理论力学第十四章达朗伯原理new
- 格式:ppt
- 大小:1.38 MB
- 文档页数:53
五、达朗伯原理达朗伯原理是一种解决非自由质点系动力知识题的普遍主意。
这种主意将质点系的惯性力虚加在质点系上,使动力知识题可以应用静力学写平衡方程的主意来求解,故称为动静法,动静法在工程技术中得到广泛的应用。
(一)惯性力当质点受到其他物体的作用而改变其本来运动状态时,因为质点的惯性产生对施力物体的反作使劲,称为质点的惯性力。
惯性力的大小等于质点的质量与其加速度的乘积,方向与加速度的方向相反,并作用在施力物体上。
惯性力的表达式为(二)达朗伯原理在非自由质点M运动中的每一瞬时,作用于质点的主动力F、约束反力N和该质点的惯性力FI构成一假想的平衡力系。
这就是质点达朗伯原理,其表达式为在非自由质点系运动中的每一瞬时,作用于质点系内每一质点的主动力Fi、约束反力N,和该质点的惯性力FiI构成一假想的平衡力系。
这就是质点系达朗伯原理。
即(三)刚体运动时惯性力系的简化对刚体动力知识题,可以将刚体上每个质点惯性力组成惯性力系,使劲系简化的主意,得出简化结果。
这些简化结果与刚体的运动形式有关。
详细结果见表4-3-9。
(四)动静法按照达朗伯原理,在质点或质点系所受的主动力、约束反力以外,假想地加上惯性力或惯第1 页/共7 页性力系的简化结果,则可用静力学建立平衡方程的主意求解动力知识题,这种求解动力知识题的主意称为动静法。
必须指出,动静法只是解决动力知识题的一种主意,它并不改变动力知识题的性质,因为惯性力并不作用在质点或质点系上,质点或质点系也不处于平衡状态。
动静法中“平衡”只是形式上的平衡,并没有实际意义。
应用动静法列出的平衡方程,实质上就是运动微分方程。
(五)例题[例4—3—13] 长方形匀质薄板重W,以两根等长的软绳支持如图4—3—37所示。
设薄板在图示位无初速地开始运动,图中α=30°。
求此时绳子中的拉力。
[解](1)对象以平板的为研究对象。
(2)受力分析运动开始时板受重力w、软绳约束反力T1、T2。
第14章 达朗伯原理(动静法)§14-1 达朗伯原理例 1. 质量10kg m =的物块A 沿与铅垂面夹角060θ=的悬臂梁下滑,如图所示。
不计梁的自重,并忽略物块的尺寸,试求当物块下滑至距固定端O 的距离0.6m l =,加速度22m/s a =时固定端O 的约束反力。
解:取物块和悬臂梁一起为研究对象,受有主动力W ,固定端O 处的反力Ox F 、Oy F 及O M 。
施加惯性力g F 如图所示,g F ma =,方向与a图14-3相反,加在物块上。
根据达朗伯原理,列形式上的平衡方程0 sin 00 cos 0()0 sin 0Ox g Oy g O iO X F F Y F W F m F M Wl θθθ⎧=-=⎪=-+=⎨⎪=-=⎩∑∑∑可解得sin 17.32N Ox g F F θ== cos 88N Oy g F W F θ=-= sin 50.92N m O M Wl θ==⋅从本例可见,应用质点达朗伯原理求解时,在受力图上惯性力的方向要与加速度方向相反,惯性力的大小为g F ma =,不带负号。
例1.如图所示,物块A 、B 的重量均为W ,系在绳子的两端,滑轮的半径为R ,不计绳重及滑轮重,斜面光滑,斜面的倾角为θ,试求物块A 下降的加速度及轴承O 处的约束反力。
图14-4解:先取物块B 为研究对象,所受的外力为绳索的拉力T 、重力W 、光滑斜面的约束反力B N ,虚加的惯性力为gB F ,如图所示。
取图所示坐标系,根据质点达朗伯原理,可列出平衡方程为 0Y '=∑ cos 0BNW θ-=可得c o s B N W θ= 再取物块A 、B 及滑轮和绳索所组成的系统为研究对象。
质点系的外力有两个物块的重力W ,轴承O 的约束反力O X 和O Y ,及光滑斜面的约束反力B N 。
虚加上惯性力gA F 和gB F ,如图所示。
惯性力的大小为gA gB WF F a g==。