理论力学第十四章动能定理
- 格式:ppt
- 大小:14.31 MB
- 文档页数:60
第11章动能定理即质点系的动能等于其随质心平BCθABθCPA2rOr C力的功2rOr CAP2rOr CAP2rOr CAPs汽车驱动问题能量角度:汽缸内气体爆炸力是内力,不改变汽车的动量,但使汽车的动能增加。
动量角度:地面对后轮的摩擦力是驱动力,使汽车的动量增加,但不做功,不改变汽车的动能。
内力不能改变质点系的动量和动量矩,但可以改变能量;外力能改变质点系的动量和动量矩,但不一定能改变能量。
例题11-8水平悬臂梁AB,B端铰接滑轮B,匀质滑轮质量m1,半径r;绳一端接滚,轮C,半径r,质量m2视为质量集中在边缘;绳另端接重物D,质量m3。
求重物加速度。
CωDv BωCv 解:末位置是一般位置hconst 01==T T =2T 2321D v m 221B B J ω+221CP J ω+运动学关系rr v v B C C D ωω===2121rm J B =2222222rm r m r m J P=+=2321222121Dv m m m T ⎟⎠⎞⎜⎝⎛++=gh m W 312=CωDv BωCv h1212W T T =−gh m T v m m m D 30232122121=−⎟⎠⎞⎜⎝⎛++对t 求导h g m vv m m m D D &&33210)221(=−++Dv h =&D D a v=&gm m m m a D 3213221++=例11-9匀质圆盘和滑块的质量均为m。
圆盘的半径为r。
杆平行于斜面,其质量不计。
斜面的倾斜角为θ。
圆盘、滑块与斜面的摩擦因数均为μ。
圆盘在斜面上作纯滚动。
试求滑块下滑加速度。
1212W T T =−01=T 2222212121mvJ mv T A ++=ω解()sF F mgs mgs W B A +−+=θθsin sin 12θμcos mg F F B A ==取导221,mrJ v r A ==ω2245mvT =()θμθcos sin 2452−=gs v a v v s==&&,()θμθcos sin 54−=g a F A 是静摩擦力,理想约束,不作功。
《理论力学》教学大纲课程编码:3597英文名称:Theoretical Mechanics总学时:80 实验:上机:适合专业:土木工程一、课程内容及要求本课程主要内容:对质点、质点系的刚体的机械运动(包括平衡)的规律有较系统的理解,掌握其中的基本概念,基本理论和基本方法及其应用。
学习重点:1.熟悉各种常见约束的性质,对简单的物体系统,能熟练地取分离体并画出受力图。
2.能运用平衡条件求解单个物体和简单物体系的平衡问题(包括考虑滑动摩擦的问题)。
对平面问题要求熟练。
3.熟悉刚体平动、定轴转动和平面运动的特征,并能熟练地计算刚体的角速度和角加速度、刚体内各点的速度和加速度,包括简单机构的运动分析。
4.掌握运动合成和分解的基本概念和方法。
熟练掌握点的速度合成定理和牵连运动为平动时的加速度合成定理的应用。
5.能正确地列出质点运动和刚体运动(包括刚体定轴转动和平面运动)的动力学微分方程并能求解有关的问题。
6.熟练掌握动力学普遍定理及相应的守恒定理,能熟练选择和综合应用这些定理去求解工程中简单的理论力学问题。
7.能掌握虚位移原理的有关概念及其应用。
学习难点:1.常见约束的性质,对简单的物体系统,能熟练地取分离体并画出受力图。
2.能运用平衡条件求解单个物体和简单物体系的平衡问题(包括考虑滑动摩擦的问题)。
对平面问题要求熟练。
3.掌握描述点的运动弧坐标法,能求点的运动方程,并能熟练地计算点的速度、加速度及其有关问题。
4.掌握运动合成和分解的基本概念和方法。
熟练掌握点的速度合成定理和牵连运动为平动时的加速度合成定理的应用。
掌握牵连运动为定轴转动时加速度合成定理及其应用。
5.能理解并熟练计算动力学中各基本物理量(动量、动量矩、动能、冲量、功、势能等)6.能正确地列出质点运动和刚体运动(包括刚体定轴转动和平面运动)的动力学微分方程并能求解有关的问题。
7.熟练掌握动力学普遍定理及相应的守恒定理,能熟练选择和综合应用这些定理去求解工程中简单的理论力学问题。
第 页1 教学目标知识目标: 常力的功,变力的功,平面运动刚体上力系的功,重力的功,弹性力的功,质点系的功能,质点的动能定理,质点动能定理的微分、积分形式,功率方程。
能力目标:素质目标:沟通、协作能力;观察、信息收集能力;分析总结能力。
良好的职业道德和严谨的工作作风教 学 内 容 与 教 学 过 程 设 计注 释理论力学-动能定理〖理论学习〗13.1力的功13.1.1常力的功功是对力在一段路程上积累效应的度量,是一个过程量。
如图13-1所示,物体在常力F作用下,沿直线从M1运动到M2,其路程为s ,力F 在这段路程上所做的功定义为力F 在位移方向的投影与其路程的乘积,以W 表示,即 (13-1)。
图13-113.1.2变力的功设质点M 做曲线运动,从位置M1运动到位置M2,受到变力F 的作用,如图13-2所示。
为了计算变力F 在曲线上的功,考虑微弧段ds ,在此微段上力F 可视为常力,ds 也可视为直线。
力F 在此无限小位移上所做的功称为元功,记为δW 。
此时,力F 的元功为δW=Fcos θds (13-2)图13-213.1.3平面运动刚体上力系的功平面运动刚体上力系的功等于刚体所受各力做功之代数和。
(1)当刚体在平面上平移时,各点的位移都与质心的位移相同,ri=rC 。
则力系的功为 (13-6)。
即平移刚体上力系的功等于力系的主矢在质心位移上所做的功。
(2)当刚体绕z 轴做定轴转动时,如图13-3所示。
比较常力的功和变力的功。
教师讲解平面运动刚体上力系的功。
第页2图13-3(3)当刚体平面运动时,受到多个力作用,如图13-4所示。
取刚体的质心C 为基点,把该力系向基点简化得到一个力F ′R 和一个力偶MC ,分别在质心位移和转角位移上做功。
平面运动刚体上力系的功等于力系向质心简化所得的力和力偶做功之和。
图13-413.1.4典型力的功 1.重力的功设质点受重力P=mg 的作用,沿曲线从位置M1运动到位置M2,如图13-5所示。
9. 动能定理动能:是描述质系运动强度的一个物理量,任一质点在某瞬时的动能为212i i m v 。
质点动能定理的微分形式:作用于质点上力的元功等于质点动能的微分。
质点动能定理的积分形式:作用于质点上的力在有限路程上的功等于质点动能的改变量。
力的元功:力在一无限小位移中力所做的功。
力在有限路程上的功:力在此路程上元功的定积分21d M M W =⋅⎰F r 。
理想约束:约束力的元功的和等于零的约束。
质系动能定理的微分形式:在质系无限小的位移中,质系动能的微分等于作用于质系全部力所做的元功之和,即d δF T W =∑。
质系动能定理的积分形式:质系在任意有限路程的运动中,起点和终点动能的改变量,等于作用于质系的全部力在这段路程中所做功的和,即21i T T W -=∑。
质点系的动能:组成质点系的各质点动能的算术和,即2112ni i i T m v ==∑。
柯尼西定理:平面运动刚体的动能等于随质心平动的动能与绕通过质心的转轴转动的动能之和。
功率:在单位时间内所做的功。
力场:如质点在某空间内任一位置都受有一个大小和方向完全由所在位置确定的力作用,具有这种特性的空间就称为力场。
势力场或保守力场:如质点在某一力场内运动时,力场力对于质点所做的功仅与质点起点与终点位置有关,而与质点运动的路径无关,则这种力场称为势力场或保守力场。
质点在势力场内所受的力称为势力或保守力。
势能:在势力场中,质点由某一位置M 运动到选定的参考点M 0的过程中,有势力所做的功,以V 表示,即0x d d d d M M y z MMV F x F y F z =⋅=++⎰⎰F r 。
保守系统:具有理想约束,且所受的主动力皆为势力的质系。
机械能:质系在某瞬时的动能与势能的代数和。
机械能守恒定律:保守系统在运动过程中,其机械能保持不变。
即,质系的动能和势能可以互相转化,但总的机械能保持不变。