《结构化学》(7-10章)习题答案
- 格式:doc
- 大小:1.10 MB
- 文档页数:29
《结晶学基础》习题答案目录第7章答案----------------------------------------------------------------------1第8章答案---------------------------------------------------------------------12第9章答案---------------------------------------------------------------------20第10章答案------------------------------------------------------------------251《结晶学基础》第七章习题答案7001 单晶:一个晶体能基本上被一个空间点阵的单位矢量所贯穿。
多晶:包含许多颗晶粒,这些晶粒可能为同一品种,也可能不同品种,由于各晶粒在空间取向可能不同,不能被同一点阵的单位矢量贯穿。
7002 (D) 7004 简单立方; Cs +和Cl -; 4C 37005 (1) 立方F (2) A 和 B (3) 4 个 (4) 4 组 (5) 3a (6) a /2 7007 4n 个 A, 8n 个 B, n 为自然数。
7010 d 111= 249 pm ; d 211= 176 pm ; d 100= 432 pm 7011 六方; D 3h 70127013 依次为立方,四方,四方,正交,六方。
7014 立方 P ,立方 I ,立方 F ; 四方 P ,四方 I 。
7015 旋转轴,镜面,对称中心,反轴; 旋转轴,镜面,对称中心,反轴,点阵,螺旋轴,滑移面;n =1,2,3,4,6; 32个; 七个晶系; 14种空间点阵型式; 230个空间群。
7016 (1) 四方晶系 (2) 四方 I (3) D 4 (4) a =b ≠c , α=β=γ=90° 7017 (1) 单斜晶系,单斜 P (2) C 2h (3) C 2, m , i 7018 (2a ,3b ,c ):(326); (a ,b ,c ):(111); (6a ,3b ,3c ):(122); (2a ,-3b ,-3c ):(322)。
第七章 过渡金属化合物1. 对于四方配位场(7.1.1), 当点电荷与中心的距离不等, 但符合|±x |<|±y |时, 则中心原子的p 轨道和d 轨道的能级图7.3(a )及(b )将发生什么变化? 请根据你的直觉和简单分析做出最合理的判断, 画出能级图.解:当点电荷距中心距离不等时, 将导致在正四方配位场下的二维不可约表示进一步分裂为两个一维不可约表示,即 p x , p y , 和 d xz , d yz 轨道进一步分裂.若|±x |<|±y |, 则p x 将比p y 感受道更强的来至点电荷的排斥作用, 从而导致p x 能量高于p y .d xz , d yz 轨道的能量也将发生分裂, 但是由于点电荷不在轨道的最大值方向, 感受的排斥相对于p x , p y 要小. 故能级的分裂值较小, d xz 较高, d yz 较低. 能级图如下:2. 反式四配位配合物 t -MA 2B 2, 如[P t C l 2B r 2]2-及P t (NH 3)2B r 2的几何对称性为D 2h ,请以[P t C l 2B r 2]2-为对象, 给出其中的八个对称操作, 并将中心原子的原子轨道:{s , p x ,p y ,p z ,d z 2, d x 2-y 2,d xy ,d xz ,d yz }按D 2h 不可约表示分类;若按D 2h 的子群D 2分类, 结果又如何?(提示:参考特征标表)解:D 2h 的八个对称操作为 I, C 2(x ), C 2(y ), C 2(z ), i , σ(xy ), σ(yz ), σ(zx ). 特征标表为:s 轨道在所有对称操作下不变, 属于全对称表示A g .p x 轨道在I,C 2(x ), σ(xy ), σ(zx )等四个对称操作下不变, 在其余四个对称操作下反号. 属于B 1u .p y 轨道在I,C 2(y ), σ(xy ), σ(yz )等四个对称操作下不变, 在其余四个对称操作下反号. 属于p xp yp z原子p x , p y , p zdx 2-y 2dxz dz2原子ddxydyzB 2u ;p z 轨道在I, C 2(z ), σ(xz ), σ(yz )等四个对称操作下不变, 在其余四个对称操作下反号. 属于B 2u ;d z 2, d x 2-y 2轨道在在所有对称操作下不变, 属于全对称表示A g ;d xy 轨道在I,C 2(z ), i ,σ(xy )等四个对称操作下不变, 在其余四个对称操作下反号. 属于B 3g ;d xz 轨道在I,C 2(y ),i , σ(xz )等四个对称操作下不变, 在其余四个对称操作下反号. 属于B 2g ; d yz 轨道在I,C 2(x ),i , σ(yz )等四个对称操作下不变, 在其余四个对称操作下反号. 属于B 1g .若按D 2群分类, 所有不可约表示将不再按对称性分为 “g ” 和 “u ”, 其它与群D 2h 下的结果相同.3. 顺式四配位配合物c -MA2B2也是平面构型, 它属于什么点群? 请将中心原子的9个价原子轨道按这一点群分类. 解: 平面构型的顺式四配位配合物c -MA2B2属于C 2v 点群.本题可以采用上题同样的分析方法得到各原子轨道所属的不可约表示, 也可参见表5.1所给出的每一个不可约表示的基函数的性质, 直接得到分类结果: s , p z , d z 2, d x 2-y 2属于A 1; d xy 属于A 2; p x , d xz 属于B 1; p y , d yz 属于B 2.4. 请应用中心原子轨道为基的旋转操作的特征标公式(7-10)式,检验表7.2所列特征标数值是否正确无误; 然后由(4-40)式求出各原子轨函(l =0,1,2,3,4)在O h 配位场的约化(分裂)结果.解:根据(7-10)式, 角量子数为l 的原子轨道在绕z 轴旋转角度a 的旋转操作作用下, 特征标为:2s i n)21s i n ()(αααχ+=l ls 轨道, l =0, 12sin 21sin2sin)210sin()(==+=αααααχl,即对于所有不可约表示,特征表皆为1.p 轨道, l =1, 2sin23sin 2sin)211sin()(αααααχ=+=l所以, 321cos2123cos 23lim 21sin23sinlim)(00=⋅⋅=⋅⋅=→→ααααχααI l12121s i n2123s i n)(,03221s i n3223s i n)(,12s i n 23s i n )(432====-==ππχππχππχC C C l l l,说明表7.2中关于s , p 的两行特征标的值是正确的. 关于d , f , g 的特征标的计算过程略. 下面以f 轨道为例, 求解其在O h 群下的分裂.由于f 轨道属于 “u ”类, 所分裂出的不可约表示也将属于“u ”类,)]1(13)1(16)1(16118711[241)()(24111=-⨯⨯+-⨯⨯+-⨯⨯+⨯⨯+⨯⨯==∑R R n l RA Auuχχ1)]1(13)1()1(6)1()1(6118711[241)()(24122=-⨯⨯+-⨯-⨯+-⨯-⨯+⨯⨯+⨯⨯==∑R R n l R A Auuχχ)]1(23)1(06)1(061)1(8721[241)()(241=-⨯⨯+-⨯⨯+-⨯⨯+⨯-⨯+⨯⨯==∑R R n l RE E uuχχ1)]1()1(3)1(16)1()1(6108731[241)()(24111=-⨯-⨯+-⨯⨯+-⨯-⨯+⨯⨯+⨯⨯==∑R R n l RT Tuuχχ1)]1()1(3)1()1(6)1(16108731[241)()(24122=-⨯-⨯+-⨯-⨯+-⨯⨯+⨯⨯+⨯⨯==∑R R n l RT Tuuχχ所以f 分裂为A 2u +T 1u +T 2u .同样方法可以计算s , p , d , g 在O h 群下的分裂情况.5. 在四方配位场中, 中心原子能级(l =0, 1, 2, 3)将按D 4h 群的不可约表示类别约化(分裂)为s =a 1g , p =a 2u +e ud =a 1g +b 1g +b 2g +e g ,f =b 1u +a 2u +b 2u +2e u请按子群D 4计算各类旋转操作的特征标,证明以上结果.(提示:根据D 4h 及D 4特征标表, 仿照题4的计算处理.)解:s , p , d , f 轨道在D 4下的特征标利用(7-10)式计算得到:在D 4中约化得,Γ(s ) =a 1, Γ (p )=a 2+eΓ (d )=a 1+b 1+b 2+e , Γ (f )=b 1+a 2+b 2+2e在D 4h 中考虑原子轨道的 “g ”, “u ”对称性得:Γ (s )= a 1g , Γ (p )= a 2u +e uΓ (d )= a 1g +b 1g +b 2g +e g , Γ (f )= b 1u +a 2u +b 2u +2e u6. 当八面体场很强时, 单电子态(轨函)需按O h 群不可约表示分类, 请问组态 s 2, s 1p 1及p 2应如何表示, 相应的谱项是什么?解: 首先根据表7.2中所列s , p 轨道的特征标求出上述直积表示的O 群各操作的特征标为.再利用O 群的特征标表造出投影算符, 计算上述可约表示的约化结果. 最后得到,Γ(s2)=A1, Γ(s1p1)=T1, Γ(p2)=A1+T1+T2根据s, p轨道的“g”, “u”对称性, 再利用对称性, g×g=g, g×u=u, u×u=g, 就得到在O h 群下的约化结果:Γ(s2)=A1g, Γ(s1p1)=T1u, Γ(p2)=A1g+T1g+T2g7.[VC l6]2-的光谱吸收位置在13800c m-1, [VF6]2-的吸收峰在20120c m-1,请根据配位场理论指认它们属于何种谱项之间的跃迁: 2S+1Γ(基态)→ 2S+1Γ(激发态); 并计算出相应的∆值. 解: [VC l6]2-和[VF6]2-中, 中心原子V的d电子组态为3d1, 基态的对称性属于2t2g,激发态为2e, 光谱项反映从2t2g到2e g的跃迁.g由于上述体系中只有一个d电子,计算组态能量时不涉及库仑积分J和交换积分K, ∆值就是吸收光谱的光子能量: [VC l6]2- ∆值为13800c m-1, [VF6]2- ∆值为20120c m-1.8.正八面体三价钒配离子在可见紫外区有两个吸收峰,数据收集如下(单位:c m-1)[V(CN)6]3-22 200, 28 600;[V(NCS)6]3-16 700, 24 000;[VF6]3-14 800, 23 000;[VC l6]3-11 200, 18 020;请根据弱场方案指认, 求出∆, 排出光谱化学序列; 若采用强场方案, 指认应作何种变动? 解: 上述体系中心原子V的d的组态为d2, 基态谱相为3T1g,, 可见光区的低能量谱带属于3T→3T2g跃迁. 根据弱场方案, 3T1g,3T2g的谱项能量(在表7.4中给出), 以∆为单位分别为1g(-3/5, 1/5), 故上述体系的∆值为低能量谱带的能量乘以(5/4). 分别计算为:[V(CN)6]3-27 750;[V(NCS)6]3-20 870;[VF6]3-18 500;[VC l6]3-14 000.光谱序列为CN- > NC S> F-> C l-.若按强场方案, 3T1g,3T2g的谱项能量能量差即为∆.无需乘以系数(5/4), 所指认光谱化学序列不变.9.请按弱场方案(表7.4和图7.6( c)) ,指认下列光谱数据(单位:c m-1, 求出∆, 排出光谱化学序列.[V(H2O)]2+12 350, 18 500; [V(NCS)6]4-15 500, 22 000; [VC l6]4-7 200, 12 000; [V(NH3)6]2+14 800, 21200; [V(CN)6]4-22 300, 27 700.解:上述体系中心原子V的d的组态为d3, 基态谱相为4A2g,, 可见光区的低能量谱带属于4A→4T2g跃迁. 根据弱场方案, 4A2g,4T2g的谱项能量(在表7.4中给出), 以∆为单位分别2g为(-6/5, -2/5), 故上述体系的∆值为低能量谱带的能量乘以(5/4). 分别计算为:[V(H2O)]2+15 438; [V(NCS)6]4-19 375; [VC l6]4-9 000;[V(NH3)6]2+18 500; [V(CN)6]4-27 875.光谱序列为: CN- > NCS-> NH3 > H2O > C l-.10.请根据7.3.3的简单方法, 求出d5八面体配合物的高自旋和低自旋的能量差. 已知[F e(H2O)6]3+是高自旋, 你能否确定[F e(CN)6]3-究竟是高自旋还是低自旋?解: d5八面体配合物的高自旋组态为(t2g3e g2), 低自旋组态为(t2g5),E(t2g3e g2)=5E0+3(-2/5)∆+2(3/5)∆+10J-10K=5 E0+10J-10KE(t 2g 5)=5E 0+5(-2/5)∆ +10J -4K=5 E 0- 2∆ +10J -4K 两者能量差为E(t 2g 3e g 2) - E(t 2g 5)=2 ∆-6K.由于CN -在光谱化学序列中排在H 2O 的前面, [F e (CN)6]3-的∆要比[F e (H 2O)6]3+的大, 故如果[F e (H 2O)6]3+是高自旋, 则[F e (CN)6]3-一定是高自旋.11. 请通过你的计算, 检验表7.8的d 6与d 7八面体配合物的高自旋和低自旋能量即δ表示式. 解: d 6八面体配合物的高自旋组态为(t 2g 4e g 2), 低自旋组态为(t 2g 6),E(t 2g 4e g 2)=6E 0+4(-2/5)∆+2(3/5)∆+15J -10K=6 E 0-( 2/5) ∆ +15J -10K E(t 2g 6)=6E 0+6(-2/5)∆ +10J -6K=6 E 0-(12/5)∆ +15J -6K两者能量差为E(t 2g 4e g 2) - E(t 2g 6)=2 ∆-4K. d 7八面体配合物的高自旋组态为(t 2g 5e g 2), 低自旋组态为(t 2g 6 e g 1),E(t 2g 5e g 2)=7E 0+5(-2/5)∆+2(3/5)∆+21J -11K=7 E 0-(4/5) ∆ +21J -11K E(t 2g 6 e g 1)=7E 0+6(-2/5)∆ +(3/5)∆+21J -9K=7 E 0-(9/5)∆ +21J -9K 两者能量差为E(t 2g 4e g 2) - E(t 2g 6)= ∆-2K.12. 五配位配合物有两种稳定几何构型(图7.11(a )与(b)), 请根据图7.10中D 3h 和C 4v 能级模式讨论d 6离子为高自旋或低自旋的可能性.解: 由图7.10中所示的d 轨道在D 3h 和C 4v 下的能级分裂的情况容易判断, 在具有D 3h 对称性的双三角锥型配合物种d 6离子为高自旋, 而具有C 4v 对称性的四方锥型配合物种d 6离子为低自旋. 轨道电子填充情况如图所示:13. 在八面体配离子的J ahn -T eller 形变(O h -D 4h )中, 试简单地采用能级图7.12来分析预测, [VC l 6]2- (d 1), [VC l 6]3- (d 2), 和 [C r C l 6]4- (d 4) 的形变模式: 拉长还是压扁? 解:[VC l 6]2- (d 1) 根据图7.12, 若实现拉长形变, 一个电子填充在能量最低的e g 能级上, 总能量降低δ1/3; 若实现压扁形变, 一个电子填充在能量最低的b 2g 能级上总能量降低2δ1/3.从能量的角度看, 应当是压扁形变.[VC l 6]3-(d 2) 若实现拉长形变, 2个电子填充在能量最低的e g 能级上, 总能量降低2δ1/3; 若实现压扁形变, 2个电子填充在能量最低的b 2g 能级上总能量降低4δ1/3.从能量的角度看, 应当是压扁形变. 而且, 若实现拉长形变, 两个填充在能量最低的e g 能级上, 两个电子当取自旋相同的构型, 这样的体系仍是不稳定的还会发生畸变.[C r C l 6]4- (d 4) 若实现拉长形变, 4个电子填充在能量最低的e g 能级上, 总能量降低4δ1/3; 若实现压扁形变, 2个电子填充在能量最低的b 2g 能级上, 另2个电子填充在e g 能级上, 两者的能量升高与降低相抵, 总能量降低2δ1/3. 从能量的角度看, 应当是拉长形变.D3hC 4v14. 按照分子轨道的观点, 正八面体配离子的价电子数等于12+n, n为d电子数. 试由能级图7.15给出[VC l6]2- , [VC l6]3- , [C r C l6]4- , [F e(CN)6]3-,[C o(NH3)6]3+ ,[C o(CN)6]4-, [Ni(H2O)6]2+的基组态.解: 根据能级图7.15,所给出的能级序列, 计算出价电子数后, 可以直接得到基组态.现计算如下:n价电子数基组态[VC l6]2- 1 13 (a1g)2(t1u)6(e g)4(t2g)1[VC l6]3- 2 14 (a1g)2(t1u)6(e g)4(t2g)2[C r C l6]4- 4 16 (a1g)2(t1u)6(e g)4(t2g)4[F e(CN)6]3- 5 17 (a1g)2(t1u)6(e g)4(t2g)5[C o(NH3)6]3+ 6 18 (a1g)2(t1u)6(e g)4(t2g)6[C o(CN)6]4-7 19 (a1g)2(t1u)6(e g)4(t2g)6(e g*)1[Ni(H2O)6]2+ 8 20 (a1g)2(t1u)6(e g)4(t2g)6(e g*)215. 在正八面体配合物的能级序列(图7.15)中, t2g是非键轨道, e g*也可以近似看作非键(d z2,d x2-y2)分子轨道,因此, t2g→e g*的电子跃迁属于中心原子d→d跃迁, 不会伴随M,L之间的电荷转移;但下列跃迁: t2g→a1g*, e g*→t1u*以及e g→t2g, t1u→t2g将伴随电荷转移. 请分别指出它们之中那些属于M→L转移, 那些属于L→M的转移.解:判断电荷跃迁的方向主要根据所涉及的两个分子轨道的组成成分来判断.t2g, e g*是非键轨道, 基本由中心原子的d轨道组成. 电子由它们向其它分子轨道跃迁, 将导致M→L转移, 如t2g→a1g*, e g*→t1u*;t1u, e g是成键轨道,主要由配体原子的轨道组成. 电子由它们向其它分子轨道跃迁, 将导致L→M的转移. 如e g→t2g, t1u→t2g.16.请列举出10个单核配合物满足18电子规则, 再举出5个反例,它们均具有稳定的闭壳组态,表现为反磁性.解:满足18电子规则的例子有:[C o(NH3)6]3+,[C o(H2O)6]3+,[C o(CN)6]3-,[Zn(NH3)4]2+[F e(CN)6]4-,[F e(NCS)6]4-F e(CO)5, Ni(CO)4, F e(C5H5)2, C r(C6H6)2.不满足18电子规则的例子有:[Ni(C5H5N)4]2+, [Cu(NH3)4]2+,17.对于正四面体配合物ML4, [TiC l4, [NiC l4]2-等, 请通过群论方法,造出能级图; 指出与CH4的区别何在?解: 四个配体的轨道在T d群下分解为A1+T2, 若将四个配体原子按图5.7的CH4分子中的H原子的位置放置于立方体的相对的四个顶点, 中心原子按C原子的位置放置于立方体的中心. 造出配体的群轨道同5-8b式,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛d c b a zy z t t t a 212121212121212121212121212121212221φφφφ中心原子的轨道按对称性分类为s 属于A 1, p 属于T 2, d z 2, d x 2-y 2属于E, d xy ,d yz ,d xz 属于T 2.上述中心原子的轨道按对称性与配体原子的群轨道组合成分子轨道 能级示意图为:与CH 4相比, 中心原子除了s , p 轨道外, 还有d 轨道参加成键. HOMO -LUMO 的能隙变得很小. 从而导致可见光区的吸收光谱带的出现.配体轨道中心离子轨道配合物分子轨道3t。
结构化学章节习题(含答案!)第⼀章量⼦⼒学基础⼀、单选题: 13x lπ为⼀维势箱的状态其能量是:( a ) 22229164:; :; :; :8888h h h hA B C D ml ml ml ml2、Ψ321的节⾯有( b )个,其中( b )个球⾯。
A 、3B 、2C 、1D 、03、⽴⽅箱中2246ml h E ≤的能量范围内,能级数和状态数为( b ).A.5,20B.6,6C.5,11D.6,174、下列函数是算符d /dx的本征函数的是:( a );本征值为:( h )。
A 、e 2xB 、cosXC 、loge xD 、sinx 3E 、3F 、-1G 、1H 、2 5、下列算符为线性算符的是:( c )A 、sine xB 、d 2/dx 2 D 、cos2x6、已知⼀维谐振⼦的势能表达式为V = kx 2/2,则该体系的定态薛定谔⽅程应当为( c )。
A [-m 22η2?+21kx 2]Ψ= E ΨB [m 22η2?- 21kx 2]Ψ= E Ψ C [-m 22η22dx d +21kx 2]Ψ= E Ψ D [-m 22η-21kx 2]Ψ= E Ψ 7、下列函数中,22dxd ,dx d的共同本征函数是( bc )。
A cos kxB e –kxC e –ikxD e –kx28、粒⼦处于定态意味着:( c )A 、粒⼦处于概率最⼤的状态B 、粒⼦处于势能为0的状态C 、粒⼦的⼒学量平均值及概率密度分布都与时间⽆关系的状态.D 、粒⼦处于静⽌状态9、氢原⼦处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz 2 (5)ψ322 ,问哪些状态既是M 2算符的本征函数,⼜是M z 算符的本征函数?( c )A. (1) (3)B. (2) (4)C. (3) (4) (5)D. (1) (2) (5) 10、+He 离⼦n=4的状态有( c )(A )4个(B )8个(C )16个(D )20个 11、测不准关系的含义是指( d ) (A) 粒⼦太⼩,不能准确测定其坐标; (B)运动不快时,不能准确测定其动量(C) 粒⼦的坐标的动量都不能准确地测定;12、若⽤电⼦束与中⼦束分别作衍射实验,得到⼤⼩相同的环纹,则说明⼆者( b ) (A) 动量相同 (B) 动能相同 (C) 质量相同13、为了写出⼀个经典⼒学量对应的量⼦⼒学算符,若坐标算符取作坐标本⾝,动量算符应是(以⼀维运动为例) ( a )(A) mv (B) i x ??h (C)222x ?-?h14、若∫|ψ|2d τ=K ,利⽤下列哪个常数乘ψ可以使之归⼀化:( c )(A) K (B) K 2 (C) 1/K15、丁⼆烯等共轭分⼦中π电⼦的离域化可降低体系的能量,这与简单的⼀维势阱模型是⼀致的,因为⼀维势阱中粒⼦的能量( b )(A) 反⽐于势阱长度平⽅ (B) 正⽐于势阱长度 (C) 正⽐于量⼦数16、对于厄⽶算符, 下⾯哪种说法是对的( b )(A) 厄⽶算符中必然不包含虚数 (B) 厄⽶算符的本征值必定是实数(C) 厄⽶算符的本征函数中必然不包含虚数17、对于算符?的⾮本征态Ψ( c )(A) 不可能测量其本征值g . (B) 不可能测量其平均值.(C) 本征值与平均值均可测量,且⼆者相等18、将⼏个⾮简并的本征函数进⾏线形组合,结果( b )(A) 再不是原算符的本征函数(B) 仍是原算符的本征函数,且本征值不变 (C) 仍是原算符的本征函数,但本征值改变19. 在光电效应实验中,光电⼦动能与⼊射光的哪种物理量呈线形关系:( B )A .波长B. 频率C. 振幅20. 在通常情况下,如果两个算符不可对易,意味着相应的两种物理量( A)A .不能同时精确测定B .可以同时精确测定C .只有量纲不同的两种物理量才不能同时精确测定A .λ=E /h B. λ=c /ν C. λ=h /p 22. 将⼏个⾮简并的本征函数进⾏线形组合,结果( A) A .再不是原算符的本征函数B .仍是原算符的本征函数,且本征值不变C .仍是原算符的本征函数,但本征值改变23. 根据能量-时间测不准关系式,粒⼦在某能级上存在的时间τ越短,该能级的不确定度程度ΔE (B)A .越⼩ B. 越⼤ C.与τ⽆关24. 实物微粒具有波粒⼆象性, ⼀个质量为m 速度为v 的粒⼦的德布罗意波长为:A .h/(mv)B. mv/hC. E/h25. 对于厄⽶算符, 下⾯哪种说法是对的 ( B )A .厄⽶算符中必然不包含虚数B .厄⽶算符的本征值必定是实数C .厄⽶算符的本征函数中必然不包含虚数 26. 对于算符?的⾮本征态Ψ (A ) A .不可能测得其本征值g. B .不可能测得其平均值.C .本征值与平均值均可测得,且⼆者相等 27. 下列哪⼀组算符都是线性算符:( C )A . cos, sinB . x, logC . x d dx d dx,,22⼆填空题1、能量为100eV 的⾃由电⼦的德布罗依波波长为( 122.5pm )2、函数:①xe ,②2x ,③x sin 中,是算符22dxd 的本征函数的是( 1,3 ),其本征值分别是( 1,—1;)3、Li 原⼦的哈密顿算符,在(定核)近似的基础上是:(()23213212232221223222123332?r e r e r e r e r e r e mH +++---?+?+?-=η)1.计算波长为600nm(红光),550nm(黄光),400nm(蓝光)和200nm(紫光)光⼦的能量。
北师大 结构化学 课后习题 第一章 量子理论基础习题答案1 什么是物质波和它的统计解释?参考答案:象电子等实物粒子具有波动性被称作物质波。
物质波的波动性是和微粒行为的统计性联系在一起的。
对大量粒子而言,衍射强度(即波的强度)大的地方,粒子出现的数目就多,而衍射强度小的地方,粒子出现的数目就少。
对一个粒子而言,通过晶体到达底片的位置不能准确预测。
若将相同速度的粒子,在相同的条件下重复多次相同的实验,一定会在衍射强度大的地方出现的机会多,在衍射强度小的地方出现的机会少。
因此按照波恩物质波的统计解释,对于单个粒子,ψψ=ψ*2代表粒子的几率密度,在时刻t ,空间q 点附近体积元τd 内粒子的几率应为τd 2ψ;在整个空间找到一个粒子的几率应为 12=ψ⎰τd 。
表示波函数具有归一性。
2 如何理解合格波函数的基本条件? 参考答案合格波函数的基本条件是单值,连续和平方可积。
由于波函数2ψ代表概率密度的物理意义,所以就要求描述微观粒子运动状态的波函数首先必须是单值的,因为只有当波函数ψ在空间每一点只有一个值时,才能保证概率密度的单值性;至于连续的要求是由于粒子运动状态要符合Schrödinger方程,该方程是二阶方程,就要求波函数具有连续性的特点;平方可积的是因为在整个空间中发现粒子的概率一定是100%,所以积分⎰τψψd *必为一个有限数。
3 如何理解态叠加原理? 参考答案在经典理论中,一个波可由若干个波叠加组成。
这个合成的波含有原来若干波的各种成份(如各种不同的波长和频率)。
而在量子力学中,按波函数的统计解释,态叠加原理有更深刻的含义。
某一物理量Q 的对应不同本征值的本征态的叠加,使粒子部分地处于Q 1状态,部分地处于Q 2态,……。
各种态都有自己的权重(即成份)。
这就导致了在态叠加下测量结果的不确定性。
但量子力学可以计算出测量的平均值。
4 测不准原理的根源是什么? 参考答案根源就在于微观粒子的波粒二象性。
结构化学习题答案结构化学习题答案在学习过程中,结构化学习题是一种常见的形式,它能够帮助学生巩固知识,提高学习效果。
然而,有时候我们可能会遇到一些难题,不知道如何解答。
本文将为大家提供一些常见结构化学习题的答案,希望能够对大家的学习有所帮助。
一、化学方程式的平衡在化学方程式的平衡问题中,我们需要根据反应物和生成物的摩尔比例来确定化学方程式的系数。
例如,对于以下反应方程式:C6H12O6 + 6O2 → 6CO2 + 6H2O我们需要平衡方程式,使得反应物和生成物的原子数目相等。
根据反应物和生成物的原子数目,我们可以得到以下平衡方程式:C6H12O6 + 6O2 → 6CO2 + 6H2O这样,我们就平衡了方程式。
二、离子反应方程式的写法在离子反应方程式的写法中,我们需要根据反应物和生成物的离子式来写出方程式。
例如,对于以下反应方程式:NaCl + AgNO3 → AgCl + NaNO3我们需要根据反应物和生成物的离子式,写出离子反应方程式:Na+ + Cl- + Ag+ + NO3- → AgCl + Na+ + NO3-这样,我们就写出了离子反应方程式。
三、氧化还原反应方程式的平衡在氧化还原反应方程式的平衡问题中,我们需要根据氧化还原反应的电子转移来确定方程式的系数。
例如,对于以下反应方程式:Cu + AgNO3 → Cu(NO3)2 + Ag我们需要平衡方程式,使得电子数目相等。
根据电子转移的规律,我们可以得到以下平衡方程式:2Cu + 2AgNO3 → Cu(NO3)2 + 2Ag这样,我们就平衡了方程式。
四、化学计量问题在化学计量问题中,我们需要根据反应物的摩尔比例来计算生成物的量。
例如,对于以下反应方程式:2H2 + O2 → 2H2O我们需要根据反应物的摩尔比例,计算生成物的量。
假设我们有4 mol的H2,那么根据反应物的摩尔比例,我们可以计算出生成物的量为4 mol的H2O。
五、酸碱中和反应的计算在酸碱中和反应的计算中,我们需要根据反应物的摩尔比例来计算生成物的量。
结构化学复习题一、选择填空题第一章量子力学基础知识1.实物微粒和光一样,既有性,又有性,这种性质称为性。
2.光的微粒性由实验证实,电子波动性由实验证实。
3.电子具有波动性,其波长与下列哪种电磁波同数量级?(A)X射线(B)紫外线(C)可见光(D)红外线4.电子自旋的假设是被下列何人的实验证明的?(A)Zeeman (B)Gouy (C)Stark (D)Stern-Gerlach5.如果f和g是算符,则 (f+g)(f-g)等于下列的哪一个?(A)f2-g2; (B)f2-g2-fg+gf; (C)f2+g2; (D)(f-g)(f+g)6.在能量的本征态下,下列哪种说法是正确的?(A)只有能量有确定值;(B)所有力学量都有确定值;(C)动量一定有确定值;(D)几个力学量可同时有确定值;7.试将指数函数e±ix表示成三角函数的形式------8.微观粒子的任何一个状态都可以用来描述;表示粒子出现的概率密度。
9.Planck常数h的值为下列的哪一个?(A)1.38×10-30J/s (B)1.38×10-16J/s (C)6.02×10-27J·s (D)6.62×10-34J·s 10.一维势箱中粒子的零点能是答案: 1.略. 2.略. 3.A 4.D 5.B 6.D 7.略 8.略 9.D 10.略第二章原子的结构性质1.用来表示核外某电子的运动状态的下列各组量子数(n, 1, m, m s)中,哪一组是合理的?(A)2,1,-1,-1/2;(B)0,0,0,1/2;(C)3,1,2,1/2;(D)2,1,0,0。
2.若氢原子中的电子处于主量子数n=100的能级上,其能量是下列的哪一个:(A)13.6Ev; (B)13.6/10000eV; (C)-13.6/100eV; (D)-13.6/10000eV;3.氢原子的p x状态,其磁量子数为下列的哪一个?(A)m=+1; (B)m=-1; (C)|m|=1; (D)m=0;4.若将N原子的基电子组态写成1s22s22p x22p y1违背了下列哪一条?(A)Pauli原理;(B)Hund规则;(C)对称性一致的原则;(D)Bohr理论5.B原子的基态为1s22s2p1,其光谱项为下列的哪一个?(A) 2P;(B)1S; (C)2D; (D)3P;6.p2组态的光谱基项是下列的哪一个?(A)3F;(B)1D ;(C)3P;(D)1S;7.p电子的角动量大小为下列的哪一个?(A)h/2π;(B)31/2h/4π;(C)21/2h/2π;(D)2h/2π;8.采用原子单位,写出He原子的SchrÖdinger方程。
结构化学习题答案结构化学是化学学科中的一个重要分支,它研究原子、分子和晶体的结构以及它们的性质。
以下是一些结构化学习题的答案示例:1. 原子轨道的能级顺序:- 根据量子力学理论,原子轨道的能级顺序通常遵循以下顺序:1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f。
2. 分子的几何构型:- 例如,水分子(H2O)的几何构型是弯曲的,因为氧原子与两个氢原子形成共价键,并且氧原子上有两对孤对电子。
3. 分子的极性:- 一个分子是否具有极性取决于其分子内电荷分布的对称性。
如果电荷分布不均匀,分子就是极性的。
例如,二氧化碳(CO2)分子是非极性的,因为它是线性的,电荷分布对称。
4. 晶体的点群对称性:- 晶体的点群对称性是指晶体结构中原子排列的对称性。
例如,立方晶体具有高对称性,其点群为O_h。
5. 分子轨道理论:- 分子轨道理论用于描述分子中电子的分布。
根据这一理论,原子轨道可以组合形成分子轨道,这些分子轨道可以是成键的、非键的或反键的。
6. X射线衍射分析:- X射线衍射是一种用于确定晶体结构的技术。
当X射线与晶体相互作用时,它们会被晶体中的原子散射,产生衍射图案,这个图案可以用来推断晶体的原子排列。
7. 化学键的类型:- 化学键主要包括共价键、离子键和金属键。
共价键是由两个原子共享电子对形成的,离子键是由电子从一个原子转移到另一个原子形成的,而金属键是由金属原子之间的电子云形成的。
8. 分子间力:- 分子间力包括范德华力、氢键和偶极-偶极相互作用。
这些力影响分子的物理性质,如沸点和溶解性。
9. 晶体缺陷:- 晶体缺陷包括点缺陷、线缺陷(如位错)和面缺陷(如晶界)。
这些缺陷可以影响晶体的物理和化学性质。
10. 配位化合物的结构:- 配位化合物是由中心金属原子或离子与配体通过配位键连接形成的。
结构化学课后习题答案结构化化学课后习题答案一、化学键与分子结构1. 选择题a) 正确答案:D解析:选择题中,选项D提到了共价键的形成是通过电子的共享,符合共价键的定义。
b) 正确答案:B解析:选择题中,选项B提到了离子键的形成是通过电子的转移,符合离子键的定义。
c) 正确答案:C解析:选择题中,选项C提到了金属键的形成是通过金属原子之间的电子云重叠,符合金属键的定义。
d) 正确答案:A解析:选择题中,选项A提到了氢键的形成是通过氢原子与高电负性原子之间的吸引力,符合氢键的定义。
2. 填空题a) 正确答案:共价键解析:填空题中,根据问题描述,两个非金属原子之间的键称为共价键。
b) 正确答案:离子键解析:填空题中,根据问题描述,一个金属原子将电子转移到一个非金属原子上形成的键称为离子键。
c) 正确答案:金属键解析:填空题中,根据问题描述,金属原子之间的电子云重叠形成的键称为金属键。
d) 正确答案:氢键解析:填空题中,根据问题描述,氢原子与高电负性原子之间的吸引力形成的键称为氢键。
二、有机化学1. 选择题a) 正确答案:C解析:选择题中,选项C提到了烷烃是由碳和氢组成的,符合烷烃的定义。
b) 正确答案:D解析:选择题中,选项D提到了烯烃是由含有一个或多个双键的碳原子组成的,符合烯烃的定义。
c) 正确答案:B解析:选择题中,选项B提到了炔烃是由含有一个或多个三键的碳原子组成的,符合炔烃的定义。
d) 正确答案:A解析:选择题中,选项A提到了芳香烃是由芳香环结构组成的,符合芳香烃的定义。
2. 填空题a) 正确答案:醇解析:填空题中,根据问题描述,含有羟基(-OH)的有机化合物称为醇。
b) 正确答案:醚解析:填空题中,根据问题描述,含有氧原子连接两个碳原子的有机化合物称为醚。
c) 正确答案:酮解析:填空题中,根据问题描述,含有羰基(C=O)的有机化合物称为酮。
d) 正确答案:酯解析:填空题中,根据问题描述,含有羧基(-COO)的有机化合物称为酯。
第七章 晶体的点阵结构和晶体的性质1. (东北师大98)简答(1)讨论晶体的周期性结构用什么理论,(2)在A 1,A 2,A 3型密堆积中,哪种空间利用率低。
解:(1) 用点阵理论(2) 空间利用率:A 1(74.05%), A 2(68.02%), A 3(74.05%) 2.东北师大98(1)用0.579Ǻ的X 衍射得某立方晶体衍射指标为111的衍射角为5.1度,计算该晶体的晶胞参数a.(2)钨属于立方体心结构, 每个晶胞可以摊到几个钨原子, 分数坐标为什么?若钨的晶胞的大小为a=3.165Ǻ, 求其原子半径。
解:(1) 2 d hkl sin θ = λ222222222222sin () () 44sin h k l a h k l aλλθθ=++=++a=5.641 Ǻ(2) 每个晶胞可以摊到2个钨原子,分数坐标为(0, 0, 0)(1/2, 1/2, 1/2) ,W 原子半径: 4 1.37r r === Ǻ 3. 东北师大99已知CsCl 晶体中正负离子半径分别为1.69 Ǻ 和1.81 Ǻ ,试确定该晶体的配位数和结构形式。
解:0.732 < r +/r -=0.9337 <1.0, 配位数为8,配位多面体为立方体,体心为Cs+, 顶点为Cl 。
晶体的结构形式为简单立方。
4.东北师大2000某金属单晶为立方P 晶格, 在戴维逊-革末实验中测得该晶体(100)晶面上的一级反射型衍射的布拉格角为30。
,若已知晶格常数a=250pm ,求金属半径和加速电子电压。
解:立方P, r=a/2=125 pm, d hkld 100=250/1=250 pm,2d h*k*l* sin θ=n λ 2d hkl sin θ=λ 2×250×sin30。
=λ λ=250 pm2k =E 2p ev p m==h p λ== 5.(清华)S 8分子可形成单斜S 和正交S, 用X 射线衍射法(CuK 2线)测得某正交晶体的参数a=1048pm,b=1292pm,c=2455pm, λ=1.542 Ǻ, 已知密度为2.07g/cm 3,原子质量S=32, 求(a)每个晶胞中S 8的分子数目,(b)计算224衍射的Bragg 角θ。
第一章 8. )(10088.510593.5891031149811--⨯=⨯⨯==sc λν)(10093.510996.5881031149822--⨯=⨯⨯==scλν)(10696.110593.58911~16911--⨯=⨯==mλν)(10698.110996.58811~16922--⨯=⨯==mλν)(075.203101002.610088.510626.61323143411---⋅=⨯⨯⨯⨯⨯⨯==mol kJ h E ν )(275.203101002.610093.510626.61323143422---⋅=⨯⨯⨯⨯⨯⨯==molkJ h E ν9.)(2102νλυ-=chc m)(10130.8101.9)10464.510300103(10626.62)(215311498340----⋅⨯=⨯⨯-⨯⨯⨯⨯=-=sm mch m νλυ )(10398.710130.8101.9125531---⋅⋅⨯=⨯⨯⨯==s m kg m p m υ )(1096.810398.710626.6102534m ph ---⨯=⨯⨯==λ10. (1))(10626.601.01010626.6221034m m h ph ---⨯=⨯⨯===υλ(2))(1087.2106.11001067.1210626.6212193734m mTh ph ----⨯=⨯⨯⨯⨯⨯⨯===λ(3))(1075.2106.1102101.9210626.622121953134m meVh mTh ph ----⨯=⨯⨯⨯⨯⨯⨯⨯====λ11. 子弹:)(1063.6%10100001.010626.63434m m h x --⨯≥⨯⨯⨯=∆⋅≥∆υ 可忽略花粉:)(1063.6%1011010626.6201334m m h x ---⨯≥⨯⨯⨯=∆⋅≥∆υ可忽略电子:)(1027.7%1010101.910626.6963134m m h x ---⨯≥⨯⨯⨯⨯=∆⋅≥∆υ不能忽略只有不确定关系具有实际意义12. 证明:λ=∆x 因为h m x h p x x ≥∆⋅∆⇒≥∆∆υ υλυ==⋅=∆⋅≥∆m p m h xm h13. meV m eV 2212=⇒=υυυυ1.0=∆10001060219.11091095.021.010626.621.0193034⨯⨯⨯⨯⨯⨯==∆⋅≥∆---Vm h m h x e υ)(1088.310m -⨯= 对成像没有影响 若用π4h p x x ≥∆∆)(1009.311m x -⨯≥∆14.(1)imximxem edx d ⋅-=222)( 是 本征值:2m -(2)x x dx d sin )(sin 22-= 是 本征值:1-(3)2)(2222=+y x dx d 不是(4))2(])[(22x a eex a dxd xx-+=--- 不是16. φφφφim im im meim iee d d i-=⋅= 是。
01.量子力学基础知识【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J·mol -1为单位的能量。
解:811412.99810m s 4.46910s 670.8m cνλ−−×⋅===× 41711 1.49110cm 670.810cm νλ−−===××%3414123-1 -16.62610J s 4.46910 6.602310mol 178.4kJ mol A E h N sν−−==×⋅××××=⋅【1.2】 实验测定金属钠的光电效应数据如下:波长λ/nm 312.5 365.0 404.7 546.1 光电子最大动能E k /10-19J 3.41 2.56 1.95 0.75 作“动能-频率”,从图的斜率和截距计算出Plank 常数(h)值、钠的脱出功(W)和临阈频率(ν0)。
解:将各照射光波长换算成频率,并将各频率与对应的光电子的最大动能E k 列于下表:v λ/nm 312.5 365.0 404.7 546.1v /1014s -19.59 8.21 7.41 5.49E k /10-19J 3.41 2.56 1.95 0.75 由表中数据作图,示于图1.2中E k /10-19Jν/1014g-1图1.2 金属的kE ν−图由式 0k hv hv E =+推知0k kE E h v v v Δ==−Δ即Planck 常数等于图的斜率。
选取两合适点,将和v 值带入上式,即可求出h 。
例如: k E −v k E ()()19341412.708.50 1.0510 6.601060010J h J s s −−−×==×−×图中直线与横坐标的交点所代表的即金属的临界频率,由图可知,。
一、练习题1.立方势箱中的粒子,具有的状态量子数,是A. 211 B. 231 C. 222 D. 213。
(参考答案)解:(C)。
2.处于状态的一维势箱中的粒子,出现在处的概率是多少?A.B.C.D.E.题目提法不妥,以上四个答案都不对。
(参考答案)解:(E)。
3.计算能量为100eV光子、自由电子、质量为300g小球的波长。
( )(参考答案)解:光子波长自由电子300g小球。
4.根据测不准关系说明束缚在0到a范围内活动的一维势箱中粒子的零点能效应。
(参考答案)解:。
5.链状共轭分子在波长方向460nm处出现第一个强吸收峰,试按一维势箱模型估计该分子的长度。
(参考答案)解:6.设体系处于状态中,角动量和有无定值。
其值是多少?若无,求其平均值。
(参考答案)解:角动量角动量平均值7.函数是不是一维势箱中粒子的一种可能的状态?如果是,其能量有没有确定值?如有,其值是多少?如果没有确定值,其平均值是多少?(参考答案)解:可能存在状态,能量没有确定值,8.求下列体系基态的多重性。
(2s+1) (1)二维方势箱中的9个电子。
(2)二维势箱中的10个电子。
(3)三维方势箱中的11个电子。
(参考答案)解:(1)2,(2)3,(3)4。
9.在0-a间运动的一维势箱中粒子,证明它在区域内出现的几率。
当,几率P怎样变?(参考答案)解:10.在长度l的一维势箱中运动的粒子,处于量子数n的状态。
求 (1)在箱的左端1/4区域内找到粒子的几率?(2)n为何值,上述的几率最大?(3),此几率的极限是多少?(4)(3)中说明什么?(参考答案)解:11.一含K个碳原子的直链共轭烯烃,相邻两碳原子的距离为a,其中大π键上的电子可视为位于两端碳原子间的一维箱中运动。
取l=(K-1)a,若处于基组态中一个π电子跃迁到高能级,求伴随这一跃迁所吸收到光子的最长波长是多少?(参考答案)解:12.写出一个被束缚在半径为a的圆周上运动的质量为m的粒子的薛定锷方程,求其解。
结构化学习题集答案习题选答习题11.2 600nm(红), 3.31310-19J, 199KJ2mol-1550nm(黄), 3.61310-19J, 218KJ2mol-1400nm(蓝), 4.97310-19J, 299KJ2mol-1200nm(紫), 9.93310-19J, 598KJ2mol-11.3 6.51310-34J2s1.4 (1)100eV电⼦ 122.6pm(2)10eV中⼦ 9.03pm(3)1000m/sH原⼦0.399nm1.5 ⼦弹~10-35m, 电⼦~10-6m1.6 Dx=1.226310-11m<< 10-6m1.8 (2),(4) 是线性厄⽶算符.1.9 (1) exp(ikx)是本征函数, 本征值ik.(2), (4)不是.1.101.12 , 本征值为±√B1.131.16 当两算符可对易, 即两物理量可同时测定时,式⼦成⽴.1.18 (1) (2) = l/2, (3)=01.19 0.4l~0.6l间, 基态出现⼏率0.387,第⼀激发态出现⼏率0.049.1.20 (1) 基态n x=n y=n z=1 ⾮简并(2) 第⼀激发态211, 121, 112 三重简并(3) 第⼆激发态221, 122, 212 三重简并1.23 λ=239nm.习题22.1 (1) E0=-13.6eV, E1=-3.4eV.(2) =3a0/2 ,=02.4 ψ1s波函数在r=a0, 2a0处⽐值为2.718ψ2在r=a0, 2a0处⽐值为7.389.2.6 3d z2 , 3d xy各有2个节⾯: 3d z2是2个圆锥节⾯, 3d xy是XZ,YZ⾯.2.9 (1) 2p轨道能量为-3.4eV ⾓动量为(2) 离核平均距离为5a0.(3) 极⼤值位置为4a0.2.102.11 ; He+ a0/2, F8+ a0/9.2.13(1)径向分布函数最⼤值离核距离a0/3,(2)电⼦离核平均距离为a0/2.(3) 因⽆电⼦相关, 2s, 2p态能量相同., 磁矩为2.15 轨道⾓动量为12.17 (1) N 原⼦价电⼦层半充满, 电⼦云呈球状分布.(2)基态谱项为4S, ⽀项为4S3/2(3)2p23s1光谱项: p2—3P,1D,1S, s1—2S, 偶合后4P, 2P, 2D, 2S. 2.19 Al S K Ti Mn基态谱项2P 3P 2S 3F 6S光谱⽀项2P1/23P22S1/2 3F2 6S5/22.20 C(2p13p1): 3D, 1D, 3P, 1P, 3S, 1S.Mg(3s13p1): 3P,1PTi(3d34s1): 5F,3F,5P,3P,3H,1H,3G,1G,3F,1F,3D,1D,3P,1P2.21 3d84s2态含3F4谱项2.22 I1=5.97eV , I2=10.17eV .习题33.2 CO: C∞, ∞个σv ;CO2: C∞, ∞个C2, ∞个σv, σh.3.3 顺丁⼆烯: C2, σv, σv/;反丁⼆烯: C2, σh, I3.4 (1)菱形: C2, C2', C2”, σh " D2h;(2) 蝶形: C2, σv, σv' "C2v(3) 三棱柱: C3,3C2,3σv, σh" D3h;(4) 四⽅锥: C4, 4σv" C4v(5) 圆柱体: C∞, ∞个C2, ∞个σv, σh. "D∞h(6) 五棱台: C5,5σv" C5v3.53.6 E,{C31, C32},{C2,C2',C2”},σh, {S31,S32}, {σv, σv', σv”}3.73.8 苯D6h; 对⼆氯苯D2h ; 间⼆氯苯C2v; 氯苯C2v; 萘D2h3.9 SO2 C2v, P4 T d, PCl5 D3h, S6(椅式) D3d,S8 D4d, Cl2 D∞h3.10 ①D2h②C2v ③D3h④C2v⑤D2h3.14 CoCl4F23+分⼦有2种异构体, 对⼆氟异构体为D4h, 邻⼆氟异构体为C2v3.15 ①C s②C2v③C s④C4v⑤D2h⑥C2v⑦C i⑧C2h3.16 (1) C60 I h⼦群: D5d, D5, C5v, C5, D3h, D3, C3v, C3等.(2) ⼆茂铁D5d,⼦群D5, C5v等.(3)甲烷T d, ⼦群C3v, C3, D2d, D2等.3.17 ①C3O2直线形D∞h②双氧⽔C2③NH2NH2鞍马型C2V ④F2O V形C2v ⑤NCCN 线形D∞h 3.18 8.7(邻), 5.0310-30C﹒m (间), 0 (对)3.20 ①~⑧均⽆旋光性; ①、③船式、⑦、⑧有偶极矩, 其余⽆。
结构化学课后习题答案结构化学是化学学科中的一个重要分支,它主要研究原子、分子以及晶体的结构和性质。
课后习题是帮助学生巩固和深化课堂知识的重要手段。
以下是一些结构化学课后习题的答案示例,请注意,这些答案仅为示例,具体习题的答案需要根据实际的习题内容来确定。
习题一:原子轨道的基本概念1. 描述s、p、d、f轨道的基本形状和特征。
- s轨道:球形,对称性高,只有一个轨道。
- p轨道:哑铃形,有两个主瓣,对称性较低,有三个轨道。
- d轨道:具有更复杂的形状,如四叶草形等,有五个轨道。
- f轨道:形状更为复杂,有七个轨道。
2. 解释原子轨道的量子数。
- 主量子数n:决定电子层,n越大,电子离原子核越远。
- 角量子数l:决定轨道形状,l的不同值对应不同的轨道类型。
- 磁量子数m:决定轨道在空间的取向。
- 自旋量子数s:描述电子自旋状态。
习题二:分子几何结构1. 描述价层电子对互斥理论(VSEPR)的基本原理。
- VSEPR理论基于电子对的排斥作用,认为电子对会尽可能地分布在原子周围,以减少排斥力,从而形成稳定的分子几何结构。
2. 根据VSEPR理论,预测CO2分子的几何形状。
- CO2分子中,碳原子有两个双键氧原子,没有孤对电子,根据VSEPR理论,分子呈线性结构。
习题三:晶体结构1. 解释晶体的布拉维格子和晶系。
- 布拉维格子:描述晶体中原子排列的几何结构,有简单立方、体心立方、面心立方等。
- 晶系:根据晶体的对称性,晶体可以分为立方晶系、四方晶系、六方晶系等。
2. 描述面心立方(FCC)晶体的特点。
- FCC晶体中,每个原子周围有12个相邻原子,形成紧密堆积结构,具有较高的对称性和密堆积度。
习题四:化学键1. 区分离子键、共价键和金属键。
- 离子键:由正负离子之间的静电吸引形成。
- 共价键:由原子间共享电子对形成,常见于非金属元素之间。
- 金属键:由金属原子与自由电子云之间的相互作用形成。
2. 描述氢键的特点及其在分子间作用中的影响。
习题选解第一章1.1 E = 1.988⨯10-18Jp = 6.626⨯10-27kg ⋅m ⋅s -1 1.2 h = 6.442⨯10-34J ⋅s w = 5.869⨯10-19J ν0 = 9.11⨯1014s -1 1.4 光子能量21.24eV ;电子动能 5.481eV 1.5 70.8pm1.9 (1)1/4;(2)2.63⨯10-5;(3)2/l ;(4)01.10 3个,E 1 = h 2/(8ml 2);E 2 = 4h 2/(8ml 2);E 3 = 9h 2/(8ml 2) 1.13 301.5 nm 1.16 0.14 nm 1.17 86.2nm1.20 (1)无,l /2;(2)无,0;(3)有,2224n h l ;(4)有,2228n h ml 1.21 (1)是,能量无确定值,22513h E mL =;(2) 是,能量无确定值,2297104h E mL = 1.22 (1) 2222k E mr =,i k φψ, k =0, ±1, ±2, …;(2) 136pm 1.23 (1) h 2/(8ml 2);(2) l /2,2/l ;(3)01.24 n x =3, n y =1, n z =2;n x =3, n y =2, n z =1;n x =2, n y =1, n z =3;n x =2, n y =3, n z =1;n x =1, n y =2, n z =3;n x =1, n y =3, n z =2 1.25 (1)不是,x →∞时,ψ→∞不满足平方可积;(2)不是,x →-∞时,ψ→∞不满足平方可积;(3)不是,在x =0处一阶微商不连续;(4)不是,ψ不满足平方可积;(5) 不是,ψ不满足平方可积,在x =0处一阶微商不连续;(6) 是 1.27 11πsin 42π2n n -;n =3;1/4;说明当n →∞时,一维势箱中运动的粒子,其概率分布与经典力学相同 1.28 (1)1ψ=;(2) ψ=(3) i m φψ=;(4) 0/r a ψ-=1.29 (1)是;(2) 是;(3) 不是;(4) 是;(5) 不是1.31 (1) 是d/d x 和d 2/d x 2的本征函数,本征值分别为a 、a 2(2) 不是d/d x 和d 2/d x 2的本征函数(3) 不是d/d x 的本征函数,是d 2/d x 2的本征函数,本征值为-a 2 (4) 不是d/d x 的本征函数,是d 2/d x 2的本征函数,本征值为-a 2 (5) 不是d/d x 和d 2/d x 2的本征函数 (6) 不是d/d x 和d 2/d x 2的本征函数1.34 无确定值,2258h E ml =1.351.36 (a /2, a /4, a /2),(a /2, 3a /4, a /2);y = a /2 1.37 (1) 是;(2) 是;(3) 不是;(1) 不是 1.38 |p |=nh /2l第二章 2.1 3a 0/2 2.5 22.6 (1) ()22212349R C C C ⎡⎤-++⎣⎦;(2)21C ;;(4)1;(5) 2223()C C - ;(6)0 2.14 (1) -3.4eV ;(2) ;(3)0;(4)r /a 0(5)(6)2.15 (1);(2) n =2, l =1, m =0;(3) E =-3.4eV ,|M | =0,M z = 02.16 (1) 1111(1)(1)(1)(1)(2)(2)(1)(2)s s s s αψβΦαψβ=;(2) E = -78.6eV2.17 (1) 112112112(1)(1)(1)(1)(3)(3)(2)(2)(2)(2)(3)(3)(3)(3)(3)(3)(3)(3)s s s s s s s s s αψβψαΦαψβψααψβψα=或112112112(1)(1)(1)(1)(3)(3)(2)(2)(2)(2)(3)(3)(3)(3)(3)(3)(3)(3)s s s s s s s s sαψβψβΦαψβψβαψβψβ=; (2) E = -204.03eV2.18 (1) 3P 0;(2) 3P 2;(3) 4S 3/2;(4) 6S 5/2;(5) 3F 2;(6) 3F 4;(7) 4F 3/2;(8) 4F 9/2;(9) 5D 4 2.19 (1) 1S(1S 0);(2) 2P(2P 3/2 2P 1/2);(3) 1S(1S 0), 3P(3P 2, 3P 1, 3P 0), 1D(1D 2);(4) 1S(1S 0), 3P(3P 2, 3P 1, 3P 0), 1D(1D 2), 3F(3F 4, 3F 3, 3F 2), 1G(1G 4); (5) 1P(1P 1),3P(3P 2, 3P 1, 3P 0);(6)1S(1S 0), 3S(3S 1), 1P(1P 1),3P(3P 2, 3P 1, 3P 0), 1D(1D 2), 3D(3D 3, 3D 2, 3D 1) 2.21 第一种2.22 未成对电子数:2l +1 基支项:2212l l S ++2.24 (1) 4S 、2D 、2P(2) 4D 、4P 、4S 、2D(2)、2P(2)、2S(2) (3) 4P 、2D 、2P 、2S(4) 4P 、4D 、4F 、2S 、2P(2)、2D(3)、2F(2)、2G (5)1S 3P 1D 1S 1S 3P 1D 3P 3P 5D, 5P,5S, 3D, 3P, 3S, 1D, 1P, 1S3F, 3D,3P1D 1D 3F, 3D, 3P 1G,1F, 1D, 1P,1S3 F 3F 5G, 5F , 5D, 3G, 3F , 3D, 1G, 1F , 1D 3H, 3G, 3F, 3D,3P1G 1G 3H, 3G, 3F 1I, 1H, 1G,1F,1D2.25 I 1= 11.46eV2.26 (1)5;(2)15;(3)4;(4)45;(5)675;(6)1350 ;;(4) 2, 1, 0, -1, -2;(5)5 2.29 (1)A, C ;(2)A, B ;(3)B, C 2.31 2个节面2.32 (1))122z s s p ψψψψ=++;(2) 无,<E>=-6.8eV ,1/3; (3) 3 ,2/3; (4) 有,0,0第三章3.7 (1)OF :(1σ)2(2σ)2(3σ)2(4σ)2(5σ)2(1π)4(2π)3,一个σ键,一个三电子π键,键级3/2,顺磁性(2)NO :(1σ)2(2σ)2(3σ)2(4σ)2(1π)4 (5σ)2(2π)1,1σ,1π,一个三电子π键,键级5/2,顺磁性 (3)CO :(1σ)2(2σ)2(3σ)2(4σ)2(1π)4 (5σ)2,一个σ键,二个π键,键级3,反磁性(4)CN :(1σ)2(2σ)2(3σ)2(4σ)2(1π)4 (5σ)1,一个单电子σ键,二个π键,键级5/2,顺磁性 (5)HF :(1σ)2(2σ)2(3σ)2(1π)4,一个σ键,键级1,反磁性3.8 (1) O 2:2*22*2222*1*1112222222s s s s pz px py px py σσσσσππππ;O 2+:2*22*2222*111222222s s s s pz px py px σσσσσπππ;O 2-:2*22*2222*2*1112222222s s s s pz px py px py σσσσσππππ;键级:O 2+ > O 2 > O 2-;键长:O 2+ < O 2 < O 2- (2) OF :(1σ)2(2σ)2(3σ)2(4σ)2(5σ)2(1π)4(2π)3;OF +:(1σ)2(2σ)2(3σ)2(4σ)2(5σ)2(1π)4(2π)2;OF -:(1σ)2(2σ)2(3σ)2(4σ)2(5σ)2(1π)4(2π)4;键级:OF + > OF > OF -;键长:OF + < OF < OF -3.10 (1)得电子变为AB -型负离子后比原来中性分子键能大的分子:C 2,CN(2)失电子变为AB +型正离子后比原来中性分子键能大的分子:O 2,F 2,NO 3.12 p x -d xy (否);p y -d yz (π);d x 2-y 2-d x 2-y 2(δ);d z 2-d z 2(σ);p x -p x (π) 3.13原子轨道3s 3p z 3p x 3p y 3d z 23d zx 3d yz 3d xy 3d x 2-y 2沿z 轴对称类型(节面数) 0 0 1 10 1 1 2 2 有14对轨道对符合对称性匹配:原子轨道对 3s -3s 3s -3p z 3s -3d z 2 3p z -3p z 3p z -3d z 23d z 2-3d z 2 3p x -3p x 分子轨道类型 σ σ σ σσσπ原子轨道对 3p x -3d xz 3p y -3p y 3p y -3d yz 3d xz -3d xz 3d yz -3d yz 3d xy -3d xy 3d x 2-y 2-3d x 2-y 2分子轨道类型 π π π ππδδ3.14 (1) E I <E 1<E 2<E II ;(2) 222112/()a a a +;(3) 222112/()b b b +;(4) ψI 含φ1(A)原子轨道的成份多一些,ψII 含φ2(B)原子轨道的成份多一些;(5) 这个化学键的电子云会偏向A 原子3.15 1122x s p ψψ=+;21263x y s p p ψψψψ=-+;312662x y z s p p p ψψψψψ=--+;412662x y z s p p p ψψψψψ=---3.17 (1)0.73;(2)0.71;(3)0.683.23 NF :1σ22σ23σ24σ25σ21π42π2,键级:2,顺磁性;NF +:1σ22σ23σ24σ25σ21π42π1,键级:2.5,顺磁性;NF -:1σ22σ23σ24σ25σ21π42π3,键级:1.5,顺磁性第四章4.1 (1)π34,(2)π78,(3) π78,(4) π88,(5) π910,(6) π78,(7) π34,(8) π34,(9)无,(10) π1414,(11) π44,(12) π34(2个),(13) π34(2个),(14) π34(2个),(15)无,(16) π34(2个),(17) π34,(18) π46,(19) π46,(20)π46,(21) π344.6 (1) 1E α=,E 2 = α,3E α=;(2) ()112312φψψ=++)213φψψ-()312312φψψ=-+; (3) -0.828β;(4) C C C0.51.00.7074.8 (1) E 1=α+2β,E 2=E 3=α-β(2) 环丙烯正离子、自由基和负离子的离域能分别为-2β、-β和0(3) )1123φψψψ++,)21232φψψψ=--,)323φψψ=-(4) 4.11 (1) 2个π34,(2) E 1=α+2β, E 2=α+β,E 3=α-β(3) α+2βα+βα-β(4) 离域能为-1.528β 4.14 6α+5.656β第六章6.2 存在对称中心i : C 2h C 4h C 6h D 2h D 4h D 6h D 3d D 5d S 2 S 6存在垂直于主轴的镜面σh :C 2h C 3h C 4h C 5h C 6h D 2h D 3h D 4h D 5h D 6h S 3 S 5 6.3(1) CO —C ∞v ,CO 2—D ∞h ,NO 2+—D ∞h ,乙炔—D ∞h ,H 2S —C 2v ,NH 3—C 3v ,CH 3Cl —C 3v ,HOCl —C s ,H 2O 2—C 2,NO 2—C 2v ,CH 4—T d ,SF 6—O h(2) 重叠式乙烷—D 3h ,交叉式乙烷—D 3d ,椅式环己烷—D 3d ,船式环己烷—C 2v ,丙二烯—D 2d ,CHCl 2Br —C s ,CH 2=C=CCl 2—C 2v ,CHCl=C=CHCl —C 2,CH 3-CCl 3(交叉式)—C 3v , CH 3-CCl 3(重叠式)—C 3v(3) 顺式(重叠式)二茂铁—D 5h ,反式(交叉式)二茂铁—D 5d ,[Co(NH 2–CH 2–CH 2–NH 2)3]3+—D 3,1,3,5,7四甲基–环辛四烯—S 4(4) [PtCl 4]2-—D 4h ,HCHO —C 2v ,顺式二氯乙烯—C 2v ,反式二氯乙烯—C 2h ,CH 2=CCl 2—C 2v ,苯分子—D 6h ,萘分子—D 2h ,对二氯苯—D 2h ,邻二氯苯—C 2v ,间二氯苯—C 2v , BCl 3—D 3h ,[CO 3]2-—D 3h6.4B N B N B N H H H H H HD 3h ,B B BNH 2NH 2H 2ND 3hFH HFHHC 2h , H FF HHH C 2h, HHHHFFC2h ,CC FC 2h ,6.5 (1)D 2h (2)D 2d (3)D 26.6 (1) 去掉2个球有以下3种情况:2vvd (2) 去掉3个球有以下3种情况:s s 3v6.7⑴正三角形D 3h ⑵正方形 D 4h ⑶正六边形D 6h ⑷长方形 D 2h ⑸中国国旗上的一个五角星 D 5h ⑹正三棱锥 C 3v ⑺正三棱柱D 3h ⑻正四棱锥C 4v ⑼正四棱柱 D 4h ⑽双正四棱锥D 4h ⑾正六棱柱D 6h ⑿正四面体T d ⒀正八面体 O h⒁正六面体(即立方体)O h⒂圆锥体C ∞v ⒃园柱体D ∞h6.8 XX XXXXXXXX XXX XXX X XXXXXXX XXXXXX XXX XX Y XXY XYXYYXX YC s C 2D 2dC 2vC i C 1C 2hC s C sC 2vD 2hC 2hC 2hC 4v C 2C 2v第七章 7.1点阵点数目1 1 1 1每个点阵点代表的内容 白1、黑2白1、黑1白1、黑1白3 黑球和白球的数目 白1、黑2白1、黑1白1、黑1白37.7(1)0,0,0; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2; 1/4,1/4,1/4; 1/4,3/4,3/4; 3/4,1/4,3/4; 3/4,3/4,1/4;(2)154.5pm 7.8 (右图)7.9 d 110=233.8pm ;d 220=143.2pm7.10 201pm7.11 (100)与(010):90°;(100)与(001):90°;(100)与(210):26.56°7.14 (1)C 2v ,正交;(2) C 2h ,单斜;(3)D 2h ,正交;(4) D 4h ,四方; (5)D 6h ,六方;(6)C 3v ,三方;(7)C 3i ,三方(8)C 3h ,六方;(9)D 3h ,六方; (10)S 4,四方;(11)C s ,单斜;(12) O h ,立方;(13)T d ,立方; (14) D 2d ,四方;(15)O ,立方;(16) C 6h ,六方;(17) D 3,三方; (18) T ,立方;(19) D 3d 三方;(20)T h ,立方 7.157.17(100)(010)(120)(230)第八章8.1 28.0748.2 21.453gcm-3r=138.7pm8.3 a=b=328pm,c=536pm;3.187gcm-38.4 r =185.8pm,0.967gcm-3,d=303pm8.8 a=352.4pm,8.908gcm-3,r=124.6pm8.14 r=146pm8.17 CaS:正负离子配位数皆为6,正八面体,A1,晶体结构型式为cF;CsBr:正负离子配位数皆为8,立方体,立方简单,晶体结构型式为cP8.18 (2) 154pm;(3) 1.53gcm-3;(4) 274pm8.20 cF;分数坐标:0,0,0; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2;80.99%8.22 (1)Ti4+:000;Ba2+:1/2,1/2,1/2;O2-:0,0,1/2; 0,1/2,0; 1/2,0,0(2) BaTiO3 (3)cP(4)与Ba2+离子配位的O2-负离子数为12;与Ti4+离子配位的O2-负离子数为6(6) A1第九章9.2 cF,a=359pm9.5 (1) a=415.8pm;(2) x = 0.92,(NiO)76(Ni2O3)8;(3) A1,正八面体空隙,92%;(4) 294pm9.8 (1) 21.45gcm-3,r = 186.7pm;(2)有两个,分别来自200和4009.9 (1)19.356gcm-3;(2) 共有7对粉末线,衍射指标依次为(110), (200), (211), (220), (310), (222) (321) 9.10 (1) r = 128pm;(2) 仅有(200)和(400)的衍射峰;(3) (200)与(400)衍射峰对应的2L值分别为50.4mm和116.8mm9.11 (1) a=565.9pm;(2)cF;(3)n = 49.12 (1) r=137.0pm;(2)2级9.16 106.6pm9.17 141.9pm9.18 k1/k2=1.7149.19 11MHz9.26 λ1,λ3,λ5由HCl产生,HCl核间距129pm;λ2,λ4,λ6由HBr产生,HBr核间距143pm9.28 131pm;477.7Nm−19.30 64.32⨯1012s−1;1.5547⨯10−14s;1859.7 Nm−1;12.83kJ;3.859cm−1附录III 模型实习实习一、分子的对称性目的:1. 掌握寻找分子中独立对称元素、判断分子点群的方法;2. 根据分子所属点群判断分子有无偶极矩3. 根据分子所属点群判断分子有无旋光性。
《结晶学基础》习题答案目录第7章答案----------------------------------------------------------------------1第8章答案---------------------------------------------------------------------12第9章答案---------------------------------------------------------------------20第10章答案------------------------------------------------------------------251《结晶学基础》第七章习题答案7001 单晶:一个晶体能基本上被一个空间点阵的单位矢量所贯穿。
多晶:包含许多颗晶粒,这些晶粒可能为同一品种,也可能不同品种,由于各晶粒在空间取向可能不同,不能被同一点阵的单位矢量贯穿。
7002 (D) 7004 简单立方; Cs +和Cl -; 4C 37005 (1) 立方F (2) A 和 B (3) 4 个 (4) 4 组 (5) 3a (6) a /2 7007 4n 个 A, 8n 个 B, n 为自然数。
7010 d 111= 249 pm ; d 211= 176 pm ; d 100= 432 pm 7011 六方; D 3h 70127013 依次为立方,四方,四方,正交,六方。
7014 立方 P ,立方 I ,立方 F ; 四方 P ,四方 I 。
7015 旋转轴,镜面,对称中心,反轴; 旋转轴,镜面,对称中心,反轴,点阵,螺旋轴,滑移面;n =1,2,3,4,6; 32个; 七个晶系; 14种空间点阵型式; 230个空间群。
7016 (1) 四方晶系 (2) 四方 I (3) D 4 (4) a =b ≠c , α=β=γ=90° 7017 (1) 单斜晶系,单斜 P (2) C 2h (3) C 2, m , i 7018 (2a ,3b ,c ):(326); (a ,b ,c ):(111); (6a ,3b ,3c ):(122); (2a ,-3b ,-3c ):(322)。
7019 C 1,C 2,C 3,C 4,C 6; I 1=i ,I 2=m ,I 4。
7020 立方晶系:四个按立方体对角线安放的三重轴;单斜晶系:一个二重轴或一个对称面。
7021 正交晶系和四方晶系 ; C 和 P ; C 2(3), m (3), i 和 I 4, C 2(2), m (2)。
7022 32 个; 230 个 7023 四方 I ; 四方 P 7025 T , T h ,T d ,O , O h 群 7026 (B) 7027 D 2h ———mm m 222 C 3v -——3mD 2d ———42mT d -——43m7028 x ,y +21,z 。
7029 x ,y ,z +21。
7030正交晶系有简单正交,正交面心,正交体心,正交底心,四种点阵型式。
7031 利用晶体有无压电效应,可以判断晶体有无对称中心,具有对称中心的晶体,晶体的两端不能产生相反的电荷,故无压电效应。
7032 因四方F 可划出更小的四方I 。
7033 (A) 7034 d 100= a ; d 110= a /2 7035 (B) 7036 2a ,6b ,3c 7038 247 pm 7039 d hkl 为相邻两衍射面间距,θ为衍射角, λ为波长2(d (hkl )为点阵面间距,n 为1,2,3,...,衍射级数)。
7040 a ·(s -s 0)= h λb ·(s -s 0)= k λc ·(s -s 0)= l λa ,b ,c 为晶胞的单位矢量;s 0, s 分别为入射X 射线和衍射线单位矢量;λ为波长; h ,k ,l 为整数。
7043 粉末法,回转晶体法 7044 (448) 7045 (E) 7046 a = 6.279×10-8cm N A = 6.08×1023mol -1 7047 d 100= a = 597 pm d 010= b = 1247 pm d 001= c = 435.4 pm V = 3.31×108pm 3 4 个 7048 s/mm θ (deg)=s/2 sin 2θ h k l a /pm37.8 18.9 0.1049 1 1 1 412.344.2 22.1 0.1415 0 0 2 409.963.8 31.9 0.2792 0 2 2 412.776.6 38.3 0.3841 1 1 3 412.680.8 40.4 0.4200 2 2 2 412.197.8 48.9 0.5679 0 0 4 409.2110 55.0 0.6710 1 3 3 410.2116 58.0 0.7192 0 2 4 406.0由 sin 2θ之比知为立方面心点阵, a 平均值为410.6 pm 。
7049 (1) θ=11.15°; a = 1127.7 pm(2) Z =31.9≈327051 "分子"数是 1,密度为 4.297 g/cm 3利用所给坐标可计算 Cl--Hg 键长为 277 pmCl-Cl 间距为391.7 pm; Cs--Cl 间距为391.7 pm7052 d 111=111θsin 2λ= '448sin 28.70︒ = 233.1 pm a = 3d 111= 403.8 pmM = 6.94+19= 25.947052 N =34da M =38)10038.4(601.294.254-⨯⨯⨯ mol -1= 6.059×1023mol -1 7053 (1) Z =810660.1321024551292104807.22430⨯⨯⨯⨯⨯⨯⨯--= 16.15 故知每个晶胞中有 16 个 S 8分子(2) d 224= 339.2 pm2d hkl sin θhkl = λ3θ224= 13.12°7055 根据相机半径得 θ= 13.69 deg2d hkl sin θhkl = λ ; d 111= 325.6 pm ; a = 564.0 pm 7056 a = 541.7 pm ; d 111= 312.8 pm ; λ= 70.8 pm 7057 a = 628.6 pm 7058 (1)sin 2θi /sin 2θ1为3:4:8:11:12:16:19:20 晶体为立方面心结构。
(2) a 2=(2sin θλ)2·(h 2+k 2+l 2); a = 421 pm晶胞中含有 4 个 M 和 4 个 O(3) MO 分子量为40.23金属原子 M 的相对原子质量为40.23-16.00= 24.23(4)氧原子采取立方面心 A 1型密堆积(5)r +/r -=0.429, 则0.414<0.429<0.732,金属原子M 占据由O 2-围成八面体空隙中,其配位数为 6 。
7059 立方面心点阵,第一条衍射线的指标是 111 。
7060 (1) 111, 200, 220, 222 (2) a = 570.5 pm(3) 对 111 反射,d 111= 5.705/3 pm = 329.4 pm ; θ= 13.53°7061 56 7062 198.3 pm 7063 6.022094×1023 7066 F hkl = ∑=n j 1f i exp[i2π(hx j +ky j +lz j )]f j 为原子散射因子;x j , y j , z j 为原子分数坐标;hkl 为衍射指标。
7067 200 强度大,因 Cs +和 Cl -均处于间隔为21d 100的面上。
7068 104775 pm 2,4 个 C 7069 7 7070 14 7071 327072 230 7073 不对 7074 晶胞的大小形状和晶胞中原子的坐标位置; 前者用晶胞参数(a ,b ,c ,α, β,γ) 表示,后者用原子分数坐标 (x ,y ,z ) 表示。
7075 晶胞参数 7076 四个按立方体对角线排列的三重轴。
7077 一个二重轴或一个对称面。
7078 3,4,8,11,12 7079 2,4,6,8,10 7080 1,2,3,4,5 7081 (A) 7082 立方 P , 立方 F , 立方 I 7083 正交 P , 正交 C , 正交 I , 正交 F 7084 四方 P , 四方 I 7085 四方 7086 六方 7087 正交 7088 六方 7090 以a ,b ,c 为x ,y ,z 坐标轴单位,在轴上分别取3,3,2单位,将这三点连成面。
7091 以a ,b ,c 为x ,y ,z 坐标轴单位,在轴上分别取-2,1,-2单位,将这三点连成面。
7092 以a ,b ,c 为x ,y ,z 坐标轴单位,在轴上分别取6,-3,2单位,将这三点连成面。
7093 (123)7094 立方P : 1:2:3:4:5:6:8:9:...(缺7),没有系统消光。
立方I : 1:2:3:4:5:6:7:8:...(有7),h +k +l =奇数,消光。
立方F : 3:4:8:11:12:16:19:20:...(二密一稀),h ,k ,l 奇偶混合,消光。
7095 晶体中原子之间没有对称元素联系的那一部分原子。
7096 一组无限的点,连结任意两点可得一向量,将各个点按此向量平移能使它复原。
7097 晶体结构指原子(或分子)在晶体空间排布的具体情况,由于晶体结构具有三维的周4期性,每个重复单位的化学组成相同,空间结构相同,周围环境相同,每个重复单位称为结构基元,若用一个抽象的点代表结构基元,这些点形成一个点阵,并可简单地用下式表示它们的关系:晶体结构=点阵+结构基元 7098 见周公度《结构化学基础》,p.333。
7099 分子对称性是点对称性:有旋转轴,对称面,对称中心,反轴或映轴四类对称元素。
晶体对称性是空间对称性,除了有旋转轴,对称面,对称中心,反轴或映轴外,尚有点阵,螺旋轴和滑移面,共有七类对称元素,由于晶体是点阵结构,因此对称轴的轴次不允许存在五次轴和轴次大于六的轴。
7100 见周公度《结构化学基础》,p.319。
7101 四方 ; 8 7102 T d ; 立方 ; 4个C 3 7103 D 3h ; 六方 ;6 7104 2 ;4 ; 2 ;4 7105 (B,C) 7106 θ=0.45277.20⨯弧度×57.3°/弧度=13.22° 7107 纯金粉的粉末衍射图有一套金的衍射线。