内在特性。
在本文中,我们将探讨在前馈神经网络中常用的特征嵌入技巧,并分析其在实际应用中的优势和局限性。
一、词嵌入在自然语言处理任务中,词嵌入是一种常用的特征嵌入技巧。
它通过将每个词映射到一个低维向量空间中,从而更好地表示词语之间的语义关系。
Word2Vec 和 GloVe 是两种常用的词嵌入模型,它们能够通过大规模文本语料库学习词语的分布式表示,从而在自然语言处理任务中取得了令人瞩目的成果。
二、图像特征嵌入对于图像数据,特征嵌入同样扮演着重要的角色。
卷积神经网络(Convolutional Neural Network,CNN)在图像识别任务中取得了巨大成功,而其最后一层全连接层的输出通常就是图像的特征向量。
这种特征向量可以被看作是对原始图像特征的嵌入,它能够保留图像的重要信息,并且适合用于后续的分类、检索等任务。
三、特征嵌入在推荐系统中的应用在推荐系统中,特征嵌入同样发挥着关键作用。
传统的协同过滤方法通常依赖于用户-物品的稀疏矩阵,而特征嵌入技巧可以将用户和物品的特征映射到低维空间中,从而更好地表示它们之间的关系。
在实际的推荐系统中,特征嵌入技巧已经被广泛应用,并取得了显著的效果提升。
四、优化技巧除了常见的特征嵌入技巧外,优化技巧也对前馈神经网络中的特征嵌入起着重要的作用。
在训练神经网络时,选择合适的优化器、学习率调度等技巧都能够影响特征嵌入的质量。
同时,正则化、批标准化等方法也能够帮助网络更好地学习特征嵌入,从而提升模型的泛化能力。
五、特征嵌入的局限性虽然特征嵌入技巧在神经网络中取得了巨大成功,但它们也存在一定的局限性。
vertex attributesVertex Attributes: Enhancing the Power of GraphsIntroductionGraph theory is a powerful mathematical tool that has found applications in various fields such as computer science, social networks, genetics, and transportation systems. Graphs consist of vertices (nodes) and edges (connections) that represent relationships between entities. While edges define the connections between vertices, vertex attributes provide additional information about individual vertices, making graphs more expressive and meaningful. This article explores the concept of vertex attributes, their importance, and their applications in different domains.Understanding Vertex AttributesVertex attributes refer to the characteristics or properties associated with each vertex in a graph. These attributes can be numerical or categorical, representing different types of information about the vertices. For example, in a social network graph, vertex attributes can include attributes such as age, gender, location, and occupation. In a transportation network, vertex attributes might include attributes such as the average daily traffic volume or the type of road.Importance of Vertex AttributesVertex attributes significantly enhance the power and flexibility of graph analysis. Here are some key reasons why vertex attributes are important:1. Enriched Information: Vertex attributes provide additional information about vertices, enabling a more comprehensive understanding of the graph's structure and dynamics. By incorporating attributes, graphs become more than just a collection of connections, but also a representation of the attributes associated with the entities being modeled.2. Contextual Analysis: Vertex attributes allow for context-aware analysis. By considering the attributes associated with vertices, researchers can gain insights into the specific characteristics of different entities within a graph. For example, analyzing attributes in a social network graph can revealpatterns of behavior among different age groups or genders.3. Enhanced Visualization: Vertex attributes can be leveraged to create visually appealing and informative graph visualizations. By mapping attributes to different visual properties such as color, size, or shape, it becomes easier to identify specific attributes within a large or complex graph. This improves interpretability and aids in effective data communication.4. Feature Extraction: Vertex attributes can be used as input features in machine learning and data mining algorithms. By leveraging attribute information, it becomes possible to develop predictive models or classification techniques that utilize the attributes associated with vertices to make accurate predictions or identify patterns.Applications of Vertex AttributesThe usage of vertex attributes is extensive across various domains. Here area few examples that highlight the practical applications:1. Social Networks: Vertex attributes are fundamental in social network analysis. They help identify influential individuals, detect communities, and predict user behavior based on attributes such as interests, location, and profession. This information is invaluable for targeted marketing, recommendation systems, and understanding social dynamics.2. Biological Networks: In genetics, vertex attributes can represent gene expression levels, DNA sequence properties, or protein interactions. Analyzing these attributes can aid in understanding biological processes, identifying disease markers, and predicting protein functions.3. Transportation Networks: In transportation systems, vertex attributes can include traffic flow, road accessibility, or pavement conditions. By incorporating these attributes, it becomes possible to optimize routes, identify congestion hotspots, and plan infrastructure improvements.4. Financial Networks: In finance, vertex attributes can represent characteristics such as credit rating, investment portfolio, or transaction history. Analyzing these attributes can facilitate risk assessment, fraud detection, and portfolio optimization.Challenges and Future DirectionsAlthough vertex attributes offer various advantages, there are challenges associated with their usage:1. Data Quality: Ensuring the accuracy, consistency, and completeness ofvertex attribute data can be challenging. In real-world scenarios, data may be missing or contain errors, hampering accurate analysis and interpretation. 2. Scalability: As graph sizes increase, managing and processing extensive vertex attribute data becomes computationally expensive. Developing efficient algorithms capable of handling large-scale attribute-rich graphs is necessary for scalable analysis.Looking ahead, here are some potential future directions for the study and utilization of vertex attributes:1. Attribute Inference: Developing algorithms or techniques to infer missing attributes from available data can help mitigate the data quality challenge and enhance the usability of graphs with incomplete information.2. Dynamic Attribute Analysis: Extending vertex attribute analysis to incorporate temporal or evolving attributes will enable the study of changing network behavior over time. This can be particularly beneficial in domains such as social networks or transportation systems where attributes can change dynamically.ConclusionVertex attributes play a vital role in enhancing the power of graph analysis. They provide additional information about individual vertices, enabling a deeper understanding of graph structures, context-aware analysis, and data-driven decision-making. The practical applications of vertex attributes span across various domains, facilitating the analysis of social, biological, transportation, and financial networks. However, the effective usage of vertex attributes requires addressing data quality issues and developing scalable algorithms. The future holds exciting possibilities for leveraging attributes to infer missing information and incorporating temporal dynamics into graph analysis, further elevating the utility of vertex attributes in various fields.。
《面向深度学习的多模态融合技术研究综述》篇一一、引言随着人工智能技术的快速发展,深度学习已经成为众多领域的重要研究手段。
在多模态信息处理方面,深度学习技术以其强大的特征提取和融合能力,在图像、文本、语音等多种模态数据融合方面取得了显著的成果。
本文旨在全面综述面向深度学习的多模态融合技术的研究现状、方法及挑战,为相关领域的研究者提供参考。
二、多模态融合技术概述多模态融合技术是指将来自不同模态的数据进行融合,以提取更丰富的信息,提高模型的表达能力和泛化能力。
在深度学习框架下,多模态融合技术主要涉及图像、文本、语音等多种模态数据的融合。
这些模态数据在各自的领域内具有独特的优势,通过多模态融合技术,可以实现信息互补,提高模型的准确性和鲁棒性。
三、多模态融合技术研究现状1. 图像与文本融合:图像和文本是两种常见的模态数据。
在深度学习框架下,通过卷积神经网络和循环神经网络的结合,可以实现图像和文本的融合。
这种方法在图像描述、问答系统等领域取得了显著的成果。
2. 语音与文本融合:语音和文本的融合主要涉及语音识别、语音合成和情感分析等领域。
通过深度学习技术,可以将语音数据转化为文本数据,实现语音和文本的融合。
这种方法在智能语音助手、情感分析等方面具有广泛的应用。
3. 多模态联合学习:多模态联合学习是指将不同模态的数据在同一模型中进行联合学习和优化。
这种方法可以充分利用不同模态数据之间的互补性,提高模型的性能。
在深度学习框架下,多模态联合学习主要通过多任务学习、注意力机制等方法实现。
四、多模态融合技术方法及挑战1. 方法:多模态融合技术的方法主要包括早期融合、中期融合和晚期融合。
早期融合主要在数据预处理阶段进行特征提取和融合;中期融合主要在模型中间层进行特征融合;晚期融合则是在模型输出层进行结果融合。
此外,还有基于注意力机制的多模态融合方法,通过给不同模态的数据分配不同的权重,实现信息的有效融合。
2. 挑战:多模态融合技术面临的挑战主要包括数据获取、数据对齐、模型复杂度等问题。
预测蛋白转录因子的方法英文回答:Predicting protein transcription factors is a crucial task in understanding gene regulation and cellular processes. Various computational methods have been developed to identify potential transcription factors based on their sequence and structural features. These methods utilize machine learning algorithms, feature engineering techniques, and domain-specific knowledge to make predictions.One common approach is to train supervised machine learning models using a dataset of known transcription factors and non-transcription factors. The models are trained on a set of features extracted from protein sequences, such as amino acid composition, sequence motifs, and structural properties. Once trained, these models can predict the likelihood of a new protein being a transcription factor.Another approach involves unsupervised learning techniques, such as clustering and dimensionality reduction. These methods identify patterns and relationships withinthe data to group proteins with similar characteristics. By analyzing the clusters or reduced-dimensional representations, researchers can identify potential transcription factors based on their similarity to known factors.Sequence-based methods rely on the assumption that transcription factors share conserved sequence motifs or patterns. These methods scan protein sequences for known transcription factor binding sites or use sequencealignment techniques to identify homologous regions. By identifying these sequence features, they can predict proteins with a high probability of being transcription factors.Structural-based methods consider the three-dimensional structure of proteins to identify potential transcription factors. These methods analyze the protein's shape, surfaceproperties, and interactions with DNA or other proteins. By understanding the structural features associated with transcription factor activity, these methods can predict proteins with the necessary structural characteristics.In addition to these computational methods, experimental approaches, such as chromatin immunoprecipitation sequencing (ChIP-seq) and DNA affinity purification sequencing (DAP-seq), can also be used to identify transcription factors that bind to specific regions of DNA. These experimental techniques providedirect evidence of protein-DNA interactions and can be used to validate predictions made by computational methods.中文回答:预测蛋白质转录因子是一种了解基因调控和细胞过程的关键方法。
多模态域适应综述全文共四篇示例,供读者参考第一篇示例:多模态领域适应旨在将不同模态的数据融合起来,从而提高模型的泛化能力和性能。
在多模态领域适应中,通常会涉及到两种不同类型的域:源域和目标域。
源域通常是已标注的数据集,而目标域则是无标注或较少标注的数据集。
多模态领域适应的目标是训练一个模型,在源域上进行训练,并在目标域上进行泛化,从而实现跨模态数据的学习和迁移。
在多模态领域适应中,存在多种方法和技术来实现跨模态数据的学习和迁移。
一种常见的方法是将不同模态的数据映射到一个公共的特征空间中,以便简化模型训练和泛化的过程。
通过学习共享的特征表示,模型可以更好地捕捉不同模态之间的相关性,从而提高性能和泛化能力。
另一种常见的方法是使用生成对抗网络(GANs)来进行多模态适应。
GANs 是一种用于生成模型的技术,它可以在不同模态之间学习映射和转换。
通过训练一个生成器和一个鉴别器,模型可以学习生成适应于目标域的数据,并优化模态之间的差异,从而提高泛化能力。
除了上述方法外,多模态领域适应还可以结合深度学习、迁移学习、对抗性训练等技术,以实现更好的性能和泛化能力。
多模态领域适应还可以应用于各种领域,如自然语言处理、计算机视觉、音频处理等,以解决不同模态数据间的差异和跨域学习问题。
多模态领域适应是一种非常重要且具有广泛应用价值的技术。
通过整合不同模态的数据,提高模型的泛化能力和性能,可以在许多复杂任务中取得更好的效果。
未来,随着深度学习和人工智能技术的不断发展,多模态领域适应有望在更多领域得到广泛应用,并取得更大的突破和进展。
第二篇示例:多模态域适应是近年来在机器学习领域备受关注的一个热门话题。
随着人工智能技术的快速发展和应用领域的不断拓展,多模态数据处理成为了一个迫切需要解决的问题。
多模态数据通常包含了来自不同传感器或模态的信息,比如文本、图像、音频、视频等,这些数据有着不同的特征表达和数据分布,因此如何有效地将多模态数据整合在一起并利用这些信息进行模型训练成为了一个重要的挑战。
基于深度学习的多模态人体行为识别技术研究在人工智能领域中,多模态人体行为识别技术是一项关键性的研究领域。
通过深度学习模型的引入,多模态人体行为识别技术正在取得令人鼓舞的进展。
本文将探讨基于深度学习的多模态人体行为识别技术的研究进展、应用领域以及挑战。
首先,我们需要明确什么是多模态人体行为识别。
在现实生活中,我们通过多个感官(如视觉、听觉、触觉等)来感知和理解他人的行为。
多模态人体行为识别技术旨在通过结合多种感知方式,如视频、声音、动作等,来准确地识别和理解人体的行为。
深度学习技术在多模态人体行为识别中的应用已经取得了显著的性能提升。
深度学习模型具有较强的表达能力和特征提取能力,能够从原始数据中学习到更高级别的抽象特征。
这一特性使得深度学习模型在多模态数据融合和行为识别方面具有优势。
在多模态人体行为识别中,最常用的深度学习模型之一是卷积神经网络(Convolutional Neural Network,CNN)。
卷积神经网络在图像处理方面具有卓越的性能,可以自动学习和提取图像特征。
通过将卷积神经网络与其他感知模态数据进行融合,可以更准确地识别人体行为。
另一个被广泛应用于多模态人体行为识别的深度学习模型是循环神经网络(Recurrent Neural Network,RNN)。
循环神经网络具有记忆能力,可以处理时序数据,如音频和视频。
通过利用循环神经网络的时间依赖性,可以更好地建模和识别人体的动作序列。
近年来,深度学习模型的不断发展使得多模态人体行为识别在许多应用领域取得了突破。
其中一个应用领域是安防监控。
通过多模态人体行为识别技术,可以实时监测并识别可疑行为,从而提高安全性和防范犯罪。
另外,多模态人体行为识别还可以应用于智能家居、健康监测等领域,为人们的生活带来便利和舒适。
然而,多模态人体行为识别技术仍面临一些挑战。
首先,多模态数据的采集和融合是一个复杂的问题。
不同感知模态的数据可能存在不同的时间和空间维度,如何有效地融合这些数据仍是一个待解决的问题。
随机森林在微生物组学中的应用Random forest is a popular machine learning algorithm that has been widely used in various fields, including microbiomics. It has shown significant potential in analyzing complex microbiome data due to its ability to handle high-dimensional data and capture non-linear relationships between variables. 随机森林是一种流行的机器学习算法,在各个领域都被广泛应用,包括微生物组学。
由于其处理高维数据和捕捉变量之间非线性关系的能力,它在分析复杂微生物组数据方面表现出巨大潜力。
One of the key advantages of using random forest in microbiomics is its ability to handle missing data. In microbiome studies, missingdata is a common issue due to the nature of biological samples. Random forest can effectively deal with missing values by imputing them based on the available data, allowing researchers to make full use of the available information. 使用随机森林在微生物组学中的一个关键优势是其处理缺失数据的能力。
在微生物组研究中,由于生物样本的特性,缺失数据是一个常见问题。
Nonlinear Systems and Dynamics Nonlinear systems and dynamics are an essential aspect of modern science and engineering. These systems are characterized by their complex behavior, which cannot be described by simple linear equations. Nonlinear systems are ubiquitous in nature, from the behavior of living organisms to the dynamics of the universe. Understanding these systems is crucial for developing new technologies, predicting and controlling complex phenomena, and advancing scientific knowledge.One of the most important features of nonlinear systems is their sensitivity to initial conditions. Small changes in the initial conditions of a nonlinear system can lead to significant differences in the system's behavior over time. This phenomenon, known as the butterfly effect, is a fundamental aspect of chaos theory. Chaos theory has broad applications in various fields, including meteorology, economics, and biology. The butterfly effect can be seen in many natural phenomena, such as weather patterns, the growth of populations, and the behavior of ecosystems.Nonlinear systems are also characterized by the presence of feedback loops. Feedback loops are essential for maintaining stability in complex systems. They allow the system to adjust its behavior in response to changes in its environment. Feedback loops can be positive or negative, depending on whether they amplify or dampen the system's response to external stimuli. Positive feedback loops can lead to runaway behavior, while negative feedback loops can stabilize the system.Another important aspect of nonlinear systems is their ability to exhibit oscillatory behavior. Oscillations are a fundamental feature of many natural phenomena, from the beating of a heart to the oscillation of a pendulum. Nonlinear systems can exhibit a wide range of oscillatory behavior, from simple periodic oscillations to chaotic oscillations. Understanding the dynamics of oscillatory systems is crucial for developing new technologies, such as electronic circuits, and for predicting and controlling complex phenomena, such as the spread of diseases.Nonlinear systems also play a crucial role in the study of complex networks. Complex networks are ubiquitous in nature and society, from the networks of neurons in the brain to the networks of social interactions between individuals.Understanding the dynamics of complex networks is crucial for developing new technologies, such as the internet, and for predicting and controlling complex phenomena, such as the spread of information or the emergence of new social behaviors. Nonlinear dynamics plays a central role in the study of complex networks, as it allows us to understand how the behavior of individual nodes inthe network affects the behavior of the network as a whole.In conclusion, nonlinear systems and dynamics are a crucial aspect of modern science and engineering. These systems are characterized by their complex behavior, sensitivity to initial conditions, presence of feedback loops, ability to exhibit oscillatory behavior, and importance in the study of complex networks. Understanding the dynamics of nonlinear systems is crucial for developing new technologies, predicting and controlling complex phenomena, and advancingscientific knowledge. Nonlinear dynamics is a rapidly growing field with broad applications in various fields, including physics, biology, engineering, andsocial science. As such, it is an essential area of study for anyone interested in understanding the world around us.。
随着人工智能技术的不断发展,自然语言生成成为了人们关注的焦点之一。
前馈神经网络作为一种重要的机器学习模型,在自然语言生成领域也扮演着重要的角色。
在本文中,我们将探讨如何使用前馈神经网络进行自然语言生成,从基本原理到应用实践,带您深入了解这一话题。
一、前馈神经网络的基本原理前馈神经网络是一种最基础、最简单的神经网络模型。
它由输入层、隐层和输出层组成,每一层包含多个神经元,每个神经元与上一层的每个神经元都有连接。
在前馈神经网络中,信息是从输入层经过隐层传递到输出层的,不存在循环连接。
这种结构使得前馈神经网络适合处理各种各样的输入数据,并且在自然语言生成领域表现出色。
二、前馈神经网络在自然语言生成中的应用在自然语言生成中,前馈神经网络可以被用来完成多种任务,例如文本摘要、对话系统、文章生成等。
以文本摘要为例,前馈神经网络可以通过学习大量的文章和摘要数据,来理解文章的主题和内容,然后生成简洁准确的摘要。
对话系统中,前馈神经网络可以通过学习大量的对话数据,来生成流畅自然的对话内容。
在文章生成中,前馈神经网络可以通过学习大量的文章数据,来生成具有逻辑连贯性和可读性的文章内容。
三、如何训练前馈神经网络进行自然语言生成要训练前馈神经网络进行自然语言生成,首先需要准备大量的文本数据。
这些数据可以是文章、对话、摘要等形式的文本,数据量越大越有利于网络的学习和生成。
其次,需要对文本数据进行预处理,包括分词、去除停用词、标点符号等。
然后,需要将文本转换成神经网络可以理解和处理的数据形式,例如词向量、词袋等。
接下来,可以选择合适的前馈神经网络模型进行训练,如多层感知机(MLP)、卷积神经网络(CNN)等。
在训练过程中,需要调整网络的超参数,例如学习率、批大小、隐藏层神经元数等,以达到最佳的训练效果。
最后,可以使用生成器来生成自然语言内容,如生成摘要、对话等。
四、如何提高前馈神经网络的自然语言生成效果在实际应用中,为了提高前馈神经网络的自然语言生成效果,可以采取一些策略和方法。
Predicting Feature Interactions in Component-Based SystemsJudith Stafford and Kurt WallnauSoftware Engineering InstituteCarnegie Mellon UniversityPittsburgh,PA,USA+1412-268-5051+1412-268-3265jas@ kcw@ABSTRACTSoftware component technologies support assembly of systems from binary component implementations that may have been created in isolation from one and another.While these technologies provide assistance in wiring components together they fail to provide support for predicting the quality and behavior of configurations of components prior to actual system composition.We believe that all quality attributes manifested at runtime are emergent properties of component interactions, and hence arise as a consequence of planned,or unplanned,interactions among component features.In this paper we discuss the affinities among software architecture,software component technology,compositional reasoning,component property measurement,and component certification for the purpose of mastering component feature interaction,and for developing component technologies that support compositional reasoning,and that guarantee that design-time reasoning assumptions are preserved in deployed component assemblies.1.IntroductionSoftware component technologies provide a means for composing systems quickly from precom-piled parts.Technologies such as CORBA and COM have been developed to support composition of components that are created in isolation,perhaps by different people in different environments and in different languages.However,current component-based technologies do not support reasoning about system quality attributes,e.g.,performance,reliability,and safety.The quality of a software system is,in part,a function of the degree to which its features interact in predictable ers view systems from the perspective of system features whereas developers view systems in terms of functional decomposition into components.The former is a view in the problem domain;the latter is associated with the solution domain.Turner et al.study the relationship between these two domains as they define a conceptual framework for feature engineering[23].Quality attrib-utes such as performance,reliability,and safety are emergent properties of patterns of interaction in an assembly of components.Ultimately,all such patterns of interaction depend upon one or more features. Therefore,many critical system quality attributes are expressions of component feature interaction.In-deed,a failure to achieve system quality attributes may be attributable to unexpected feature interaction. We suggest that predicting and ensuring system-level quality attributes and controlling component fea-ture interactions are closely related.Moreover,we contend that the solution to both problems(to the In Proceedings of the Workshop on Feature Interaction of Composed Systems,in conjunction with the15th European Conference on Object-Oriented Programming,Budapest,Hungary,June2001.extent they are distinct)will be found in the form of compositional rmally,composi-tional reasoning posits that if we know something about the properties of two components,c1and c2,then we can define a reasoning function f such that f(c1,c2)yields a property of an assembly comprisingc1and c2.Many would argue that compositional reasoning is the holy grail of software engineering:a noblebut ultimately futile quest for an unobtainable objective.This argument usually has as its unspokenpremise that only a fully formal and rigorous f(c1,c2)will do.If we accept this premise,then progresswill indeed be slow.Instead,we suggest that it is possible to adopt a more incremental approach that in-volves many levels of formality and rigor.To begin,we suggest that three interlocking questions mustbe answered:1.What system quality attributes are developers interested in predicting?2.What analysis techniques exist to support reasoning about these quality attributes,and what compo-nent properties do they require?3.How are these component properties specified,measured,and certified?Since compositional reasoning ultimately depends upon the types of component properties that canbe measured,these questions are interdependent.Therefore,answers to these questions are mutuallyconstraining.Further,answering these questions will bean ongoing process:new prediction models will require Array new and/or improved component measures,which will inturn lead to more accurate prediction,and to demand forbetter or additional prediction models.The objective of our work in predictable assemblyfrom certifiable components(PACC)is to demonstratehow component technology can be extended to supportcompositional reasoning.To do this,PACC integratesideas from research in the areas of software architecture,trusted components,and software component technology.The rest of the paper is organized as follows:We be-gin by describing two areas of related work,architecture-based analysis and component certification.The formerdeals with issues antecedent to compositional reasoning,the latter with issues of component trust and specification.We then describe a reference model for using component technology to link compositional reasoningwith component certification,and close with a summary of our position.2.Background and Related WorkThe ideas of architectural analysis and component certification are not new but,to the best of ourknowledge,their integration is.In this section we describe prior work in these areas and discuss theirrelationship to our work on predictable assembly.2.1Architectural AnalysisSoftware architecture-based analysis provides a foundation for reasoning about system completeness and correctness early in the development process and at a high level of abstraction.To date,research in the area has focused primarily on the use of architecture description languages(ADLs)as a substrate for analysis algorithms.The analysis algorithms that have been developed for these languages have,in gen-eral,focused on correctness properties,such as liveness and safety[2,10,14,16].However,other types of analysis are also appropriate for use at the architecture level and are currently the focus of research projects.Examples include system understanding[13,21,27],performance analysis[3,20],and archi-tecture-based testing[4,24].One still unresolved challenge for architecture technology is to bridge the gap between architectural abstractions and implementation.Specification refinement is one approach that seeks to prove properties of the relationship between abstract and more concrete specifications,ei-ther across heterogeneous design notations[8]or homogeneous notations[17].2.2Component CertificationThe National Security Agency(NSA)and the National Institute of Standards and Technology (NIST)used the trusted computer security evaluation criteria(TCSEC),a.k.a.“Orange Book.1”as the basis for the Common Criteria2,which defines criteria for certifying security features of components. Their effort was not crowned with success,at least in part because it defined no means of composing criteria(features)across classes of component.The Trusted Components Initiative(TCI)3is a loose af-filiation of researchers with a shared heritage in formal specification of interfaces.Representative of TCI is the use of pre/post conditions on APIs[15].This approach does support compositional reasoning, but only about a restricted set of behavioral properties of assemblies.Quality attributes,such as secu-rity,performance,availability,and so forth,are beyond the reach of these assertion languages.Voas has defined rigorous mathematical models of component reliability based on statistical approaches to testing [26],but has not defined models of composing reliability mercial component vendors are not inclined to formally specify their component interfaces,and it is not certain that it would be cost ef-fective for them to do so.Shaw observed that many features of commercial components will be discov-ered only through use.She proposed component credentials as an open-ended,property-based interface specification[19].A credential is a triple<attribute,value,knowledge>,which asserts that a component has an attribute of a particular value,and that this value is known through some means.Credentials re-flect the need to address component complexity,incomplete knowledge,and levels of confidence(or trust)in what is known about component properties,but do not go beyond notational concepts.There-fore,despite many efforts,fundamental questions remain.What does it mean to trust a component?Still more fundamental:what ends are served by certifying(or developing trust)in these properties?3.PACC ApproachThe PACC approach is based on two fundamental premises:first,that system quality attributes are emergent properties adhere to patterns of interaction among components,and,second,that software component technology provides a means of enforcing predefined and designed interaction patterns,thus 1/tpep/library/tcsec/index.html2/cc/3/facilitating the achievement of system quality attributes by construction.3.1Premises of PACCThe study of software architectural styles supports the first premise.An architectural style is a recur-ring design pattern,usually expressed as a set of component types and constraints on their allowable in-teractions[1,7].Architectural styles provided the first link between structural design constraints and system properties.For example,the pipe and filter style yields systems that can be easily restructured. However,the link between system-level quality attribute and architectural style is informal and subjec-tive.To better formalize this link,Klein et al.have developed attribute-based architectural style (ABAS)[11].Informally,ABAS associates one or more attribute reasoning frameworks with an archi-tectural style.An attribute reasoning framework consists of a response variable,one or more stimuli variables,and an analysis model that links stimuli to response.ABAS is a key foundation for PACC.It provides the conceptual foundation for defining and analyzing the properties of assemblies(the response variables).It also provides the link between system properties and component properties(stimuli vari-ables).Component technology provides the means to realize ABAS concepts in software and,in fact,the concept of architectural style is quite amenable to a component-based interpretation[4].In or view,a component technology can play an analogous role to predictable assembly that structured programming languages and compilers played for structured programming—it limits the freedom of designers(pro-grammers)so that the resulting design(program)is more readily analyzed.In one of many possible ex-amples,the Enterprise JavaBeans(EJB)specification defines component types,such as session and en-tity beans,4and constraints on how they interact with one another,with client programs,and with the runtime environment.However serendipitous it may be,it is clear that EJB specifies an architectural style.It is our thesis that analogous component technologies can be defined that go still further to in-clude the additional style constraints needed to support ABAS-based reasoning.The result will be com-ponent technologies that support design-time quality attribute analysis,and guarantee,by construction, that the assumptions underlying these analyses are preserved in an assembly of components.At this point in our research,we are noncommittal about what a prediction-enabled component tech-nology should look like.However,we postulate the outlines of such a technology with the following reference model.3.2A Conceptual Reference Model for PACCComponent technologies comprise four levels of abstraction.We generally depict this as a layered reference model,but omit the graphic here for brevity.We describe this model beginning with the con-crete and work our way up to the abstract:–Assembly.The most concrete level of our reference model comprises a set of components whose resources(features)have been bound in such a way as to enable their interaction.–Assembly specification.At this level we find component specifications in place of components, and specifications of their interactions.It is at this level of abstraction that attribute analysis and 4Components are denoted as beans in EJB.prediction occur.–Types.At this level we specify component and connector types and their features,thereby defininga vocabulary to support design,that is,assembly specification and attribute analysis and prediction.–Metatypes.At this level one defines what it means to be a component type,or a connector type,or an assembly type,and define any constraints that must hold for all types to enable attribute predic-tion.3.3Reference Model InstantiationsWe have explored two complementary approaches to instantiate the PACC reference model:one that assumes that attribute reasoning models will be integrated into a component technology,and one that assumes the converse.We refer to the first as a component-centric instantiation,and the second as an architecture-centric instantiation.We have validated both approaches with(admittedly simple)proofs of feasibility.For the component-centric instantiation we used the WaterBeans[18]technology augmented with latency prediction.For the architecture-centric instantiation we used a security ABAS for attribute reasoning,and a Web-based enterprise system for the component technology(from the case study found in[25]).Table1summarizes the mapping of these instantiations to the reference model.Table1:Complementary Instantiation sModel Level Component Centric Architecture CentricMetatypes Properties shared by all WaterBeans compo-nents,e.g.,typed ports,connectors,and con-nection rules.Defined the latency attributeand associated it with the componentmetatype.A simple,behavior-less ADL of compo-nents,interactions,assemblies,and their properties.Analogous to a simplified meta-model of UML collaboration diagrams.Types Component type definitions for CD audiosampling and wave manipulation.Types in-troduced the additional Boolean property foraperiodic or periodic behavior,and,if peri-odic,the execution period.A quantitativemodel for end-to-end latency is also definedhere.Types that represent basic-level categories for analysis of security properties, e.g., peers,trusted computing base,key,crypto-graphic provider,threat agent,data asset. Each category is mapped to an element in the simple ADL.Specification A topology of audio components annotatedwith their latency attributes;assembly latencyprediction occurred here.Patterns of interaction comprising only basic categories,where patterns exhibit desired security rmal rules of attribute preserving pattern refinement.Assembly A benchmarked assembly,allowing compari-son of predicted versus actual assembly la-Pattern refinements where each basic cate-gory has been refined to(bound to)a moretency.specific category,ultimately grounding inspecific component and interaction features.4.Closing ThoughtsIn closing,we take the position that the identification of feature interactions in complex systems is closely tied to analysis of system-level quality attributes.Quality attributes of systems are a product of properties associated with both the components that comprise a system and their patterns of interaction. Designing systems as assemblies of components based on architectural styles produces systems that are analyzable by design.We are exploring the application compositional reasoning techniques to assem-blies of components in order to predict properties of systems.It is our belief that this line of work can support the identification of the potential for feature interaction before actual system assembly.5.AcknowledgementsThis work was supported by the United States Department of Defense.6.References1.G.D.Abowd,R.Allen and D.Garlan,Formalizing Style to Understand Descriptions of Software Architec-ture,ACM Transactions on Software Engineering and Methodology,Vol.4,No.4,October,1995,pp.319-364.2.R.Allen and D.Garlan,A Formal Basis for Architectural Connection,ACM Transactions on Software Engi-neering and Methodology,Vol.6,No.3,July.1997,pp.213-249.3.S.Balsamo,P.Inverardi and C.Mangano,An Approach to Performance Evaluation of Software Architec-tures,Proceedings of the1998Workshop on Software and Performance,October.1998,pp.77-84.4. F.Bachman,L.Bass,C.Buhman,ella-Dorda,F.Long,J.Robert,R.Seacord and K.Wallnau,VolumeII:Technical Concepts of Component-Based Software Engineering,Technical Report CMU/SEI-2000-TR-08, Software Engineering Institute,Carnegie Mellon University,Pittsburgh,PA.5. A.Bertolino,P.Inverardi,H.Muccini and A.Rosetti,An Approach to Integration Testing Based on Archi-tectural Descriptions,Proceedings of the1997International Conference on Engineering of Complex Com-puter Systems,September.1997,pp.77-84.6. E.Dijkstra,Structured Programming,Software Engineering,Concepts and Techniques,J.Buxton et al.(eds.),Van Nostrand Reinhold,1976.7. D.Garlan and M.Shaw,An Introduction to Software Architecture,Advances in Software Engineering andKnowledge Engineering,V.Ambriola and G.Tortora(eds.),World Scientific,1993.8. F.Gilham,R.Reimenschneider,V.Stavridou,Secure Interoperation of Secure Distributed Databases:An Ar-chitecture Verification Case Study,Proceedings of World Congress on Formal Methods(FM’99),Vol.I, LNCS1708,pp.701-717,1999,Springer-Verlag,Berlin.9.G.T.Heineman and W.T.Councill(eds.),Component-Based Software Engineering:Putting the Pieces To-gether,Addison-Wesley,Reading,Massachusetts,2001.10.P.Inverardi,A.L.Wolf,and D.Yankelevich,Static Checking of System Behaviors Using Derived Compo-nent Assumptions,ACM Transaction on Software Engineering and Methodology,Vol.9,No.3,July.2000, pp.238-272.11.M.Klein and R.Kazman,Attribute-Based Architectural Styles,Technical Report CMU/SEI-99-TR-022,Software Engineering Institute,Carnegie Mellon University,Pittsburgh,PA.12.M.Klein,T.Ralya,B.Pollak,R.Obenza and M.G.Harbour,A Practitioner’s Handbook for Real-TimeAnalysis,Kluwer Academic Publishers,1993.13.J.Kramer and J.Magee,Analysing Dynamic Change in Software Architectures:A Case Study,Proceedingsof the4th International Conference on Configurable Distributed Systems,May1998,pp.91-100.14.J.Magee,J.Kramer,and D.Giannakopoulou,Analysing the Behaviour of Distributed Software Architec-tures:A Case Study,Proceedings of the5th IEEE Workshop on Future Trends of Distributed Computing Sys-tems,October.1997,pp.240-247.15.B.Meyer,Object-Oriented Software Construction,Second Edition,Prentice Hall,London,1997.16.G.Naumovich,G.S.Avrunin,L.A.Clarke,and L.J.Osterweil,Applying Static Analysis to Software Archi-tectures,Proceedings of the6th European Software Engineering Conference Held Jointly with the5th ACM SIGSOFT Symposium on Foundations of Software Engineering Lecture Notes in Computer Science,No.1301,Springer-Verlag,1997,pp.77-93.17.J.Phillips and B.Rumpe,Refinement of Information Flow Architectures,Proceedings of the1st IEEE Inter-national Conference on Formal Engineering Models,pp.203-212,1997.18.D.Plakosh,D.Smith and K.Wallnau,Builder’s Guide for WaterBeans Components,Technical ReportCMU/SEI-99-TR-024,Software Engineering Institute,Carnegie Mellon University,Pittsburgh,PA.19.M.Shaw,Truth vs Knowledge:The Difference Between What a Component Does and What We Know ItDoes,Proceedings of the8th International Workshop on Software Specification and Design,March1996. 20.B.Spitznagel,D.Garlan,Architecture-Based Performance Analysis,Proceedings of the1998Conference onSoftware Engineering and Knowledge Engineering,San Francisco,California,1998.21.J.A.Stafford and A.L.Wolf,Architecture-Level Dependence Analysis in Support of Software Maintenance,Proceedings of the Third International Workshop on Software Architecture,November.1998,pp.129-132. 22.C.Szyperski,Component Software Beyond Object-Oriented Programming,Addison-Wesley,Boston,Massa-chusetts and ACM Press,1998.23.C.R.Turner,A.Fuggetta,vazza,and A.L.Wolf,A Conceptual Basis for Feature Engineering,Journalof Systems and Software,Vol.49,No.1,December1999,pp.3-15.24.M.E.R.Vieira,S.Dias and D.J.Richardson,Analyzing Software Architectures with Argus-I,Proceedings ofthe2000International Conference on Software Engineering,June2000,pp.758-761.25.K.Wallnau,S.Hissam and R.Seacord,Building Systems from Commercial Components,Addison WesleyLongman,To Appear July,2001.26.J.Voas and J.Payne,Dependability Certification of Software Components,Journal of Systems and Software,No.52,2000,pg.165-172.27.J.Zhao,Using Dependence Analysis to Support Software Architecture Understanding,New Technologies onComputer Software,September1997,pp.135-142.8。