高二上期末数学试卷(理)(有答案)
- 格式:doc
- 大小:455.50 KB
- 文档页数:17
辽宁省大连五校高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∀>0,﹣ln>0,则¬p为()A.∀>0,﹣ln≤0 B.∀>0,﹣ln<0C.∃0>0,0﹣ln0>0 D.∃0>0,0﹣ln0≤02.(5分)设等差数列{a n}的前n项和为S n,已知2a1+a13=﹣9,则S9=()A.﹣27 B.27 C.﹣54 D.543.(5分)若a,b∈R,则“<”是“>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线方程为﹣2y=0,则该双曲线的离心率是()A. B.C.D.5.(5分)直三棱锥ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A. B.C.D.6.(5分)已知等比数列{a n}中,a2=2,则其前三项和S3的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,0)∪(1,+∞)C.[6,+∞)D.(﹣∞,﹣2]∪[6,+∞)7.(5分)已知变量,y满足约束条件,若目标函数=+2y的最小值为2,则m=()A.2 B.1 C.D.﹣28.(5分)60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则CD的长为()A.B.C. D.9.(5分)已知不等式y≤a2+2y2对任意∈[1,2],y∈[4,5]恒成立,则实数a的取值范围是()A.[﹣1,+∞)B.[﹣6,+∞)C.[﹣28,+∞)D.[﹣45,+∞)10.(5分)设椭圆与函数y=3的图象相交于A,B两点,点P为椭圆C上异于A,B的动点,若直线PA的斜率取值范围是[﹣3,﹣1],则直线PB的斜率取值范围是()A.[﹣6,﹣2]B.[2,6]C.D.11.(5分)设数列{a n}的前n项和S n,若+++…+=4n﹣4,且a n≥0,则S100等于()A.5048 B.5050 C.10098 D.1010012.(5分)已知双曲线Γ:﹣=1(a>0,b>0)的上焦点F(0,c)(c>0),M是双曲线下支上的一点,线段MF与圆2+y2﹣y+=0相切于点D,且|MF|=3|DF|,则双曲线Γ的渐近线方程为()A.4±y=0 B.±4y=0 C.2±y=0 D.±2y=0二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知命题p:2+2﹣3>0,命题q:>a,若¬p是¬q的充分不必要条件,则实数a的取值范围是.14.(5分)已知正项等比数列{a n}的公比为2,若,则的最小值等于.15.(5分)已知M是抛物线2=4y上一点,F为其焦点,点A在圆C:(+1)2+(y﹣6)2=1上,则|MA|+|MF|的最小值是.16.(5分)如图,在直三棱柱A1B1C1﹣ABC中,,已知G与E分别是棱A1B1和CC1的中点,D与F分别是线段AC与AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}是等比数列,首项a1=1,公比q>0,其前n项和为S n,且S1+a1,S3+a3,S2+a2成等差数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足,求数列{b n}的前n项和T n.18.(12分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(1)证明:AC⊥D1E;(2)求DE与平面AD1E所成角的正弦值.19.(12分)已知数列{{a n}满足,.(1)求证:数列是等比数列;(2)若数列{b n}是单调递增数列,求实数λ的取值范围.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且平面PAD⊥平面ABCD,E为PD中点,AD=2.(Ⅰ)求证:平面AEC⊥平面PCD.(Ⅱ)若二面角A﹣PC﹣E的平面角大小θ满足cosθ=,求四棱锥P﹣ABCD的体积.21.(12分)已知过抛物线E:y2=2p(p>0)的焦点F,斜率为的直线交抛物线于A(1,y1),B(2,y2)(1<2)两点,且|AB|=6.(1)求该抛物线E的方程;(2)过点F任意作互相垂直的两条直线l1,l2,分别交曲线E于点C,D和M,N.设线段CD,MN的中点分别为P,Q,求证:直线PQ恒过一个定点.22.(12分)如图,在平面直角坐标系oy中,已知圆C:(+1)2+y2=16,点A(1,0),点B (a,0)(|a|>3),以B为圆心,|BA|的半径作圆,交圆C于点P,且的∠PBA的平分线次线段CP于点Q.(I)当a变化时,点Q始终在某圆锥曲线τ是运动,求曲线τ的方程;(II)已知直线l过点C,且与曲线τ交于M、N两点,记△OCM面积为S1,△OCN面积为S2,求的取值范围.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∀>0,﹣ln>0,则¬p为()A.∀>0,﹣ln≤0 B.∀>0,﹣ln<0C.∃0>0,0﹣ln0>0 D.∃0>0,0﹣ln0≤0【解答】解:因为全称命题的否定是特称命题,所以命题“∀>0,﹣ln>0”的否定是∃>0,﹣ln≤0.故选:D.2.(5分)设等差数列{a n}的前n项和为S n,已知2a1+a13=﹣9,则S9=()A.﹣27 B.27 C.﹣54 D.54【解答】解:∵等差数列{a n}的前n项和为S n,2a1+a13=﹣9,∴3a1+12d=﹣9,∴a1+4d=﹣3,∴S9==9(a1+4d)=﹣27.故选:A.3.(5分)若a,b∈R,则“<”是“>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∀a,b∈R,a2+ab+b2=+b2≥0,当且仅当a=b=0时取等号.∴>0⇔(a﹣b)ab>0,⇔“<”.∴“<”是“>0”的充要条件.故选:C.4.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线方程为﹣2y=0,则该双曲线的离心率是()A. B.C.D.【解答】解:∵双曲线﹣=1(a>0,b>0)的一条渐近线方程为﹣2y=0,∴a=2b,∴c=b,∴双曲线的离心率是e==.故选:D.5.(5分)直三棱锥ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A. B.C.D.【解答】解:根据已知条件,分别以C1A1,C1B1,C1C所在直线为,y,轴,建立如图所示空间直角坐标系,设CA=2,则:A(2,0,2),N(1,0,0),B(0,2,2),A1(2,0,0),B1(0,2,0),M(1,1,0);∴;∴;∴BM与AN所成角的余弦值为.故选:D.6.(5分)已知等比数列{a n}中,a2=2,则其前三项和S3的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,0)∪(1,+∞)C.[6,+∞)D.(﹣∞,﹣2]∪[6,+∞)【解答】解:∵等比数列{a n}中,a2=2,∴其前三项和S3=,当q>0时,S3=≥2+2=6;当q<0时,S3=≤2﹣2=2﹣4=﹣2.∴其前三项和S3的取值范围是(﹣∞,﹣2]∪[6,+∞).故选:D.7.(5分)已知变量,y满足约束条件,若目标函数=+2y的最小值为2,则m=()A.2 B.1 C.D.﹣2【解答】解:由变量,y满足约束条件,作出可行域如图,化目标函数=+2y为y=﹣+,由图可知,当直线y=﹣+过A时,直线在y轴上的截距最小,有最小值为2.由,解得A(m,m),A代入=+2y,可得m+2m=2,解得m=.故选:C.8.(5分)60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则CD的长为()A.B.C. D.【解答】解:∵60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,∴=,∵AB=4,AC=6,BD=8,∴2=()2=+2=36+16+64+2×6×8×cos120°=68.∴CD的长为||=2.故选:B.9.(5分)已知不等式y≤a2+2y2对任意∈[1,2],y∈[4,5]恒成立,则实数a的取值范围是()A.[﹣1,+∞)B.[﹣6,+∞)C.[﹣28,+∞)D.[﹣45,+∞)【解答】解:由题意可知:不等式y≤a2+2y2对于∈[1,2],y∈[4,5]恒成立,即:a≥﹣2()2,对于∈[1,2],y∈[4,5]恒成立,令t=,则2≤t≤5,∴a≥t﹣2t2在[2,5]上恒成立,∵y=﹣2t2+t的对称轴为t=,且开口向下,∴y=﹣2t2+t在[2,5]单调递减,∴y ma=﹣2×22+2=﹣6,∴a≥﹣6,故选B.10.(5分)设椭圆与函数y=3的图象相交于A,B两点,点P为椭圆C上异于A,B的动点,若直线PA的斜率取值范围是[﹣3,﹣1],则直线PB的斜率取值范围是()A.[﹣6,﹣2]B.[2,6]C.D.【解答】解:∵椭圆C:与函数y=3的图象相交于A,B两点,∴A,B两点关于原点对称,设A(1,y1),(﹣1,﹣y1),则,即.设P(0,y0),则,可得:.∴.∵直线PA的斜率1的取值范围[﹣3,﹣1],∴﹣3≤≤﹣1,得,∴直线PB的斜率取值范围是[].故选:D.11.(5分)设数列{a n}的前n项和S n,若+++…+=4n﹣4,且a n≥0,则S100等于()A.5048 B.5050 C.10098 D.10100【解答】解:当n=1时,=0,则a1=0.当n≥2时,+++…++=4n﹣4,①+++…+=4n﹣8,②+++…++=4n,③由①﹣②得到:=4,∵a n≥0,∴a n=2n,由③﹣①得到:=4,=2n+2,∴a n+1﹣a n=2,∴a n+1∴数列{a n}是等差数列,公差是2,综上所述,a n=,∴S100=S1+S2+S3++…+S100=0+×(100﹣1)=10098.故选:C.12.(5分)已知双曲线Γ:﹣=1(a>0,b>0)的上焦点F(0,c)(c>0),M是双曲线下支上的一点,线段MF与圆2+y2﹣y+=0相切于点D,且|MF|=3|DF|,则双曲线Γ的渐近线方程为()A.4±y=0 B.±4y=0 C.2±y=0 D.±2y=0【解答】解:由2+y2﹣y+=0,得2+(y﹣)2=,则该圆的圆心坐标为(0,),半径为.设切点D(0,y0)(y0>0),则由2+y2﹣y+=0与(0,y0﹣c)•(0,y0﹣)=0,解得:0=,y0=.∴D(,),由|MF|=3|DF|,得=3,得M(,﹣),代入双曲线Γ:﹣=1(a>0,b>0)整理得b=2a,∴双曲线Г的渐近线方程为y=±.故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知命题p:2+2﹣3>0,命题q:>a,若¬p是¬q的充分不必要条件,则实数a的取值范围是[1,+∞).【解答】解:由2+2﹣3>0得>1或<﹣3,若¬p是¬q的充分不必要条件,则q是p的充分不必要条件,∵q:>a,∴a≥1,即实数a的取值范围是[1,+∞),故答案为:[1,+∞).14.(5分)已知正项等比数列{a n}的公比为2,若,则的最小值等于.【解答】解:正项等比数列{a n}的公比为2,若,可得(a1•2m﹣1)(a1•2n﹣1)=4(2a1)2,即有m﹣1+n﹣1=4,则m+n=6,可得=(m+n)()=(2+++)≥(+2)=×=.当且仅当m=2n=4,都不是取得等号,则的最小值为.故答案为:.15.(5分)已知M是抛物线2=4y上一点,F为其焦点,点A在圆C:(+1)2+(y﹣6)2=1上,则|MA|+|MF|的最小值是6.【解答】解:抛物线2=4y的焦点F(0,1),准线方程为y=﹣1,如图所示:利用抛物线的定义知:|MP|=|MF|,当A,M,P三点共线时,|MA|+|MF|的值最小.即CM⊥轴,此时|MA|+|MF|=|AP|=|CP|﹣1=7﹣1=6,故答案为:6.16.(5分)如图,在直三棱柱A1B1C1﹣ABC中,,已知G与E分别是棱A1B1和CC1的中点,D与F分别是线段AC与AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围是.【解答】解:以A为原点,AB为轴,AC为y轴,AA1为轴,建立如图所示的空间直角坐标系,则A(0,0,0),E(0,1,),G(,0,1),F(,0,0),D(0,y,0),=(﹣,y,﹣1),=(,﹣1,﹣),∵GD⊥EF,∴=﹣=0,即+2y﹣1=0∴DF===,∵0<<1,0<y<1,∴0<y<,当y=时,线段DF长度的最小值=,当y=0时,线段DF长度的最大值是1,而不包括端点,故y=0不能取1.∴线段DF的长度的取值范围是[,1).故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}是等比数列,首项a1=1,公比q>0,其前n项和为S n,且S1+a1,S3+a3,S2+a2成等差数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足,求数列{b n}的前n项和T n.【解答】解:(1)因为S1+a1,S3+a3,S2+a2成等差数列,所以2(S3+a3)=(S1+a1)+(S2+a2),所以(S3﹣S1)+(S3﹣S2)+2a3=a1+a2,所以4a3=a1,因为数列{a n}是等比数列,所以,又q>0,所以,所以数列{a n}的通项公式.(2)由(1)知,,,所以,=20+21+22+…+2n﹣1﹣n•2n,=.故.18.(12分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(1)证明:AC⊥D1E;(2)求DE与平面AD1E所成角的正弦值.【解答】(1)证明:连接BD,∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,又AC⊂平面ABCD,∴D1D⊥AC,在长方形ABCD中,AB=BC,∴BD⊥AC,又BD∩D1D=D,∴AC⊥平面BB1D1D,而D1E⊂平面BB1D1D,∴AC⊥D1E;(2)如图,以D为坐标原点,以DA,DC,DD1所在的直线为,y,轴建立空间直角坐标系,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),,设平面AD 1E的法向量为,则,令=1,则,∴,所以DE与平面AD1E所成角的正弦值为.19.(12分)已知数列{{a n}满足,.(1)求证:数列是等比数列;(2)若数列{b n}是单调递增数列,求实数λ的取值范围.【解答】解:(1)因为数列{a n}满足,所以,即,又a1=1,所以,所以数列是以2为首项,公比为2的等比数列.(2)由(1)可得,所以,因为b1=﹣λ符合,所以.>b n,即(n﹣λ)•2n>(n﹣1﹣λ)•2n﹣1,因为数列{b n}是单调递增数列,所以b n+1化为λ<n+1,所以λ<2.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且平面PAD⊥平面ABCD,E为PD中点,AD=2.(Ⅰ)求证:平面AEC⊥平面PCD.(Ⅱ)若二面角A﹣PC﹣E的平面角大小θ满足cosθ=,求四棱锥P﹣ABCD的体积.【解答】(Ⅰ)证明:取AD中点为O,BC中点为F,由侧面PAD为正三角形,且平面PAD⊥平面ABCD,得PO⊥平面ABCD,故FO⊥PO,又FO⊥AD,则FO⊥平面PAD,∴FO⊥AE,又CD∥FO,则CD⊥AE,又E是PD中点,则AE⊥PD,由线面垂直的判定定理知AE⊥平面PCD,又AE⊂平面AEC,故平面AEC⊥平面PCD;(Ⅱ)解:如图所示,建立空间直角坐标系O﹣y,令AB=a,则P(0,0,),A(1,0,0),C(﹣1,a,0).由(Ⅰ)知=()为平面PCE的法向量,令=(1,y,)为平面PAC的法向量,由于=(1,0,﹣),=(2,﹣a,0)均与垂直,∴,解得,则,由cos θ=||=,解得a=.故四棱锥P﹣ABCD的体积V=S ABCD•PO=•2••=2.21.(12分)已知过抛物线E:y2=2p(p>0)的焦点F,斜率为的直线交抛物线于A(1,y1),B(2,y2)(1<2)两点,且|AB|=6.(1)求该抛物线E的方程;(2)过点F任意作互相垂直的两条直线l1,l2,分别交曲线E于点C,D和M,N.设线段CD,MN的中点分别为P,Q,求证:直线PQ恒过一个定点.【解答】解:(1)抛物线的焦点,∴直线AB的方程为:联立方程组,消元得:,∴∴,解得p=±2.∵p>0,∴抛物线E的方程为:y2=4.(2)证明:设C,D两点坐标分别为(1,y1),(2,y2),则点P的坐标为.由题意可设直线l1的方程为y=(﹣1)(≠0).由,得22﹣(22+4)+2=0.△=(22+4)﹣44=162+16>0因为直线l1与曲线E于C,D两点,所以.所以点P的坐标为.由题知,直线l2的斜率为,同理可得点Q的坐标为(1+22,﹣2).当≠±1时,有,此时直线PQ的斜率.所以,直线PQ的方程为,整理得y2+(﹣3)﹣y=0.于是,直线PQ恒过定点(3,0);当=±1时,直线PQ的方程为=3,也过点(3,0).综上所述,直线PQ恒过定点(3,0).22.(12分)如图,在平面直角坐标系oy中,已知圆C:(+1)2+y2=16,点A(1,0),点B (a,0)(|a|>3),以B为圆心,|BA|的半径作圆,交圆C于点P,且的∠PBA的平分线次线段CP于点Q.(I)当a变化时,点Q始终在某圆锥曲线τ是运动,求曲线τ的方程;(II)已知直线l过点C,且与曲线τ交于M、N两点,记△OCM面积为S1,△OCN面积为S2,求的取值范围.【解答】解:(I)如图,∵BA=BP,BQ=BQ,∠PBQ=∠ABQ,∴△QAB≌△QPB,∴QA=QP,∵CP=CQ+QP=QC+QA,QC+QA=4,由椭圆的定义可知,Q点的轨迹是以C,A为焦点,2a=4的椭圆,故点Q的轨迹方程为(II)由题可知,设直线l:=my﹣1,不妨设M(1,y1),N(2,y2)∵,,∵,∴(3m2+4)y2﹣6my﹣9=0,△=144m2+144>0,∴,∵,即∈(﹣,0],∈(﹣3,﹣),∴=﹣∈(,3).。
2022-2023山西省晋中市高二(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)命题“∃x>0,使2x>3x”的否定是()A.∀x>0,使2x≤3x B.∃x>0,使2x≤3x C.∀x≤0,使2x≤3x D.∃x ≤0,使2x≤3x2.(5分)双曲线=1的渐近线方程为()A.y=±B.y=±x C.y=±x D.y=±x3.(5分)在正方体ABCD﹣A1B1C1D1中,E,F分别为棱AB,BB1的中点,则直线BC1与EF所成角的余弦值是()A.B.C.D.4.(5分)已知直线l1:ax+(a+2)y+1=0,l2:x+ay+2=0,则“l1∥l2”是“a=﹣1”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)已知a、b、c为三条不重合的直线,下面有三个结论:①若a⊥b,a ⊥c则b∥c;②若a⊥b,a⊥c则b⊥c;③若a∥b,b⊥c则a⊥c.其中正确的个数为()A.0个 B.1个 C.2个 D.3个6.(5分)设点P为椭圆上一点,F1,F2分别为C的左、右焦点,且∠F1PF2=60°,则△PF1F2的面积为()A.B.C.D.7.(5分)已知点F为抛物线y 2=﹣8x的焦点,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且|AF|=4,则|PA|+|PO|的最小值为()A.6 B.C.D.4+28.(5分)已知圆O为Rt△ABC的外接圆,AB=AC,BC=4,过圆心O的直线l交圆O于P,Q两点,则的取值范围是()A.[﹣8,﹣1]B.[﹣8,0]C.[﹣16,﹣1]D.[﹣16,0]9.(5分)过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.10.(5分)在四面体S﹣ABC中,,二面角S﹣AC ﹣B的余弦值为,则该四面体外接球的表面积是()A.B.C.24πD.6π11.(5分)在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,若对任意x∈(0,1)不等式t<e1+e2恒成立,则t的最大值为()A.B.C.2 D.12.(5分)已知底面为边长为2的正方形,侧棱长为1的直四棱柱ABCD﹣A1B1C1D1中,P是面A1B1C1D1上的动点.给出以下四个结论中,正确的个数是()①与点D距离为的点P形成一条曲线,则该曲线的长度是;②若DP∥面ACB1,则DP与面ACC1A1所成角的正切值取值范围是;③若,则DP在该四棱柱六个面上的正投影长度之和的最大值为.A.0 B.1 C.2 D.3二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)直线的倾斜角为.14.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为.15.(5分)已知直线l:x+y﹣6=0和圆M:x2+y2﹣2x﹣2y﹣2=0,点A在直线l 上,若直线AC与圆M至少有一个公共点C,且∠MAC=30°,则点A的横坐标的取值范围为.16.(5分)已知m,n,s,t∈R+,m+n=2,,其中m、n是常数,当s+t 取最小值时,m、n对应的点(m,n)是双曲线一条弦的中点,则此弦所在的直线方程为.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程mx2﹣2x+1=0有实数解”.若“p∨q”为真,“¬q”为假,则实数m的取值范围.18.(12分)已知线段AB的端点B在圆C1:x2+(y﹣4)2=16上运动,端点A的坐标为(4,0),线段AB中点为M,(Ⅰ)试求M点的轨C2方程;(Ⅱ)若圆C1与曲线C2交于C,D两点,试求线段CD的长.19.(12分)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB 的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B﹣DEG 的体积.20.(12分)已知点F为抛物线C:y2=4x的焦点,点P是准线l上的动点,直线PF交抛物线C于A,B两点,若点P的纵坐标为m(m≠0),点D为准线l与x 轴的交点.(Ⅰ)求直线PF的方程;(Ⅱ)求△DAB的面积S范围;(Ⅲ)设,,求证λ+μ为定值.21.(12分)如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面,平面ABCD∩平面ABPE=AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.(Ⅰ)设点M为棱PD中点,求证:EM∥平面ABCD;(Ⅱ)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.22.(12分)在平面直角坐标系xOy内,动点P到定点F(﹣1,0)的距离与P到定直线x=﹣4的距离之比为.(1)求动点P的轨迹C的方程;(2)设点A、B是轨迹C上两个动点,直线OA、OB与轨迹C的另一交点分别为A1、B1,且直线OA、OB的斜率之积等于,问四边形ABA1B1的面积S是否为定值?请说明理由.2022-2023晋中市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)命题“∃x>0,使2x>3x”的否定是()A.∀x>0,使2x≤3x B.∃x>0,使2x≤3x C.∀x≤0,使2x≤3x D.∃x ≤0,使2x≤3x【解答】解:命题是特称命题,则命题的否定是全称命题,即∀x>0,使2x≤3x,故选:A2.(5分)双曲线=1的渐近线方程为()A.y=±B.y=±x C.y=±x D.y=±x【解答】解:由题意,a=4,b=3,渐近线方程为y=±x,故选C.3.(5分)在正方体ABCD﹣A1B1C1D1中,E,F分别为棱AB,BB1的中点,则直线BC1与EF所成角的余弦值是()A.B.C.D.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,则E(2,1,0),F(2,2,1),B(2,2,0),C1(0,2,2),=(﹣2,0,2),=(0,1,1),设直线BC1与EF所成角为θ,则cosθ=|cos<,>|===.∴直线BC1与EF所成角的余弦值是.故选:B.4.(5分)已知直线l1:ax+(a+2)y+1=0,l2:x+ay+2=0,则“l1∥l2”是“a=﹣1”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵直线l1:ax+(a+2)y+1=0,l2:x+ay+2=0,且l1∥l2,∴a2﹣a﹣2=0,解得:a=2或a=﹣1,故a=2或a=﹣1是a=﹣1的必要不充分条件,故选:B.5.(5分)已知a、b、c为三条不重合的直线,下面有三个结论:①若a⊥b,a ⊥c则b∥c;②若a⊥b,a⊥c则b⊥c;③若a∥b,b⊥c则a⊥c.其中正确的个数为()A.0个 B.1个 C.2个 D.3个【解答】解:两条直线都与第三条直线垂直,只两条直线之间的位置关系不能确定,故①②不正确,若a∥b,b⊥c则a⊥c,这里符合两条直线的关系,是我们求两条直线的夹角的方法,故③正确,综上可知有一个正确的说法,故选B.6.(5分)设点P为椭圆上一点,F1,F2分别为C的左、右焦点,且∠F1PF2=60°,则△PF1F2的面积为()A.B.C.D.【解答】解:∵椭圆,∴b=2,c=.又∵P为椭圆上一点,∠F1PF2=60°,F1、F2为左右焦点,∴|F1P|+|PF2|=2a,|F1F2|=2,∴|F1F2|2=(|PF1|+|PF2|)2﹣2|F1P||PF2|﹣2|F1P|•|PF2|cos60°=4a2﹣3|F1P|•|PF2|=4a2﹣16,∴|F1P|•|PF2|=.∴=|F1P|•|PF2|sin60°=××=.故选:C.7.(5分)已知点F为抛物线y 2=﹣8x的焦点,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且|AF|=4,则|PA|+|PO|的最小值为()A.6 B.C.D.4+2【解答】解:∵|AF|=4,由抛物线的定义得,∴A到准线的距离为4,即A点的横坐标为﹣2,又点A在抛物线上,∴从而点A的坐标A(﹣2,4);坐标原点关于准线的对称点的坐标为B(4,0)则|PA|+|PO|的最小值为:|AB|==故选C.8.(5分)已知圆O为Rt△ABC的外接圆,AB=AC,BC=4,过圆心O的直线l交圆O于P,Q两点,则的取值范围是()A.[﹣8,﹣1]B.[﹣8,0]C.[﹣16,﹣1]D.[﹣16,0]【解答】解:【解法一】以O为坐标原点,BC所在的直线为x轴,BC的中垂线为y轴,建立直角坐标系,如图所示;在Rt△ABC中,AB=AC,BC=4,所以△ABC的外接圆圆心是BC的中点,半径为r=BC=2,所以A(0,2),B(﹣2,0),C(2,0),圆O的方程为:x2+y2=4;当直线PQ的斜率不存在时,有P(0,2),Q(0,﹣2),=(2,2),=(﹣2,﹣2),则•=﹣4﹣4=﹣8;当直线PQ的斜率存在时,设直线l为:y=kx,代入圆的方程可得P(﹣,﹣),Q(,),则=(2﹣,﹣),=(﹣2,),所以•=(2﹣)(﹣2)+(﹣)=﹣8+,由1+k2≥1可得0<≤8,所以﹣8<﹣8+≤0;又题目中没有要求P、Q的具体位置,所以P、Q坐标互换时,比如,当k=0时,若P(2,0),Q(﹣2,0),则向量=(4,0),向量=(﹣4,0),所以•=﹣16.故选:D.【解法二】以O为坐标原点,BC所在的直线为x轴,BC的中垂线为y轴,建立直角坐标系,如图所示;在Rt△ABC中,AB=AC,BC=4,所以△ABC的外接圆圆心是BC的中点,半径为r=BC=2,所以A(0,2),B(﹣2,0),C(2,0),圆O的方程为:x2+y2=4;设P(2sinθ,2cosθ),Q(﹣2sinθ,﹣2cosθ),把转化为三角函数计算更简单.9.(5分)过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.10.(5分)在四面体S﹣ABC中,,二面角S﹣AC ﹣B的余弦值为,则该四面体外接球的表面积是()A.B.C.24πD.6π【解答】解:取AC中点D,连接SD,BD,因为AB=BC=,所以BD⊥AC,因为SA=SC=2,所以SD⊥AC,AC⊥平面SDB.所以∠SDB为二面角S﹣AC﹣B.在△ABC中,AB⊥BC,AB=BC=,所以AC=2.取等边△SAC的中心E,作EO⊥平面SAC,过D作DO⊥平面ABC,O为外接球球心,所以ED=,二面角S﹣AC﹣B的余弦值是﹣,所以cos∠EDO=,OD=,所以BO==OA=OS=OC所以O点为四面体的外接球球心,其半径为,表面积为6π.故选:D.11.(5分)在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,若对任意x∈(0,1)不等式t<e1+e2恒成立,则t的最大值为()A.B.C.2 D.【解答】解:在等腰梯形ABCD中,BD2=AD2+AB2﹣2AD•AB•cos∠DAB=1+4﹣2×1×2×(1﹣x)=1+4x,由双曲线的定义可得a1=,c1=1,e1=,由椭圆的定义可得a2=,c2=x,e2=,则e1+e2=+=+,令t=∈(0,﹣1),则e1+e2=(t+)在(0,﹣1)上单调递减,所以e1+e2>×(﹣1+)=,故选:B.12.(5分)已知底面为边长为2的正方形,侧棱长为1的直四棱柱ABCD﹣A1B1C1D1中,P是面A1B1C1D1上的动点.给出以下四个结论中,正确的个数是()①与点D距离为的点P形成一条曲线,则该曲线的长度是;②若DP∥面ACB1,则DP与面ACC1A1所成角的正切值取值范围是;③若,则DP在该四棱柱六个面上的正投影长度之和的最大值为.A.0 B.1 C.2 D.3【解答】解:如图,①错误,与点D距离为的点P形成以D1为圆心,半径为的圆弧MN,长度为=;②错误,因为面A1DC1∥面ACB1,所以点P必须在面对角线A1C1上运动,当P 在A1(或C1)时,DP与面ACC1A1所成角∠DA1O(或∠DC1O)的正切值为最小,当P在O1时,DP与面ACC1A1所成角∠DO1O的正切值为最大,所以正切值取值范围是;③正确,设P(x,y,1),则x2+y2+1=3,即x2+y2=2,DP在前后、左右、上下面上的正投影长分别为,所以六个面上的正投影长度之和为,当且仅当P在O1时取等号.故选B.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)直线的倾斜角为150°.【解答】解:由题意化直线的方程为斜截式y=x﹣,可得直线的斜率为,设直线的倾斜角为α,则tanα=,可得α=150°故答案为:150°14.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为16.【解答】解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥O﹣ABCD,正方体的棱长为4,O、A、D分别为棱的中点,∴OD=2,AB=DC=OC=2,做OE⊥CD,垂足是E,∵BC⊥平面ODC,∴BC⊥OE、BC⊥CD,则四边形ABCD是矩形,∵CD∩BC=C,∴OE⊥平面ABCD,∵△ODC的面积S==6,∴6=,得OE=,∴此四棱锥O﹣ABCD的体积V==16,故答案为16.15.(5分)已知直线l:x+y﹣6=0和圆M:x2+y2﹣2x﹣2y﹣2=0,点A在直线l 上,若直线AC与圆M至少有一个公共点C,且∠MAC=30°,则点A的横坐标的取值范围为[1,5] .【解答】解:如图,设点A的坐标为(x0,6﹣x0),圆心M到直线AC的距离为d,则d=|AM|sin30°,∵直线AC与⊙M有交点,∴d=|AM|sin30°≤2,∴(x0﹣1)2+(5﹣x0)2≤16,∴1≤x0≤5,故答案为[1,5].16.(5分)已知m,n,s,t∈R+,m+n=2,,其中m、n是常数,当s+t 取最小值时,m、n对应的点(m,n)是双曲线一条弦的中点,则此弦所在的直线方程为x﹣2y+1=0.【解答】解:由已知得=,由于s+t的最小值是,因此,又m+n=2,所以m=n=1.设以点(m,n)为中点的弦的两个端点的坐标分别是(x1,y1),(x2,y2),则有①.又该两点在双曲线上,则有,,两式相减得②,把①代入②得,即所求直线的斜率是,所求直线的方程是,即x﹣2y+1=0.故答案为x﹣2y+1=0三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程mx2﹣2x+1=0有实数解”.若“p∨q”为真,“¬q”为假,则实数m的取值范围.【解答】解:∵直线x+y﹣m=0与圆(x﹣1)2+y2=1相交,∴(1,0)到x+y﹣m=0的距离小于1,即<1,解得:1﹣<1+,故p:m∈(1﹣,1+);m=0时,方程mx2﹣2x+1=0有实数解,m≠0时,若方程mx2﹣2x+1=0有实数解,则△=4﹣4m≥0,解得:m≤1,故q:m∈(﹣∞,1],若“p∨q”为真,“¬q”为假,则p真q真或p假q真,故m∈(﹣∞,1].18.(12分)已知线段AB的端点B在圆C1:x2+(y﹣4)2=16上运动,端点A的坐标为(4,0),线段AB中点为M,(Ⅰ)试求M点的轨C2方程;(Ⅱ)若圆C1与曲线C2交于C,D两点,试求线段CD的长.【解答】解:(Ⅰ)设M(x,y),B(x′,y′),则由题意可得:,解得:,∵点B在圆C1:x2+(y﹣4)2=16上,∴(x′)2+(y′﹣4)2=16,∴(2x﹣4)2+(2y﹣4)2=16,即(x﹣2)2+(y﹣2)2=4.∴轨迹C2方程为(x﹣2)2+(y﹣2)2=4;(Ⅱ)由方程组,解得直线CD的方程为x﹣y﹣1=0,圆C1的圆心C1(0,4)到直线CD的距离为,圆C1的半径为4,∴线段CD的长为.19.(12分)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB 的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B﹣DEG 的体积.【解答】解:(1)取AC的中点P,连接DP,因为在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,所以∠A=30°,△ADC是等腰三角形,所以DP⊥AC,DP=,∠DCP=30°,∠PDC=60°,又点E在线段AC上,CE=4.所以AE=2,EP=1,所以∠EDP=30°,∴∠EDC=90°,∴ED⊥DC;∵将△BCD沿CD折起,使得平面BCD⊥平面ACD,平面BDC∩平面EDC=DC∴DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,G为EC的中点,此时AE=EG=GC=2,因为在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,所以BD=,DC=,所以B到DC的距离h===,因为平面BCD⊥平面ACD,平面BDC∩平面EDC=DC,所以B到DC的距离h就是三棱锥B﹣DEG的高.三棱锥B﹣DEG的体积:V====.20.(12分)已知点F为抛物线C:y2=4x的焦点,点P是准线l上的动点,直线PF交抛物线C于A,B两点,若点P的纵坐标为m(m≠0),点D为准线l与x 轴的交点.(Ⅰ)求直线PF的方程;(Ⅱ)求△DAB的面积S范围;(Ⅲ)设,,求证λ+μ为定值.【解答】解:(Ⅰ)由题知点P,F的坐标分别为(﹣1,m),(1,0),于是直线PF的斜率为,所以直线PF的方程为,即为mx+2y﹣m=0.(3分)(Ⅱ)设A,B两点的坐标分别为(x1,y1),(x2,y2),由得m2x2﹣(2m2+16)x+m2=0,所以,x1x2=1.于是.点D到直线mx+2y﹣m=0的距离,所以.因为m∈R且m≠0,于是S>4,所以△DAB的面积S范围是(4,+∞).(9分)(Ⅲ)由(Ⅱ)及,,得(1﹣x1,﹣y1)=λ(x2﹣1,y2),(﹣1﹣x1,m﹣y1)=μ(x2+1,y2﹣m),于是,(x2≠±1).所以.所以λ+μ为定值0.(14分)21.(12分)如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面,平面ABCD∩平面ABPE=AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.(Ⅰ)设点M为棱PD中点,求证:EM∥平面ABCD;(Ⅱ)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.【解答】(Ⅰ)证明:∵平面ABCD⊥平面ABEP,平面ABCD∩平面ABEP=AB,BP ⊥AB∴BP⊥平面ABCD,又AB⊥BC,∴直线BA,BP,BC两两垂直,以B为原点,分别以BA,BP,BC为x轴,y轴,z轴建立如图所示的空间直角坐标系.则P(0,2,0),B(0,0,0),D(2,0,1),E(2,1,0),C(0,0,1),∴M(1,1,),∴=(﹣1,0,),=(0,2,0).∵BP⊥平面ABCD,∴为平面ABCD的一个法向量,∵=﹣1×0+0×2+=0,∴⊥.又EM⊄平面ABCD,∴EM∥平面ABCD.(Ⅱ)解:当点N与点D重合时,直线BN与平面PCD所成角的正弦值为.理由如下:∵=(2,﹣2,1),=(2,0,0),设平面PCD的法向量为=(x,y,z),则.令y=1,得=(0,1,2).假设线段PD上存在一点N,使得直线BN与平面PCD所成角α的正弦值等于.设=λ=(2λ,﹣2λ,λ)(0≤λ≤1),∴=+=(2λ,2﹣2λ,λ).∴|cos<,>|==.∴9λ2﹣8λ﹣1=0,解得λ=1或(舍去).∴当N点与D点重合时,直线BN与平面PCD所成角的正弦值等于.22.(12分)在平面直角坐标系xOy内,动点P到定点F(﹣1,0)的距离与P 到定直线x=﹣4的距离之比为.(1)求动点P的轨迹C的方程;(2)设点A、B是轨迹C上两个动点,直线OA、OB与轨迹C的另一交点分别为A1、B1,且直线OA、OB的斜率之积等于,问四边形ABA1B1的面积S是否为定值?请说明理由.【解答】解:(1)设P(x,y),由题意可得,,化简得3x2+4y2=12,所以,动点P的轨迹C的方程为.(2)设A(x1,y1),B(x2,y2),由,得,,因为点A、B在椭圆C上,所以,,所以,=,化简得.①当x1=x2时,则四边形ABA1B1为矩形,y2=﹣y1,则,由,得,解得,,S=|AB|•|A1B|=4|x1||y1|=;②当x1≠x2时,直线AB的方向向量为,直线AB的方程为(y2﹣y1)x﹣(x2﹣x1)y+x2y1﹣x1y2=0,原点O到直线AB的距离为,所以△AOB的面积,根据椭圆的对称性,四边形ABA1B1的面积S=4S△AOB=2|x1y2﹣x2y1|,所以,=,所以.所以,四边形ABA1B1的面积为定值.。
2022-2023学年陕西省咸阳市高二上学期期末数学(理)试题一、单选题1.命题“30,31x x x ∃>≥+”的否定是( ) A .30,31x x x ∃><+ B .30,31x x x ∀<≥+ C .30,31x x x ∀><+ D .30,31x x x ∃<<+【答案】C【分析】直接根据特称命题的否定是全称命题得答案. 【详解】命题“30,31x x x ∃>≥+”的否定是30,31x x x ∀><+. 故选:C.2.若椭圆2213620x y +=上一点P 到右焦点的距离为5,则它到左焦点的距离为( )A .31B .15C .7D .1【答案】C【分析】由椭圆的定义:动点到两定点的距离之和为定值常数.即可得出答案.【详解】椭圆2213620x y +=中,2366a a =⇒=,记椭圆2213620x y +=的左焦点为1F ,右焦点为2F ,则25PF =,由椭圆的定义可知:12212PF PF a +==, 所以11257PF =-=, 故选:C.3.已知01,0a b <<<,则下列大小关系正确的是( ) A .2ab b a b << B .2b ab a b <<C .2b a b ab <<D .2a b b ab <<【答案】B【分析】根据不等式性质,不等式两边同时乘负数,改变不等号,不等式两边同时乘正数,不改变不等号,可得答案.【详解】对于A ,因为01,0a b <<<,所以ab >b ,故错误;对于B ,因为01,0a b <<<,所以ab >b ,又因为0a <,所以2a b ab >, 则2b ab a b <<,故正确;易知C ,D 错误.4.已知0x >,0y >,若41x y +=,则()()411x y ++的最大值为( ). A .94B .14C .34D .1【答案】A【分析】由基本不等式求最大值.【详解】()()()()2411941124x y x y +++⎡⎤++≤=⎢⎥⎣⎦, 当且仅当41141x y x y +=+⎧⎨+=⎩,即18x,12y =时,等号成立.故选:A .5.如图,在平行六面体1111ABCD A B C D -中,设1,,AB a AD b AA c ===,则1BD =( )A .a b c ++B .a b c -++C .a b c -+D .a b c +-【答案】B【分析】根据空间向量线性运算求解即可. 【详解】连接1AD ,如图所示:111BD AD AB AA AD AB c b a =-=+-=+-.6.已知{}n a 是递增的等比数列,且20a <,则其公比q 满足( ) A .1q <- B .10q -<< C .1q > D .01q <<【答案】D【分析】先确定0q >,由20a <得10a <,根据{}n a 的单调性确定q 的取值范围.【详解】{}n a 是等比数列,故11n n a a q -=,当0q <时, {}n a 各项正负项间隔,为摆动数列,故0q >,显然1q ≠,由120a a q =<得10a <,又{}n a 是递增的等比数列,故{}1n q -为递减数列,由指数函数的单调性知01q <<.故选:D7.已知抛物线2:2(0)C y px p =>的焦点为F ,点()03,A y 在抛物线C 上,O 为坐标原点,若6AF =,则OA =( )A .3B .C .6D .【答案】B【分析】根据焦半径公式求出p ,从而可求得0y ,再根据两点间的距离公式即可得解. 【详解】解:由题意可得362pAF =+=,解得6p , 则2026336y =⨯⨯=,故OA 故选:B.8.已知a ∈R ,则“6a >”是“236a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】由充分条件、必要条件的定义判断即可得解. 【详解】由题意,若6a >,则236a >,故充分性成立; 若236a >,则6a >或6a <-,推不出6a >,故必要性不成立; 所以“6a >”是“236a >”的充分不必要条件.故选:A.9.若变量x y ,满足约束条件+4200x y x y x y ≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩,则2z x y =+的最大值为( )A .2B .7C .8D .10【答案】B【分析】根据约束条件,作图表示可行域,根据目标函数的几何意义,可得答案. 【详解】在平面直角坐标系内,可行解域如下图所示:平移直线2y x z =-+,在可行解域内,经过B 点时,直线2y x z =-+在纵轴上的截距最大,解二元一次方程组:()+=4=331=2=1x y x B z x y y ⇒∴-⎧⎧⎨⎨⎩⎩,,,的最大值为2317⨯+=, 故选:B.10.2022年11月30日7时33分,神舟十五号3名航天员顺利进驻中国空间站,与神舟十四号航天员乘组首次实现“太空会师”,一般来说,航天器绕地球运行的轨道近似看作为椭圆,其中地球的球心是这个椭圆的一个焦点,我们把椭圆轨道上距地心最近(远)的一点称作近(远)地点,近(远)地点与地球表面的距离称为近(远)地点高度.已知中国空间站在一个椭圆轨道上飞行,它的近地点高度约为351km ,远地点高度约为385km ,地球半径约为6400km ,则该轨道的离心率约为( ) A .176768B .17368C .385736D .678513536【答案】A【分析】根据题意求出,a c 即可求解.【详解】由题可知,38564006785a c +=+=,35164006751a c -=+=,解得6768,17a c ==,所以离心率为176768c a =, 故选:A.11.已知数列{}n a ,定义数列{}12n n a a +-为数列{}n a 的“2倍差数列”.若{}n a 的“2倍差数列”的通项公式1122n n n a a ++-=,且12a =,则数列{}n a 的前n 项和n S =( )A .()1122n n +-+ B .122n n +⋅-C .()122nn -+ D .()122nn +-【答案】A【分析】由1122n n n a a ++-=可得11122n n n n a a ++-=,从而得数列2n n a ⎧⎫⎨⎬⎩⎭表示首项为1,公差1d =的等差数列,求得2nn a n =⋅,再根据错位相减法即可得n S .【详解】根据题意得11122,2n n n a a a ++-==,11122n nn na a ++∴-=, ∴数列2nn a ⎧⎫⎨⎬⎩⎭表示首项为1,公差1d =的等差数列, ()11,22n nn n a n n a n ∴=+-=∴=⋅, 123122232...2n n S n ∴=⨯+⨯+⨯++⋅, 23412122232...2n n S n +∴=⨯+⨯+⨯++⋅, 23412222...22n n n S n +∴-=++++-⋅()111212222212n n n n n n +++-=-⋅=-+-⋅-,()1212n n +=-+-,()1122n n S n +∴=-+.故选:A.12.已知12,F F 为双曲线22221(0,0)x y a b a b -=>>的左、右焦点,过1F 作b y x a=-的垂线分别交双曲线的左、右两支于,B C 两点(如图).若22CBF CF B ∠∠=,则双曲线的渐近线方程为( )A .3y x =B .2y x =C .)31y x =±D .)31=±y x【答案】C【分析】根据已知条件和双曲线的定义可求得12BF a =,24BF a =,再在12BF F △中运用余弦定理建立关于a ,b ,c 的方程,可求得双曲线的渐近线方程得选项.【详解】解:由22CBF CF B ∠∠=,设2BC CF m ==,由122CF CF a -=得,12BF a =,所以24BF a =,2222221122121124416cos 28BF F F BF a c a BF F BF F F ac∠++-+-==⋅⋅,又112tan F C a k BF F b ∠==得12cos b BF F c ∠=,22244168a c a bac c+-∴=,令1a =,化简得:2220b b --=,得13b =)31y x =±,故选:C.二、填空题13.已知空间向量()6,3,1a =-与()3,,b x y =共线,则x y -=______. 【答案】2-【分析】根据空间向量共线坐标表示列方程求解,x y 的值,即可得x y -的值.【详解】空间向量()6,3,1a =-与()3,,b x y =共线,则存在实数λ,使得a b λ=,则6331x y λλλ=⎧⎪-=⎨⎪=⎩,解得312,,22x y λ==-=,所以31222x y -=--=-.14.写出一个离心率为22的双曲线方程为___________.【答案】2217y x -=(答案不唯一)【分析】根据题意,由双曲线的离心率公式可得22c e a==,即22c a =,假设双曲线的焦点在x 轴且1a =,求出双曲线的标准方程,即可得答案.【详解】根据题意,要求双曲线的离心率22c e a==,则22c a =, 若双曲线的焦点在x 轴,令1a =,则22c =,227b c a =-=,则要求双曲线的方程为2217y x -=,故答案为:2217y x -= (其他符合的也对)15.已知命题[]:1,4,4ap x x x ∃∈+>是假命题,则实数a 的取值范围是___________.【答案】(,0]-∞【分析】将问题等价转化为[1,4]x ∀∈,4ax x+≤恒成立,利用二次函数的性质即可求解.【详解】命题[]:1,4,4ap x x x ∃∈+>是假命题,即命题[1,4]x ∀∈,4ax x+≤是真命题,也即24a x x ≤-+在[1,4]上恒成立, 令22()4(2)4f x x x x =-+=--+,因为[1,4]x ∈,所以当4x =时函数取最小值, 即min ()(4)0f x f ==,所以0a ≤, 故答案为:(,0]-∞.16.《墨经·经说下》中有这样一段记载:“光之人,煦若射,下者之人也高,高者之人也下,足蔽下光,故成景于上;首蔽上光,故成影于下.在远近有端,与于光,故景库内也.”这是中国古代对小孔成像现象的第一次描述.如图为一次小孔成像实验,若物距:像距236:1,12,cos 32OA OB A OB ∠===='',则像高为___________.【答案】32##1.5【分析】利用余弦定理求得9AB =,再根据物距∶像距61=∶,即可求得答案. 【详解】由 23cos 32A OB ''∠=,则23cos 32AOB ∠=,又12OA OB ==,则2222323228821212813232AB OA OB OA OB +-⨯⨯⨯=-=⨯⨯⨯=, 即9AB =,又物距∶像距61=∶, 则1362A B AB ''=⨯=,即像高为32,故答案为:32.三、解答题17.设函数2()6,f x ax ax a =-++∈R .(1)当1a =时,求关于x 的不等式()0f x <的解集;(2)若关于x 的不等式()0f x >的解集为R ,求实数a 的取值范围. 【答案】(1){|2x x <-或3}x > (2)(24,0]-【分析】(1)由一元二次不等式的解法求解, (2)由题意列不等式组求解,【详解】(1)当1a =时,260x x -++<,即260x x -->, 即(2)(3)0x x +->,解得<2x -或3x >,所以当1a =时,不等式()0f x <的解集为{|2x x <-或3}x >. (2)当0a =时,()0f x >的解集为R ,满足题意;当0a ≠时,由20240a a a ->⎧⎨+<⎩,解得240a -<<,综上,实数a 的取值范围是(24,0]-.18.已知{}n a 是公差不为0的等差数列,11a =,且1a 、2a 、5a 成等比数列. (1)求数列{}n a 的通项公式; (2)设2n b =,求数列{}b 的前n 项和n S .【答案】(1)21n a n =- (2)221n nS n =+【分析】(1)设等差数列{}n a 的公差为d ,根据题中条件可得出关于d 的等式,解出d 的值,再利用等差数列的通项公式即可求得n a 的表达式;(2)求出数列{}n b 的通项公式,利用裂项相消法可求得n S .【详解】(1)设等差数列{}n a 的公差为d ,11a =,则21a d =+,514a d =+,且0d ≠, 又因为1a 、2a 、5a 成等比数列,所以()2114d d +=+,即220d d -=, 又0d ≠,解得2d =, 所以()12121n a n n =+-=-. (2)由(1)知()()21121212121n b n n n n ==--+-+, 所以111111112113355721212121n n S n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭. 19.在三角形ABC 中,内角,,A B C 所对的边分别为,,a b c ,cos cos 2sin a C c Ab B+= (1)求B ;(2)若B 为锐角,6A π=,BC 边上的中线长AD =ABC 的面积.【答案】(1)6B π=或56π;【分析】⑴利用正弦定理进行边角互换,再结合()sin sin A C B +=求出B ; ⑵在三角形ACD 中利用余弦定理求出边AC ,再利用三角形的面积公式求面积. 【详解】(1)在△ABC 中,因为,cos cos 2sin a C c Ab B+=由正弦定理得sin cos sin cos 2sin sin 0A C C A B B +-=,所以sin()2sin sin 0A C B B +-=,即sin (12sin )0B B -=,又因为sin 0B ≠,所以1sin 2B =, 因为B 是三角形的内角,所以6B π=或56π. (2)因为B 为锐角,所以B π=,△ABC 为等腰三角形,2C π=,在△ABC 中,设AC =BC =2x ,在△ADC 中,由余弦定理得222222cos773AD AC DC AC DC x π=+-⋅==, 解得x =1,所以AC =BC =2,所以1sin 32ABCS AC BC C =⋅⋅=, 所以三角形的面积为3.20.如图四棱锥S ABCD -的底面是直角梯形,//AB CD ,AD DC ⊥,SD ⊥平面ABCD ,点M 是SA 的中点,22AD SD CD AB ====.用空间向量知识解答下列问题:(1)求证:DM ⊥平面SAB ; (2)求平面SAB 与平面SBC 的夹角. 【答案】(1)证明见解析(2)π4【分析】(1)以D 为原点,DA ,DC ,DS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,利用空间坐标运算证明线面垂直即可;(2)由(1)确定平面平面SAB 与平面SBC 的法向量,根据坐标运算即可求得面面夹角的大小. 【详解】(1)证明:AD DC ⊥,SD ⊥平面ABCD ,则DA ,DC ,DS 两两垂直,如图,以D 为原点,DA ,DC ,DS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()0,0,0D ,()2,0,0A ,()2,1,0B ,()0,2,0C ,()0,0,2S ,()1,0,1M . ∴()1,0,1DM =,()2,0,2SA =-,()0,1,0AB =.∴()2020DM SA ⎧⋅=++-=⎪,∴DM SA ⊥,DM AB ⊥,又SA AB A ⋂=,SA ,AB ⊂平面SAB ,∴DM ⊥平面SAB .(2)由(1)知DM 为平面SAB 的一个法向量,()0,2,2SC =-,()2,1,0BC =-.设平面SBC 的法向量为(),,m x y z =,则02202020SC m y z y z x y y x BC m ⎧⋅=-==⎧⎧⎪⇒⇒⎨⎨⎨-+==⋅=⎩⎩⎪⎩,令1x =,则2y =,2z =. ∴平面SBC 的一个法向量为()1,2,2m =.∴11o ,c s m DMm DM m DM ⋅⨯===∴平面SAB 与平面SBC 的夹角为π4. 21.已知椭圆222:1(1)x C y a a +=>的左,右焦点分别为12,F F (1)求椭圆C 的方程;(2)椭圆C 上是否存在点P 使得12PF PF ⊥?若存在,求12PF F △的面积,若不存在,请说明理由.【答案】(1)2214x y += (2)存在,面积为1【分析】(1)根据椭圆中,,a b c 的关系求解;(2)根据12PF PF ⊥可得22003x y +=,联立220022003,1,4x y x y ⎧+=⎪⎨+=⎪⎩可求出0y ,进而可求面积. 【详解】(1)椭圆222:1(1)x C y a a +=>=,解得24a =. ∴椭圆C 的方程为2214x y +=. (2)由(1)知())12,F F, 假设椭圆C 上存在点00(,)P x y ,使得12PF PF ⊥, 则())120000,,0PF PF x y x y ⋅=--⋅-=,即22003x y +=, 联立220022003,1,4x y x y ⎧+=⎪⎨+=⎪⎩解得220081,33x y ==. ∴椭圆C 上存在点P 使得12PF PF ⊥.1212011122PF F S F F y ∴==⨯=. 22.已知抛物线T 的顶点在坐标原点,焦点与圆F :22()1x y a +-=(14a >)的圆心重合,T 上一点()1,M m 到焦点F 的距离54FM =. (1)求抛物线T 的方程; (2)过焦点F 的直线l 与抛物线T 和圆F 从左向右依次交于A ,B ,C ,D 四点,且满足22218AB BC CD ++=,求直线l 的方程. 【答案】(1)24x y =(2)1y =+【分析】(1)根据圆心即抛物线焦点位置,设抛物线标准方程为24x ay =,再利用点()1,M m 在抛物线上和抛物线定义建立方程组,解出a 与m 即可;(2)由BC 为圆F 的直径,BF 、CF 为圆F 的半径,将22218AB BC CD ++=化为()()22218AF BF BC DF CF -++-=,再设直线方程,与抛物线方程联立后,根据A ,D 坐标利用抛物线定义进行求解.【详解】(1)∵14a >,∴圆F :22()1x y a +-=(14a >)的圆心()0,F a 在y 轴正半轴, ∴设抛物线T 的标准方程为24x ay =,准线方程为y a =-,∵()1,M m 在抛物线T 上,∴214am =又∵M 到焦点F 的距离54FM =,∴()1,M m 到准线y a =-的距离54d m a =+=, ∴1=454am m a ⎧⎪⎨+=⎪⎩,∵14a >,∴解得114a m =⎧⎪⎨=⎪⎩, ∴抛物线T 的方程为24x y =.(2)由(1),圆F :22(1)1y x +-=, 由题意,BC 为圆F 的直径,2BC =,BF 、CF 为圆F 的半径,1BF CF ==, ∵22218AB BC CD ++=,∴()()22218AF BF BC DF CF -++-=, ∴()()2214118AF DF -++-=,设()11,A x y ,()22,D x y ,由抛物线定义,11AF y =+,21DF y =+,∴()()22121141118y y +-+++-=,即221214y y +=, 由题意,直线l 的斜率存在,∴设直线l 的方程为1y kx =+,由214y kx x y =+⎧⎨=⎩,消去x ,整理得()224210y k y -++=(0∆>),∴21242y y k +=+,121y y =.∴()()22222121212242214y y y y y y k +=+-=+-=,解得k =.∴直线l 的方程为1y =+. 【点睛】在解决抛物线焦点弦有关的问题时,常常会使用抛物线的定义.本题利用已知条件中圆的半径和直径,将22218AB BC CD ++=转化为()()22218AF BF BC DF CF -++-=即()()2214118AF DF -++-=,再根据抛物线定义转化为221214y y +=,从而使问题可以通过联立直线与抛物线方程解决.。
贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.164.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s27.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.28810.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.13.(4分)下列四个结论,其中正确的有.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样考点:分层抽样方法.专题:阅读型.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:因为x2+y2=0,可得x,y=0,再根据充要条件的定义进行判断;解答:解:∵xy=0,或者x=0,或y=0或x=y=0;∵x2+y2=0,可得x=y=0,∵“x2+y2=0”⇒“xy=0”;∴“xy=0”是“x2+y2=0”的必要不充分条件,故选B;点评:此题主要考查充分条件和必要条件的定义,是一道基础题,考查的知识点比较单一.3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.16考点:循环结构.专题:计算题.分析:将二进制数转化为十进制数,可以用每个数位上的数字乘以对应的权重,累加后,即可得到答案.解答:解:将二进制数1100化为十进制数为:1100(2)=1×23+1×2+1=11.故选C.点评:本题考查的知识点是不同进制之间的转换,其中其它进制转为十进制方法均为累加数字×权重,十进制转换为其它进制均采用除K求余法.4.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:计算题.分析:由题设条件,先判断出命题p:∃x∈R,x﹣2>lgx是真命题,命题q:∀x∈R,x2>0是假命题,再判断复合命题的真假.解答:解:当x=10时,10﹣2=8>lg10=1,故命题p:∃x∈R,x﹣2>lgx是真命题;当x=0时,x2=0,故命题q:∀x∈R,x2>0是假命题,∴题pVq是真命题,命题p∧q是假命题,命题pV(¬q)是真命题,命题p∧(¬q)是真命题,故选D.点评:本题考查复合命题真假的判断,是基础题.解题时要认真审题,仔细解答.5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.考点:抛物线的简单性质;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线的标准方程,算出抛物线的焦点F(1,0).由双曲线标准方程,算出它的渐近线方程为y=±x,化成一般式得:,再用点到直线的距离公式即可算出所求距离.解答:解:∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==故选:B点评:本题给出抛物线方程与双曲线方程,求抛物线的焦点到双曲线的渐近线的距离,着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于基础题.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s2考点:茎叶图;众数、中位数、平均数.专题:概率与统计.分析:根据茎叶图中的数据,求出两组的平均数与标准差即可.解答:解:根据茎叶图中的数据,得;1组的平均数是=(53+56+57+58+61+70+72)=61,方差是=[(53﹣61)2+(56﹣61)2+(57﹣61)2+(58﹣61)2+(61﹣61)2+(70﹣61)2+(72﹣61)2]=,标准差是s1=;2组的平均数是=(54+56+58+60+61+72+73)=62,方差是=[(54﹣62)2+(56﹣62)2+(58﹣62)2+(60﹣62)2+(61﹣62)2+(72﹣62)2+(73﹣62)2]=,标准差是s2=;∴<,s1<s2.故选:D.点评:本题考查了利用茎叶图中的数据,求平均数与方差、标准差的应用问题,是基础题目.7.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.考点:椭圆的定义.专题:计算题.分析:根据|F1F2|是|PF1|与|PF2|的等差中项,得到2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,得到点P在以F1,F2为焦点的椭圆上,已知a,c的值,做出b的值,写出椭圆的方程.解答:解:∵F1(﹣1,0)、F2(1,0),∴|F1F2|=2,∵|F1F2|是|PF1|与|PF2|的等差中项,∴2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,∴点P在以F1,F2为焦点的椭圆上,∵2a=4,a=2c=1∴b2=3,∴椭圆的方程是故选C.点评:本题考查椭圆的方程,解题的关键是看清点所满足的条件,本题是用定义法来求得轨迹,还有直接法和相关点法可以应用.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)考点:线性回归方程.专题:计算题;概率与统计.分析:求出x、y的平均值,回归直线方程一定过样本的中心点(,),代入可得答案.解答:解:回归直线方程一定过样本的中心点(,),==,==4,∴样本中心点是(,4),则y与x的线性回归方程y=bx+a必过点(,4),故选:A.点评:本题考查平均值的计算方法,回归直线的性质:回归直线方程一定过样本的中心点(,).9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.288考点:程序框图.专题:图表型;算法和程序框图.分析:根据所给数值执行循环语句,然后判定是否满足判断框中的条件,一旦满足条件就退出循环,输出结果.解答:解:模拟执行程序框图,可得k=1,S=0S=2,k=3不满足条件k≥20,S=8,k=5不满足条件k≥20,S=18,k=7不满足条件k≥20,S=32,k=9不满足条件k≥20,S=50,k=11不满足条件k≥20,S=72,k=13不满足条件k≥20,S=98,k=15不满足条件k≥20,S=128,k=17不满足条件k≥20,S=162,k=19不满足条件k≥20,S=200,k=21满足条件k≥20,退出循环,输出S的值为200.故选:B.点评:本题主要考查了循环结构,是直到型循环,先执行循环,直到满足条件退出循环,属于基础题.10.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6考点:曲线与方程;两点间距离公式的应用.专题:计算题;直线与圆.分析:先分类讨论化简方程,再根据方程对应的曲线,即可得到结论.解答:解:当x>0,y>0时,方程是(x﹣1)2+(y﹣1)2=8;当 x>0,y<0 时,方程是(x﹣1)2+(y+1)2=8;当 x<0,y>0 时,方程是(x+1)2+(y﹣1)2=8;当 x<0,y<0 时,方程是(x+1)2+(y+1)2=8曲线C既是中心对称图形,又是轴对称图形,对称中心为(0,0),对称轴为x,y轴,点P,Q在曲线C上,当且仅当P,Q与圆弧所在圆心共线时取得最大值,|PQ|的最大值是圆心距加两个半径,即6,故选:A.点评:本题考查曲线与方程的概念,体现分类讨论、数形结合的数学思想,属于中档题.二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.考点:双曲线的简单性质.专题:计算题.分析:根据事务性的方程可得a,b,c的数值,进而求出双曲线的离心率.解答:解:因为双曲线的方程为,所以a2=4,a=2,b2=5,所以c2=9,c=3,所以离心率e=.故答案为.点评:本题主要考查双曲线的有关数值之间的关系,以及离心率的公式.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.考点:抛物线的简单性质.专题:计算题.分析:先确定抛物线的标准方程,求出抛物线的焦点坐标,利用两点间的距离公式,即可得到结论.解答:解:∵抛物线y2=ax过点,∴1=∴a=4∴抛物线方程为y2=4x,焦点为(1,0)∴点A到此抛物线的焦点的距离为=故答案为:点评:本题考查抛物线的标准方程,考查抛物线的性质,考查距离公式的运用,属于中档题.13.(4分)下列四个结论,其中正确的有①②③④.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.考点:极差、方差与标准差;频率分布直方图.专题:概率与统计.分析:根据频率分布直方图中平均数、中位数以及样本的平均数与方差的关系,对每一个命题进行分析判断即可.解答:解:对于①,频率分布直方图中,中位数左边和右边的直方图面积相等,都等于,∴①正确;对于②,一组数据中每个数减去同一个非零常数a,这一组数的平均数变为﹣a,方差s2不改变,∴②正确;对于③,一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组样本数据的平均数是3,数据总和为3×20=60,∴③正确;对于④,数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为(2δ)2=4δ2,∴④正确;综上,正确的命题序号是①②③④.故答案为:①②③④.(填对一个给一分).点评:本题考查了频率分布直方图的应用问题,也考查了中位数、平均数与方差的应用问题,是基础题目.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是9.考点:椭圆的简单性质.专题:计算题.分析:根据椭圆的方程求得c,得到|F1F2|,设出|PF1|=t1,|PF2|=t2,利用勾股定理以及椭圆的定义,可求得t1t2的值,即可求出三角形面积.解答:解:∵椭圆的a=5,b=3;∴c=4,设|PF1|=t1,|PF2|=t2,则根据椭圆的定义得t1+t2=10,∵∠F1PF2=90°,根据勾股定理得①t12+t22=82②,由①2﹣②得t1t2=18,∴.故答案为:9.点评:本题主要考查了椭圆的标准方程、椭圆的简单性质.解答的关键是通过勾股定理解三角形,考查计算能力、数形结合思想.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.考点:几何概型.专题:计算题.分析:本题考查的知识点是几何概型的意义,关键是要找出:“两直线所夹锐角”对应图形的面积,及整个图形的面积,然后再结合几何概型的计算公式进行求解.解答:解:设两直线所夹锐角弧度为α,则有:,解得:α=.故答案为:.点评:本题考查的知识点是几何概型的意义,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.考点:分层抽样方法;频率分布直方图.专题:概率与统计.分析:(1)求出对应的频数和频率,即可请完成频率分布直方图;(2)根据分层抽样的定义建立比例关系即可.解答:解:(1)由题意值第1,2组的频数分别为100×0.01×5=5,100×0.07×5=35,故第3,4,5组的频数之和为100﹣5﹣35=60,从而可得其频数分别为30,20,10,其频率依次是0.3,0.2,0.1,其频率分布直方图如图:;(2)由第3,4,5组共60人,用分层抽样抽取6人,故第3,4,5组中抽取的学生人数依次是第3组:,第4组:,第5组:.点评:本题主要考查抽样和统计的知识,比较基础.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.考点:列举法计算基本事件数及事件发生的概率;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先求出取出两球的种数,再根据分类和分步计数原理求出一个白球一个红球的种数,根据概率公式计算即可.(2)分为同是红色,白色,黑色,根据分类和分步计数原理即可求出取得两球颜色相同的种数,根据概率公式计算即可.解答:解:(1)两袋中各取一个球,共有6×6=36种取法,其中一个白球一个红球,分为甲袋区取的为白球乙袋红球,甲袋红球乙袋白球,故有1×3+2×2=7种,故取得一个白球一个红球的概率P=;(2)取得两球颜色相同有1×2+2×3+3×1=11种,故取得两球颜色相同的概率P=.点评:本题考查了类和分步计数原理及其概率的求法,关键是求出满足条件的种数,是基础题.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(1)利用向量的多边形法则即可得出;(2)由AC⊥AB,BD⊥A B,可得==0,利用数量积的运算性质展开可得==++代入即可得出.解答:解:(1)=++;(2)∵AC⊥AB,BD⊥AB,∴==0,∴==++=62+42+82+2×6×8×cos(180°﹣60°)=36+16+64﹣48=68.∴=.点评:本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系、二面角,考查了推理能力与计算能力,属于中档题.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.考点:棱柱、棱锥、棱台的体积;直线与平面所成的角.专题:综合题;空间位置关系与距离;空间角.分析:(1)四棱锥S﹣ABCD的体积=;(2)以点A为原点建立如图所示的空间直角坐标系,求出平面SCD的法向量,利用向量的夹角公式求面SCD与面SAB所成二面角的余弦值.解答:解:(1)∵底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=,∴四棱锥S﹣ABCD的体积==;(2)以点A为原点建立如图所示的空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D(0.5,0,0,),S(0,0,1),则=(1,1,﹣1),=(0.5,0,﹣1).设平面SCD的法向量是=(x,y,z),则令z=1,则x=2,y=﹣1.于是=(2,﹣1,1).设平面SCD与平面SAB所成的二面角为α,∵=(0.5,0,0),∴|cosα|==∴平面SCD与平面SAB所成二面角的余弦值为.点评:本题考查四棱锥S﹣ABCD的体积、平面SCD与平面SAB所成二面角的余弦值,考查学生的计算能力,正确求平面SCD的法向量是关键.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)由椭圆的离心率公式和a,b,c的关系,解方程可得a=5,b=3,即可得到椭圆方程;(2)联立直线方程和椭圆方程,运用韦达定理,求得线段MN的中点P的坐标,再由|AM|=|AN|知点A在线段MN的垂直平分线上,运用直线垂直的条件:斜率之积为﹣1,即可得到k,进而得到直线方程.解答:解:(1)由一个顶点为A(0,3),离心率e=,可得b=3,=,a2﹣b2=c2,解得a=5,c=4,即有椭圆方程为+=1;(2)由|AM|=|AN|知点A在线段MN的垂直平分线上,由,消去y得(9+25k2)x2﹣150kx=0,由k≠0,得方程的△=(﹣150k)2>0,即方程有两个不相等的实数根.设M(x1,y1)、N(x2,y2),线段MN的中点P(x0,y0),则x1+x2=,∴x0==,∴y0=kx0﹣3=﹣,即P(,﹣),∵k≠0,∴直线AP的斜率为k1=﹣=﹣,由AP⊥MN,得﹣=﹣,∴25k2=7,解得:k=±,即有直线l的方程为y=±x﹣3.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率的运用和方程的运用.联立直线方程,运用韦达定理,同时考查直线垂直的条件:斜率之积为﹣1,考查运算能力,属于中档题.。
江苏省盐城市2018-2019学年高二上学期期末考试数学(理)试题一、填空题(本大题共14小题,共70.0分)1.已知复数z满足z⋅i=1+i(其中i是虚数单位),则z=______.【答案】1−i【解析】解:由z⋅i=1+i,得z=1+ii =(1+i)(−i)−i2=1−i.故答案为:1−i.把给出的等式两边同时乘以i,然后由复数代数形式的除法运算化简求值.本题考查了复数代数形式的除法运算,是基础的计算题.2.过抛物线y2=4x的焦点且与对称轴垂直的弦长为______.【答案】4【解析】解:抛物线y2=4x的焦点(1,0),可得:y2=4,解得y=±2.可得:对称轴垂直的弦长为:4.故答案为:4.求出抛物线的焦点坐标,然后求解对称轴垂直的弦长.本题考查抛物线的简单性质的应用,考查计算能力.3.命题“∀x>0,x2+3x+1>0“的否定为______.【答案】∃x∈R,x2+3x+1≤0【解析】解:∵命题“∀x>0,x2+3x+1>0”,∴命题“∀x>0,x2+3x+1>0”的否定为:∃x∈R,x2+3x+1≤0.故答案为:∃x∈R,x2+3x+1≤0.命题“∀x∈R,2x2−3x+4>0”,是一个全称命题,其否定命题一定是一个特称命题,由全称命题的否定方法,我们易得到答案.对命题“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”;对命题“∀x∈A,P(X)”的否定是:“∃x∈A,¬P(X)”,即对特称命题的否定是一个全称命题,对一个全称命题的否定是特称命题.4.点P(2,0)到双曲线x29−y216=1的渐近线的距离为______.【答案】85【解析】解:双曲线x29−y216=1的渐近线方程为y=±43x,即4x±3y=0,则点(2,0)到4x−3y=0的距离d=√42+(−3)2=85,故答案为:85先求出渐近线方程,再根据点到直线的距离公式即可求出.本题考查了双曲线的渐近线方程和点到直线的距离公式,属于基础题.5. 已知直线的参数方程为{x =1+12ty =1+√32t (t 为参数),则其倾斜角为______. 【答案】π3【解析】解:直线的参数方程为{x =1+12ty =1+√32t (t 为参数), 消去参数t ,化为普通方程是y −1=√3(x −1), 则该直线的斜率为√3,倾斜角为π3. 故答案为:π3.把直线的参数方程化为普通方程,求出它的斜率和倾斜角的大小. 本题考查了直线的参数方程与普通方程的转化问题,是基础题.6. 已知命题p 为真命题,命题q 为假命题,则在下列命题中:①¬q ;②p ∧q ;③p ∨q 是真命题的有______个. 【答案】2【解析】解:若命题p 为真命题,命题q 为假命题, 则¬q 是真命题,p ∧q 是假命题,p ∨q 是真命题, 则真命题的是①③,有2个, 故答案为:2根据复合命题真假关系进行判断即可.本题主要考查复合命题真假判断,根据¬p 与p 真假性相反,p ∧q 同真为真,其他为假,p ∨q 同假为假,其余为真的结论是解决本题的关键.7. p :“复数z =(m 2−m)+mi(m ∈R,i 为虚数单位)是纯虚数”是q :“m =1”的______条件.(请在“充分不必要”、“必要不充分”、“既不充分又不必要”、“充分必要”选择一个最为恰当的答案填写在横线上) 【答案】充要【解析】解:若复数z =(m 2−m)+mi(m ∈R,i 为虚数单位)是纯虚数,则{m ≠0m2−m=0,即{m ≠0m=1或m=0,得m =1,即p 是q 的充要条件, 故答案为:充要根据纯虚数的定义求出m 的取值,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合纯虚数的定义求出m是解决本题的关键.8.已知直线a,b和平面α满足:①a//b,②a⊥α,③b⊥α,若从其中选出两个作为条件,余下一个作为结论,可以得到______个真命题.【答案】3【解析】解:构成的命题有①②⇒③,①③⇒②,②③⇒①,若a//b,a⊥α,则b⊥α成立,即①②⇒③是真命题,若a//b,b⊥α,则a⊥α成立,即①③⇒②是真命题若a⊥α,b⊥α,则a//b成立,即②③⇒①是真命题,故可以得到3个真命题,故答案为:3根据条件可以构成三个命题①②⇒③,①③⇒②,②③⇒①,根据空间直线和平面平行和垂直的性质进行判断即可.本题主要考查命题的真假关系,结合空间直线平行于直线平面垂直的性质和判定定理是解决本题的关键.9.从装有大小完全相同的2个白球、3个黑球的口袋中随机取出两个小球,记取出白球的个数为随机变量ξ,则P(ξ=1)的值为______.【答案】0.6【解析】解:从装有大小完全相同的2个白球、3个黑球的口袋中随机取出两个小球,基本事件总数n=C52=10,记取出白球的个数为随机变量ξ,ξ=1包含的基本事件个数m=C21C31=6,则P(ξ=1)=mn =610=0.6.故答案为:0.6.基本事件总数n=C52=10,记取出白球的个数为随机变量ξ,ξ=1包含的基本事件个数m=C21C31=6,由此能求出P(ξ=1).本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.10.已知正方体ABCD−A1B1C1D1的棱长为2,E,F,G,H分别是四条棱AB,BC,CD,DA上的中点,则四棱锥A1−EFGH体积为______.【答案】43【解析】解:∵正方体ABCD−A1B1C1D1的棱长为2,E,F,G,H分别是四条棱AB,BC,CD,DA上的中点,∴EFGH是边长为√2的正方形,点A1到平面EFGH的距离d=AA1=2,∴四棱锥A1−EFGH体积为:V A1−EFGH =13×d×S正方形EFGH=13×2×√2×√2=43.故答案为:43.推导出EFGH是边长为√2的正方形,点A1到平面EFGH的距离d=AA1=2,由此能求出四棱锥A1−EFGH体积.本题考查四棱锥的体积的求法,考查空间中线线、线面、面面间的关系等基础知识,考查运算求解能力,是中档题.11.已知抛物线y2=16x上任意一点到双曲线x2a2−y2b2=1右焦点的距离比到左准线的距离大1,则a2=______.【答案】12【解析】解:抛物线y2=16x中,p=8,焦点为F(4,0),准线方程为x=−4;由题意知双曲线x2a2−y2b2=1的右焦点为F(4,0),左准线方程为x=−3,∴c=4,且−a2c=−3,解得a2=12.故答案为:12.利用抛物线方程求出焦点坐标与准线方程,由题意知双曲线的右焦点坐标与左准线方程,由此求出c和a2.本题考查了抛物线方程与双曲线方程的应用问题,是基础题.12.已知椭圆x2a2+y2b2=1(a>b>0)的左右两个焦点分别为F1、F2,以F1F2为斜边的等腰直角三角形PF1F2与椭圆有两个不同的交点M,N,且MN=13F1F2,则该椭圆的离心率为______.【答案】√5−√2【解析】解:∵以F1F2为斜边的等腰直角三角形PF1F2与椭圆有两个不同的交点M,N,且MN=13F1F2,∴N(13c,23c)∵PF1+PF2=√(c3−c)2+(2c3)2+√(c3+c)2+(2c3)2=2a.2√2c 3+2√5c3=2a,∴e=ca =√5+√2=√5−√2.故答案为:√5−√2.可得N(13c,23c),利用PF 1+PF 2=√(c 3−c)2+(2c 3)2+√(c 3+c)2+(2c 3)2=2a.可得2√2c 3+2√5c3=2a ,即可求解.本题考查了椭圆的离心率,属于中档题.13. 在三角形内,我们将三条边的中线的交点称为三角形的重心,且重心到任一顶点的距离是到对边中点距离的两倍类比上述结论:在三棱锥中,我们将顶点与对面重心的连线段称为三棱锥的“中线”,将三棱锥四条中线的交点称为它的“重心”,则棱锥重心到顶点的距离是到对面重心距离的______倍. 【答案】3【解析】解:在四面体ABCD 中,E 为CD 的中点,连接AE ,BE ,且M ,N 分别为△ACD ,△BCD 的重心,AN ,BM 交于点G , 在△ABE 中,M ,N 分别为AE ,BE 的三等分点,则EMAE =ENBE =13, 所以MN//AB ,AB =3MN , 所以AG =3GN ,故棱锥重心到顶点的距离是到对面重心距离的3倍, 故答案为:3由类比推理及线线平行的判定及运用可得:在△ABE 中,M ,N 分别为AE ,BE 的三等分点,则EMAE =ENBE =13,即MN//AB ,AB =3MN ,即AG =3GN ,故棱锥重心到顶点的距离是到对面重心距离的3倍,得解. 本题考查了类比推理及线线平行的判定及运用,属中档题.14. 已知椭圆x 24+y 23=1的右焦点为F ,A 为椭圆在第一象限内的点,连接AF 并延长交椭圆于点B ,连接AO(O 为坐原点)并延长交椭圆于点C ,若S △ABC =3,则点A 的坐标为______. 【答案】(1,32)【解析】解:由题意可得F(1,0),设AB 的方程为x =my +1, 联立椭圆方程可得(4+3m 2)y 2+6my −9=0, 设A(x 1,y 1),B(x 2,y 2),可得y 1+y 2=−6m4+3m 2,y 1y 2=−94+3m 2,|y 1−y 2|2=(y 1+y 2)2−4y 1y 2=36m 2(4+3m 2)2+364+3m 2, 由O 为AC 的中点,且△ABC 的面积为3, 可得△ABO 的面积为32,S △ABO =S △AOF +S △BOF =12⋅|OF|⋅|y 1−y 2|=32, 即有|y 1−y 2|=3, 可得36m 2(4+3m 2)2+364+3m 2=9, 化为9m 4+m 2=0,即m =0,则AB⊥x轴,可得A(1,32),故答案为:(1,32).求得F(1,0),),设AB的方程为x=my+1,联立椭圆方程,运用韦达定理,以及完全平方公式,结合题意可得S△ABO=S△AOF+S△BOF=12⋅|OF|⋅|y1−y2|=32,即有|y1−y2|=3,平方.后由韦达定理,解方程可得m=0,可得A的坐标本题考查椭圆的方程和运用,注意联立直线方程和椭圆方程,运用韦达定理和弦长公式,考查化简整理的运算能力,属于中档题.二、解答题(本大题共9小题,共130.0分)15.已知直线l:{y=1+2tx=1+t(t为参数),曲线C:ρ2−8ρsinθ+15=0.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)求曲线C上的点到直线l距离的最小值.【答案】解:(1)∵直线l:{y=1+2tx=1+t(t为参数),∴直线l的普通方程为2x−y−1=0,∵曲线C:ρ2−8ρsinθ+15=0.∴曲线C的直角坐标方程为x2+y2−8y+15=0.(2)曲线C是以C(0,4)为圆心,以r=12√64−60=1为半径的圆,圆心C(0,4)到直线l的距离d=|2×0−4−1|√4+1=√5,∴曲线C上的点到直线l距离的最小值为√5−1.【解析】(1)直线l的参数方程消去参数,能求出直线l的普通方程,由曲线C的极坐标方程能求出曲线C的直角坐标方程.(2)曲线C是以C(0,4)为圆心,以r=1为半径的圆,圆心C(0,4)到直线l的距离d=√5,由此能求出曲线C上的点到直线l距离的最小值.本题考查直线的普通方程、曲线的直角坐标方程的求法,考查极坐标方程、普通方程、直角坐标方程的互化等基础知识,考查运算求解能力,是中档题.16.如图所示,在直三棱柱ABC−A1B1C1中,CA=CB,点M,N分别是AB,A1B1的中点.(1)求证:BN//平面A1MC;(2)若A1M⊥AB1,求证:AB1⊥A1C.【答案】证明:(1)因为ABC−A1B1C1是直三棱柱,所以AB//A1B1,且AB=A1B1,又点M,N分别是AB、A1B1的中点,所以MB=A1N,且MB//A1N.所以四边形A1NBM是平行四边形,从而A1M//BN.又BN⊄平面A1MC,A1M⊂平面A1MC,所以BN//平面A1MC;(2)因为ABC−A1B1C1是直三棱柱,所以AA1⊥底面ABC,而AA1⊂侧面ABB1A1,所以侧面ABB1A1⊥底面ABC.又CA=CB,且M是AB的中点,所以CM⊥AB.则由侧面ABB1A1⊥底面ABC,侧面ABB1A1∩底面ABC=AB,CM⊥AB,且CM⊂底面ABC,得CM⊥侧面ABB1A1.又AB1⊂侧面ABB1A1,所以AB1⊥CM.又AB1⊥A1M,A1M、MC平面A1MC,且A1M∩MC=M,所以AB1⊥平面A1MC.又A1C⊂平面A1MC,所以AB⊥A1C.【解析】(1)欲证明BN//平面A1MC,只需推知A1M//BN;(2)根据直三棱柱的特征和线面垂直的判定与性质来证明线线垂直.本题考查的知识点是直线与平面垂直的性质,直线与平面平行的判定,其中熟练掌握空间直线与平面间垂直、平行的判定、性质、定义是解答本题的关键.17.设f(x)=x2−2ax+1,g(x)=sinx.(1)若∀x∈[0,1]都有f(x)≥0恒成立,求实数a的取值范围;],都有f(x1)≥g(x2)恒成立,求实数a的取值范围.(2)若∃x1∈(0,1],使得对∀x2∈[0,π2【答案】解:(1)∀x∈[0,1]都有f(x)≥0恒成立,故x2−2ax+1≥0对∀x∈[0,1]恒成立,①x=0时,1≥0恒成立,故a∈R,②x∈(0,1]时,2a≤x+1对∀x∈(0,1]恒成立,x故2a≤2(当且仅当x=1时“=”成立),故a≤1,综上,a≤1;],g(x)=sinx,(2)∵x2∈[0,π2故g(x2)的最大值是1,],都有f(x1)≥g(x2)恒成立,∵∃x1∈(0,1],使得对∀x2∈[0,π2∴∃x1∈(0,1],使得f(x1)≥1恒成立,即∃x1∈(0,1],使得x12−2ax1+1≥1恒成立,故∃x1∈(0,1],使得x1≥2a成立,即2a≤1,解得:a≤1.2【解析】(1)问题转化为x2−2ax+1≥0对∀x∈[0,1]恒成立,通过讨论x的范围,结合不等式的性质求出a 的范围即可;(2)求出g(x)的最大值,问题转化为∃x∈(0,1],使得x2−2ax+1≥1恒成立,求出a的范围即可.本题考查了函数的单调性,最值问题以及函数恒成立问题,考查转化思想,分类讨论思想,是一道综合题.18. 设(1+2x)n =a 0+a 1x +a 2x 2+⋯+a n x n ,若展开式中第4项与第5项二项式系数最大.(1)求n ;(2)求最大的系数a i ;(3)是否存在正整数m ,使得a m+2+4a m =4a m+1成立?若存在,求出m 的值;若不存在,请说明理由.【答案】解:(1)若展开式中第4项与第5项二项式系数最大,即C n 3=C n 4,则n =7. (2)设(1+2x)7展开式中第r +1项T r+1是系数最大的项,则T r+1=C 7r 2r x r , 由不等式组{C 7r 2r≥C 7r−12r−1C 7r 2r≥C 7r+12r+1,解得{r ≤163r≥133,且r ∈N ,∴r =5,所以a i =C 7525=672.(3)因为(1+2x)n =a 0+a 1x +a 2x 2+⋯+a n x n ,所以a m =C 7m 2m , 因为a m+2+4a m =4a m+1,所以C 7m+22m+2+4C 7m 2m =4C 7m+12m+1, 所以7!(m+2)!(5−m)!2m+2+47!m!(7−m)!2m =47!(m+1)!(6−m)!2m+1, 由此方程可得:1(m+1)(m+2)+1(6−m)(7−m)=2(m+1)(6−m), 解得:m =1或4.综上:存在m =1或4,使得a m+2+4a m =4a m+1成立. 【解析】(1)由题意利用二项式系数的性质,求得n 的值.(2)展开式中第r +1项T r+1是系数最大的项,列出不等式组求得r 的值,可得最大的系数a i . (3)假设存在正整数m ,使得a m+2+4a m =4a m+1成立,解出m 的值,可得结论.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,组合数的计算公式,属于中档题.19. (请用空间向量求解)已知正四棱柱ABCD −A 1B 1C 1D 1中,AB =1,AA 1=3,E ,F 分别是棱AA 1,CC 1上的点,且满足AE =2EA 1,CF =2FC 1. (1)求异面直线EC 1,DB 1所成角的余弦值; (2)求面EB 1C 1与面FAD 所成的锐二面角的余弦值.【答案】解:(1)在正四棱柱ABCD −A 1B 1C 1D 1中,DD 1⊥平面ABCD ,底面ABCD 是正方形, 所以AD ,DC ,DD 1两两垂直,以A 为原点,DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系,……………………………………………………………………(2分)又因AB =1,AA 1=3,E ,F 分别是棱AA 1,CC 1上的点, 且满足AE =2EA 1,CF =2FC 1AB =1,AA 1=3,所以D(0,0,0),E(1,0,2),C 1(0,1,3),B(1,1,3),A(1,0,0),F(0,1,2),B 1(1,1,3),所以EC 1⃗⃗⃗⃗⃗⃗⃗ =(−1,1,1),DB 1⃗⃗⃗⃗⃗⃗⃗ =(1,1,3),…………………………………………………(4分) 设异面直线EC 1,DB 1所成角为θ,θ∈(0,π2], 所以cosθ=|cos〈EC 1⃗⃗⃗⃗⃗⃗⃗ ,DB 1⃗⃗⃗⃗⃗⃗⃗ 〉|=|−1+1+3|√3√1+1+9=√3311,………………………………(7分) 所以异面直线EC 1,DB 1所成角的余弦值为√3311. ………………………………………………(8分)(2)EC 1⃗⃗⃗⃗⃗⃗⃗ =(−1,1,1),EB 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),DA ⃗⃗⃗⃗⃗ =(1,0,0),DF ⃗⃗⃗⃗⃗ =(0,1,2), 设平面EB 1C 1的一个法向量为n 1⃗⃗⃗⃗ , 则{EB 1⃗⃗⃗⃗⃗⃗⃗ ⊥n 1⃗⃗⃗⃗ EC 1⃗⃗⃗⃗⃗⃗⃗ ⊥n 1⃗⃗⃗⃗ ,所以{−x 1+y 1+z 1=0y 1+z 1=0,令z 1=1,所以n 1⃗⃗⃗⃗ =(0,−1,1),……(10分)平面FAD 的一个法向量为n 2⃗⃗⃗⃗ ,则{DA ⃗⃗⃗⃗⃗ ⊥n 2⃗⃗⃗⃗ DF ⃗⃗⃗⃗⃗ ⊥n 2⃗⃗⃗⃗ ,所以{y 2+2z 2=0x 2=0,令z 2=1,所以n 1⃗⃗⃗⃗ =(0,−2,1),…………(12分) 所以cos〈n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ 〉=|0+2+1|√2√5=3√1010,………………………………………………(14分) 所以面EB 1C 1与面FAD 所成的锐二面角的余弦值为3√1010.………………………(15分) 【解析】(1)推导出AD ,DC ,DD 1两两垂直,以A 为原点,DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系,利用向量法能求出异面直线EC 1,DB 1所成角的余弦值.(2)求出平面EB 1C 1的一个法向量和平面FAD 的一个法向量,利用向量法能求出面EB 1C 1与面FAD 所成的锐二面角的余弦值.本题考查异面直线所成角的余弦值的求法,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20. 甲乙二人进行定点投篮比赛,已知甲、乙两人每次投进的概率均为12,两人各投一次称为一轮投篮.(1)求乙在前3次投篮中,恰好投进2个球的概率;(2)设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量ξ,求ξ的分布列与期望. 【答案】解:(1)乙在前3次投篮中,恰好投进2个球为事件A ,则P(A)=C 32(12)2(1−12)=38;……………………………………(3分)答:乙在前3次投篮中,恰好投进2个球的概率为38;………………………………(4分) (2)设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量ξ, 则ξ的取值为0,1,2,3;设前3轮投篮中,甲进球个数为X ,则X 的取值为0,1,2,3,计算P(X =0)=(1−12)3=18,P(X =1)=C 31⋅12⋅(1−12)2=38, P(X =2)=C 32⋅(12)2⋅(1−12)=38,P(X =3)=(12)3=18;所以P(ξ=0)=(18)2+(38)2+(38)2+(18)2=516,………………………………(6分) P(ξ=1)=2×18×38+2×38×(18+38)=1532,……………………………………(8分) P(ξ=2)=4×18×38=316,………………………………………(10分) P(ξ=3)=2×18×18=132;………………………………………(12分)所以ξ的分布列为; ξ 0 12 3 P5161532316132数学期望为E(ξ)=1532+38+332=1516.………………………………………………(15分) 【解析】(1)利用n 次独立重复实验恰有k 次发生的概率公式计算即可; (2)由题意知随机变量ξ的取值,计算对应的概率值, 写出分布列,再求出数学期望值.本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.21. 已知点P(1,2)是抛物线y 2=4x 上的一点,过点P 作两条直线l 1与l 2,分别与抛物线相交于异于点P 的A 、B 两点.(1)若直线AB 过点(2,0)且△PAB 的重心G 在x 轴上,求直线AB 的斜率; (2)若直线AB 的斜率为1且△PAB 的垂心H 在x 轴上,求直线AB 的方程.【答案】解:(1)设直线AB的方程为x=my+2,设A,B两点的坐标分别为(x1,y1),(x2,y2)因为△PAB的重心G在x轴上,所以y1+y2=−2,将直线AB代入抛物线y2=4x方程可得:y2−4my−8=0,所以y1+y2=4m=−2,解得:m=−12,所以直线AB的斜率是−2.(2)若直线AB的斜率为1,则直线PH的方程是y−2=−(x−1),所以H(3,0),若直线AB的斜率为1,则设直线AB的方程为x=y+t,将直线AB代入抛物线y2=4x方程可得:y2−4y−4t=0,所以y1+y2=4,y1y2=−4t,且△=16+16t>0,因为BH⊥AP,所以y2x2−3⋅y1−2x1−1=−1(∗),将x1=y1+t,x2=y2+t代入(∗)得2y1y2+(t−3)(y1+y2)+t2−4t+3=0,将y1+y2=4,y1y2=−4t代入上面方程可得:t2−8t−9=0,由此方程解得:t=9或t=−1(舍),所以直线AB的方程是x−y−9=0.【解析】(1)设直线AB的方程为x=my+2,设A,B两点的坐标分别为(x1,y1),(x2,y2),根据重心的性质,以及根与系数,根据斜率公式即可求出,(2)分类讨论,根据韦达定理和斜率公式即可求出.本题考查直线与抛物线的位置关系的应用,直线系方程的应用,考查分析问题解决问题的能力,属于中档题.22.已知A,B分别为椭圆C:x2a2+y2b2=1(a>b>0)右顶点和上顶点,且直线AB的斜率为−√22,右焦点F到直线AB的距离为√6−√33.(1)求椭圆C的方程;(2)若直线l:y=kx+m(m>1)与椭圆交于M,N两点,且直线BM、BN的斜率之和为1,求实数k的取值范围.【答案】解:(1)∵k AB=ba =√22,∴a=√2b,则b=c,直线AB:bx+ay−ab=0,∴|b−√2b|√3=√6−√33,∴a=√2,b=1.因此,椭圆C的方程为x22+y2=1;(2)设点M(x 1,y 1)、N(x 2,y 2),将直线l 的方程与椭圆C 的方程联立{y =kx +m x 22+y 2=1,消去y 并整理得(2k 2+1)x 2+4kmx +2m 2−2=0, ∴△>0,由韦达定理得x 1+x 2=−4km 2k 2+1,x 1x 2=2m 2−22k 2+1. ∵k BM +k BN =2kx 1x 2+(m−1)(x 1+x 2)x 1x 2=1,∴(2k −1)x 1x 2+(m −1)(x 1+x 2)=0,∴2k =m +1>2,∴k >1,又∵△>0,∴2k 2>m 2−1,综上所述,0<k <2.因此,实数k 的取值范围是(0,2).【解析】(1)先由直线AB 的斜率得出a =√2b ,于是得出c =b ,再由点F 到直线AB 的距离,得出b 的值,从而可求出a 的值,从而可写出椭圆C 的方程;(2)设点M(x 1,y 1)、N(x 2,y 2),将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由直线BM 、BN 的斜率之和为1,结合韦达定理得出k 与m 所满足的关系式,结合m 的范围,可得出k 的范围,再由△>0,得出k 的另一个范围,两者取交集可得出实数k 的取值范围.本题考查直线与椭圆的综合问题,考查椭圆的方程以及韦达定理设而不求法在椭圆综合问题中的应用,考查计算能力,属于中等题.23. 已知平面上一个圆可以将平面分成两个部分,两个圆最多可以将平面分成4个部分,设平面上n 个圆最多可以将平面分成f(n)个部分.(1)求f(3),f(4)的值;(2)猜想f(n)的表达式并证明;(3)证明:2n ≥f(n).【答案】解:(1)由已知有:f(3)=8,f(4)=14,(2)f(n)=n 2−n +2下面用数学归纳法证明:①当n =1时,f(1)=12−1+2=2结论成立;②假设n =k 时,结论成立,即平面上k 个圆最多可以将平面分成k 2−k +2个部分,那么当n =k +1时,第k +1个圆与前k 个圆最多有2k 个交点,即此第k +1个圆最多被这2k 个交点分成2k 条圆弧段,由于每增加一个圆弧段,可将原来的区域分成两个区域,因此第k +1个圆使平面增加了2k 个区域,所以f(k +1)=f(k)+2k =k 2−k +2+2k =(k +1)2−(k +1)+2,综合①②得:即平面上n 个圆最多可以将平面分成n 2−n +2个部分,即命题得证(3)证明:①当n =1或2或3时,2n −n 2+n −2=0,即2n ≥f(n),②n ≥4且n ∈N ∗时,设a n =n 2−n+22n ,则a n+1−a n=(n+1)2−(n+1)+22n+1−n2−n+22n=−n2+3n2n+1,设g(n)=−n2+3n=−(n−32)2+94,因为n≥4,所以g(n)≤−42+3×4=−4<0,所以a n+1−a n=−n2+3n2n+1<0所以n≥4时,数列{a n}是单调递减数列,所以a n=n2−n+22n ≤42−4+224=1416<1,所以2n>n2+n−2,综合①②得:2n≥n2+n−2.故不等式得证.【解析】(1)由题意可知:f(3)=8,f(4)=14,(2)猜想f(n)=n2−n+2并用数学归纳法证明可得解:(3)证明:讨论①当n=1或2或3时,2n−n2+n−2=0,②n≥4且n∈N∗时,用数列单调性的证明方法定义法证明即可本题考查了归纳推理、数学归纳法及数列单调性的证明,属难度较大的题型.。
黑龙江省大庆高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.32.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣23.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.104.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A .B .C .D .7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是.14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为.15.(5分)执行如图所示的程序框图,输出的S值是.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为.三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.大庆高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.3【解答】解:∵向量,,∴=﹣4+4x﹣8=0,解得x=3.故选:D.2.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣2【解答】解:∵f(x)=x+lnx,∴f′(x)=1+∴f′(1)=1+=2故选B3.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.10【解答】解:设高一学生有x人,则高三有2x,高二有x+300,∵高一、高二、高三共有学生3500人,∴x+2x+x+300=3500,∴x=800,∵按的抽样比用分层抽样的方法抽取样本,∴应抽取高一学生数为=8故选A.4.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系【解答】解:月收入的中位数是=16,收入增加,支出增加,故x与y有正线性相关关系,故选:C.5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .【解答】解:设齐王的上,中,下三个等次的马分别为a,b,c,田忌的上,中,下三个等次的马分别为记为A,B,C,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,根据题设其中Ab,Ac,Bc是胜局共三种可能,则田忌获胜的概率为=,故选:A6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A.B.C. D.【解答】解:点集Ω表示的平面区域的面积为:,集合A所表示的平面区域如图所示,其面积为:,结合几何概型计算公式可得所求的概率值为:.故选:B.7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.【解答】解:对于A,函数f(x)为奇函数,若f(0)有意义,则f(0)=0,则“函数f(x)为奇函数”是“f(0)=0”的非充分非必要条件,故A错误;对于B,已知A,B,C不共线,若=,可得+==2,(D为AB的中点),即有P在AB的中线上,同理P也在BC的中线上,在CA的中线上,则P是△ABC的重心,故B正确;对于C,命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”,由命题的否定形式,可得C 正确;对于D,由逆否命题的形式可得,命题“若α=,则cosα=”的逆否命题为“若cosα≠,则α≠”,故D正确.故选:A.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或【解答】解:设双曲线的右焦点F2(c,0),令x=﹣c,可得y=±,可得A(c,﹣),B(c,),又设D(0,b),△ABD为直角三角形,可得∠DBA=90°,即b=或∠BDA=90°,即=0,解:b=可得a=b,c=,所以e==;由=0,可得:(c,)(c,﹣)=0,可得c2+b2﹣=0,可得e4﹣4e2+2=0,e>1,可得e=,综上,e=或.故选:D.9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.【解答】解:根据题意,双曲线x2+my2=m(m∈R)的焦距4,可得=2c=4,解可得m=﹣3,则双曲线的方程为:,其渐近线方程为:y=±x;故选:D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]【解答】解:∵f(x)=x2﹣9lnx,∴函数f(x)的定义域是(0,+∞),f′(x)=x﹣,∵x>0,∴由f′(x)=x﹣<0,得0<x<3.∵函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,∴,解得1<a≤2.故选A.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是[﹣2,2] .【解答】解:∵命题“存在实数x,使x2﹣ax+1<0”的否定是任意实数x,使x2﹣ax+1≥0,命题否定是真命题,∴△=(﹣a)2﹣4≤0∴﹣2≤a≤2.实数a的取值范围是:[﹣2,2].故答案为:[﹣2,2].14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为x2+y2=.【解答】解:连接OP,AB,OA,OB,∵PA,PB是单位圆O的切线,∴PA=PB,OA⊥PA,OB⊥PB,∴∠OPA=∠OPB=∠APB=60°,又OA=OB=1,∴OP=,∴P点轨迹为以O为圆心,以为半径的圆,∴P点轨迹方程为x2+y2=.故答案为:x2+y2=.15.(5分)执行如图所示的程序框图,输出的S值是.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=sin+sin+ (i)的值,由于sin,k∈Z的取值周期为6,且2017=336×6+1,所以S=sin+sin+…sin=336×(sin+sin+…+sin)+sin=.故答案为:.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为(﹣1,3).【解答】解:根据题意,令g(x)=f(x)﹣1=e x﹣e﹣x,有g(﹣x)=f(﹣x)﹣1=e﹣x﹣e x=﹣g(x),则g(x)为奇函数,对于g(x)=e x﹣e﹣x,其导数g′(x)=e x+e﹣x>0,则g(x)为增函数,且g(0)=e0﹣e0=0,f(2x﹣1)+f(4﹣x2)>2⇒f(2x﹣1)﹣1>﹣f(4﹣x2)+1⇒f(2x﹣1)>﹣[f(4﹣x2)﹣1]⇒g(2x﹣1)>g(x2﹣4),又由函数g(x)为增函数,则有2x﹣1>x2﹣4,即x2﹣2x﹣3<0解可得:﹣1<x<3,即实数x的取值范围为(﹣1,3);故答案为:(﹣1,3).三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.【解答】解:(1)直线AB的方程是y=2 (x﹣2),与y2=8x联立,消去y得x2﹣5x+4=0,由根与系数的关系得x1+x2=5.由抛物线定义得|AB|=x1+x2+p=9,(2)由x2﹣5x+4=0,得x1=1,x2=4,从而A(1,﹣2),B(4,4).设=(x3,y3)=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2),又y2=8x3,即[2(2λ﹣1)]2=8(4λ+1),即(2λ﹣1)2=4λ+1,解得λ=0或λ=2.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.【解答】解:要使函数y=f(x)在区间[1,+∞)上是增函数,需a>0且,即a>0且2b≤a.(Ⅰ)所有(a,b)的取法总数为3×3=9个.满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1)共5个,所以所求概率.(Ⅱ)如图,求得区域的面积为.由,求得.所以区域内满足a>0且2b≤a的面积为.所以所求概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.【解答】解:(1)以BD为x轴,CA为y轴,AC与BD的交点为O,过O作平面ABCD的垂线为z轴,建立空间直角坐标系.A(0,1,0),,C(0,﹣1,0),,P(0,1,2),设,,,则=().设平面PEC的法向量为=(x,y,z),,,则,∴,取y=﹣1,得=(﹣,﹣1,1).∵AF∥平面PEC,∴=﹣3λ+λ+2﹣2λ=0,解得,∴F为PD中点.(2)=(,,0),=(,﹣,0),设平面PEA的法向量=(x,y,z),则,取x=,得平面PEA的法向量=(,﹣3,0),设平面PED的法向量=(x,y,z),则,取x=,得=(),cos<>===﹣,由二面角D﹣PE﹣A为锐二面角,因此,二面角D﹣PE﹣A的余弦值为.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.【解答】解:(Ⅰ)依题意,,a2﹣b2=2,∵点M(1,0)与椭圆短轴的两个端点的连线相互垂直,∴b=|OM|=1,∴.…(3分)∴椭圆的方程为.…(4分)(II)①当直线l的斜率不存在时,由解得.设,,则为定值.…(5分)②当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1).将y=k(x﹣1)代入整理化简,得(3k2+1)x2﹣6k2x+3k2﹣3=0.…(6分)依题意,直线l与椭圆C必相交于两点,设A(x1,y1),B(x2,y2),则,.…(7分)又y1=k(x1﹣1),y2=k(x2﹣1),所以=====..….…(13分)综上得k1+k2为常数2..….…(14分)22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.【解答】解:(1)∵,且x>0,∴.令,则.①当a≤0时,U'(x)>0,U(x)在(1,+∞)上为单调递增函数,∴x>1时,U(x)>U(1)=0,不合题意.②当0<a<2时,时,U'(x)>0,U(x)在上为单调递增函数,∴,U(x)>U(1)=0,不合题意.③当a>2时,,U'(x)<0,U(x)在上为单调递减函数.∴时,U(x)>U(1)=0,不合题意.④当a=2时,x∈(0,1),U'(x)>0,U(x)在(0,1)上为单调递增函数.x∈(1,+∞),U'(x)<0,U(x)在(1,+∞)上为单调递减函数.∴U(x)≤0,符合题意.综上,a=2.(2),x∈[1,e2].g'(x)=lnx﹣ax.令h(x)=g'(x),则由已知h(x)=0在(1,e2)上有两个不等的实根.(A)①当时,h'(x)≥0,h(x)在(1,e2)上为单调递增函数,不合题意.②当a≥1时,h'(x)≤0,h(x)在(1,e2)上为单调递减函数,不合题意.③当时,,h'(x)>0,,h'(x)<0,所以,h(1)<0,,h(e2)<0,解得.(B)证明:由已知lnx1﹣ax1=0,lnx2﹣ax2=0,∴lnx1﹣lnx2=a(x1﹣x2).不妨设x1<x2,则,则=.令,(0<x<1).则,∴G(x)在(0,1)上为单调递增函数,∴即,∴,∴,∴,由(A),∴ae<1,2ae<2,∴.。
2021-2022年高二数学上学期期末试卷理(含解析)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知全集U=R,集合A={x|3≤x<7},B={x|x2﹣7x+10<0},则∁R(A∩B)=()A.(﹣∞,3)∪(5,+∞)B.(﹣∞,3)∪∪∪(5,+∞)2.(5分)若,则下列结论不正确的是()A.a2<b2B.|a|﹣|b|=|a﹣b| C. D.ab<b23.(5分)一个几何体的三视图如图所示,已知这个几何体的体积为,则h=()A.B.C.D.4.(5分)设{an }是由正数组成的等比数列,Sn为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.5.(5分)已知如程序框图,则输出的i是()A.9 B.11 C.13 D.156.(5分)已知θ是三角形的一个内角,且sinθ+cosθ=,则x2sinθ﹣y2cosθ=1表示()A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线7.(5分)方程|x|(x﹣1)﹣k=0有三个不相等的实根,则k的取值范围是()A.B.C.D.8.(5分)对于任意实数x,符号表示x的整数部分,即是不超过x的最大整数,例如=2;=2;=﹣3,这个函数叫做“取整函数”,它在数学本身和生产实践中有广泛的应用.那么+++…+的值为()A.21 B.76 C.264 D.642二、填空题(每小题5分,共30分)9.(5分)在△ABC中∠A=60°,b=1,S△ABC=,则=.10.(5分)为了调查某班学生做数学题的基本能力,随机抽查了部分学生某次做一份满分为100分的数学试题,他们所得分数的分组区间为11.(5分)已知f(x)=则不等式x+(x+2)•f(x+2)≤5的解集是.12.(5分)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为.13.(5分)设点O为坐标原点,A(2,1),且点F(x,y)坐标满足,则||•cos∠AOP 的最大值为.14.(5分)已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足,,则抛物线的方程为.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(12分)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.16.(12分)已知,函数f(x)=.(1)求函数f(x)的最小正周期;(2)已知,且α∈(0,π),求α的值.17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)当E为AB的中点时,求点E到面ACD1的距离;(3)AE等于何值时,二面角D1﹣EC﹣D的大小为.18.(14分)如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路l(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数y=﹣x2+2(0≤x≤)的图象,且点M到边OA距离为.(1)当t=时,求直路l所在的直线方程;(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值是多少?19.(14分)已知如图,椭圆方程为(4>b>0).P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.(1)求M点的轨迹T的方程;(2)已知O(0,0)、E(2,1),试探究是否存在这样的点Q:Q是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积S△OEQ=2?若存在,求出点Q的坐标,若不存在,说明理由.20.(14分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=(b,c∈N)有且只有两个不动点0,2,且f(﹣2),(1)求函数f(x)的解析式;(2)已知各项不为零的数列{a n}满足4S n•f()=1,求数列通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证:当n≥2时,恒有a n<3成立.广东省揭阳一中xx高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知全集U=R,集合A={x|3≤x<7},B={x|x2﹣7x+10<0},则∁R(A∩B)=()A.(﹣∞,3)∪(5,+∞)B.(﹣∞,3)∪∪∪(5,+∞)考点:交、并、补集的混合运算.分析:先计算集合B,再计算A∩B,最后计算C R(A∩B).解答:解:∵B={x|2<x<5},∴A∩B={x|3≤x<5},∴C R(A∩B)=(﹣∞,3)∪所以四棱锥的体积为:,所以h=.故选B.点评:本题是基础题,考查三视图与直观图的关系,考查几何体的体积的计算,考查计算能力.4.(5分)设{a n}是由正数组成的等比数列,S n为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.考点:等比数列的前n项和.专题:等差数列与等比数列.分析:由题意可得a3=1,再由S3=++1=7可得q=,进而可得a1的值,由求和公式可得.解答:解:设由正数组成的等比数列{a n}的公比为q,则q>0,由题意可得a32=a2a4=1,解得a3=1,∴S3=a1+a2+a3=++1=7,解得q=,或q=(舍去),∴a1==4,∴S5==故选:C点评:本题考查等比数列的求和公式,求出数列的公比是解决问题的关键,属基础题.5.(5分)已知如程序框图,则输出的i是()A.9 B.11 C.13 D.15考点:循环结构.专题:计算题.分析:写出前5次循环的结果,直到第五次满足判断框中的条件,执行输出.解答:解:经过第一次循环得到S=1×3=3,i=5经过第二次循环得到S=3×5=15,i=7经过第三次循环得到S=15×7=105,i=9经过第四次循环得到S=105×9=945,i=11经过第五次循环得到S=945×11=10395,i=13此时,满足判断框中的条件输出i故选C点评:解决程序框图中的循环结构的问题,一般先按照框图的流程写出前几次循环的结果,找规律.6.(5分)已知θ是三角形的一个内角,且sinθ+cosθ=,则x2sinθ﹣y2cosθ=1表示()A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线考点:椭圆的标准方程.专题:计算题;三角函数的求值;圆锥曲线的定义、性质与方程.分析:运用平方法,可得sinθcosθ<0,再将方程化为标准方程,运用作差法,即可判断分母的大小,进而确定焦点的位置.解答:解:θ是三角形的一个内角,且sinθ+cosθ=,则平方可得,1+2sinθcosθ=,则sinθcosθ=﹣<0,即sinθ>0,cosθ<0,x2sinθ﹣y2cosθ=1即为=1,由于﹣=<0,则<,则方程表示焦点在y轴上的椭圆.故选C.点评:本题考查椭圆的方程和性质,注意转化为标准方程,考查三角函数的化简和求值,属于中档题和易错题.7.(5分)方程|x|(x﹣1)﹣k=0有三个不相等的实根,则k的取值范围是()A.B.C.D.考点:函数的零点与方程根的关系.专题:数形结合法.分析:将方程转化为函数y=k与y=|x|(x﹣1),将方程要的问题转化为函数图象交点问题.解答:解:如图,作出函数y=|x|•(x﹣1)的图象,由图象知当k∈时,函数y=k与y=|x|(x﹣1)有3个不同的交点,即方程有3个实根.故选A.点评:本题研究方程根的个数问题,此类问题首选的方法是图象法即构造函数利用函数图象解题,其次是直接求出所有的根.8.(5分)对于任意实数x,符号表示x的整数部分,即是不超过x的最大整数,例如=2;=2;=﹣3,这个函数叫做“取整函数”,它在数学本身和生产实践中有广泛的应用.那么+++…+的值为()A.21 B.76 C.264 D.642考点:对数的运算性质.专题:压轴题;新定义.分析:利用“取整函数”和对数的性质,先把对数都取整后可知++++…+=1×2+2×4+3×8+4×16+5×32+6,再进行相加运算.解答:解:∵=0,到两个数都是1,到四个数都是2,到八个数都是3,到十六个数都是4,到三十二个数都是5,=6,∴++++…+=0+1×2+2×4+3×8+4×16+5×32+6=264故选C.点评:正确理解“取整函数”的概念,把对数正确取整是解题的关键.二、填空题(每小题5分,共30分)9.(5分)在△ABC中∠A=60°,b=1,S△ABC=,则=2.考点:正弦定理;余弦定理.专题:解三角形.分析:由题意和三角形的面积公式求出c,再由余弦定理求出a,代入式子求值即可.解答:解:由题意得,∠A=60°,b=1,S△ABC=,所以,则,解得c=4,由余弦定理得,a2=b2+c2﹣2bccosA=1+16﹣2×=13,则a=,所以==2,故答案为:2.点评:本题考查正弦定理,余弦定理,以及三角形的面积公式,熟练掌握公式和定理是解题的关键.10.(5分)为了调查某班学生做数学题的基本能力,随机抽查了部分学生某次做一份满分为100分的数学试题,他们所得分数的分组区间为.考点:其他不等式的解法.专题:计算题;压轴题;分类讨论.分析:先根据分段函数的定义域,选择解析式,代入“不等式x+(x+2)•f(x+2)≤5”求解即可.解答:解:①当x+2≥0,即x≥﹣2时.x+(x+2)f(x+2)≤5转化为:2x+2≤5解得:x≤.∴﹣2≤x≤.②当x+2<0即x<﹣2时,x+(x+2)f(x+2)≤5转化为:x+(x+2)•(﹣1)≤5∴﹣2≤5,∴x<﹣2.综上x≤.故答案为:(﹣∞,]点评:本题主要考查不等式的解法,用函数来构造不等式,进而再解不等式,这是很常见的形式,不仅考查了不等式的解法,还考查了函数的相关性质和图象,综合性较强,转化要灵活,要求较高.12.(5分)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为4.考点:等差数列的前n项和;等差数列.专题:压轴题.分析:利用等差数列的前n项和公式变形为不等式,再利用消元思想确定d或a1的范围,a4用d或a1表示,再用不等式的性质求得其范围.解答:解:∵等差数列{a n}的前n项和为S n,且S4≥10,S5≤15,∴,即∴∴,5+3d≤6+2d,d≤1∴a4≤3+d≤3+1=4故a4的最大值为4,故答案为:4.点评:此题重点考查等差数列的通项公式,前n项和公式,以及不等式的变形求范围;13.(5分)设点O为坐标原点,A(2,1),且点F(x,y)坐标满足,则||•cos∠AOP 的最大值为.考点:简单线性规划.专题:不等式的解法及应用.分析:先画出满足的可行域,再根据平面向量的运算性质,对||•cos∠AOP 进行化简,结合可行域,即可得到最终的结果.解答:解:满足的可行域如图所示,又∵||•cos∠AOP=,∵=(2,1),=(x,y),∴||•cos∠AOP=.由图可知,平面区域内x值最大的点为(5,2)||•cos∠AOP的最大值为:故答案为:.点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.14.(5分)已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足,,则抛物线的方程为y2=4x.考点:抛物线的标准方程.专题:计算题.分析:设向量的坐标分别为(x1,y1)(x2,y2)(x3,y3)则可知x1+x2+x3=0,进而表示出A,B,C三点的横坐标,根据抛物线定义可分别表示出|FA|,|FB|和|FC|,进而根据,求得p,则抛物线方程可得.解答:解:设向量的坐标分别为(x1,y1)(x2,y2)(x3,y3)由得x1+x2+x3=0∵X A=x1+,同理X B=x2+,X C=x3+∴|FA|=x1++=x1+p,同理有|FB|=x2++=x2+p,|FC|=x3++=x3+p,又,∴x1+x2+x3+3p=6,∴p=2,∴抛物线方程为y2=4x.故答案为:y2=4x.点评:本题主要考查了抛物线的标准方程和抛物线定义的运用.涉及了向量的运算,考查了学生综合运用所学知识解决问题的能力.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(12分)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.考点:复合命题的真假;必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:(1)现将a=1代入命题p,然后解出p和q,又p∧q为真,所以p真且q真,求解实数a的取值范围;(2)先由¬p是¬q的充分不必要条件得到q是p的充分不必要条件,然后化简命题,求解实数a的范围.解答:解:(1)当a=1时,p:{x|1<x<3},q:{x|2<x≤3},又p∧q为真,所以p真且q真,由得2<x<3,所以实数x的取值范围为(2,3)(2)因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件,又p:{x|a<x<3a}(a>0),q:{x|2<x≤3},所以解得1<a≤2,所以实数a的取值范围是(1,2]点评:充要条件要抓住“大能推小,小不能推大”规律去推导.16.(12分)已知,函数f(x)=.(1)求函数f(x)的最小正周期;(2)已知,且α∈(0,π),求α的值.考点:三角函数中的恒等变换应用;平面向量数量积的运算.专题:三角函数的求值;三角函数的图像与性质;平面向量及应用.分析:(1)首先根据已知条件,利用向量的坐标运算,分别求出向量的数量积和向量的模,进一步把函数的关系式通过三角恒等变换,把函数关系式变形成正弦型函数,进一步求出函数的最小正周期.(2)利用(1)的函数关系式,根据定义域的取值范围.进一步求出角的大小.解答:解:(1)已知:则:f(x)====所以:函数的最小正周期为:…(2分)…(4分)(2)由于f(x)=所以解得:所以:…(6分)因为:α∈(0,π),所以:则:解得:点评:本题考查的知识要点:三角函数关系式的恒等变换,向量的坐标运算,正弦型函数的性质的应用,利用三角函数的定义域求角的大小.属于基础题型.17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)当E为AB的中点时,求点E到面ACD1的距离;(3)AE等于何值时,二面角D1﹣EC﹣D的大小为.考点:点、线、面间的距离计算;与二面角有关的立体几何综合题.分析:解法(一):(1)通过观察,根据三垂线定理易得:不管点E在AB的任何位置,D1E⊥A1D总是成立的.(2)在立体几何中,求点到平面的距离是一个常见的题型,同时求直线到平面的距离、平行平面间的距离及多面体的体积也常转化为求点到平面的距离.本题可采用“等积法”:即利用三棱锥的换底法,通过体积计算得到点到平面的距离.本法具有设高不作高的特殊功效,减少了推理,但计算相对较为复杂.根据=既可以求得点E到面ACD1的距离.(3)二面角的度量关键在于找出它的平面角,构造平面角常用的方法就是三垂线法.过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,则∠DHD1为二面角D1﹣EC﹣D的平面角.解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0).这种解法的好处就是:(1)解题过程中较少用到空间几何中判定线线、面面、线面相对位置的有关定理,因为这些可以用向量方法来解决.(2)即使立体感稍差一些的学生也可以顺利解出,因为只需画个草图以建立坐标系和观察有关点的位置即可.(1)因为=(1,0,1)•(1,x,﹣1)=0,所以.(2)因为E为AB的中点,则E(1,1,0),从而,,设平面ACD1的法向量为,从而,所以点E到平面AD1C的距离为.(3)设平面D1EC的法向量,可求得.,因为二面角D1﹣EC﹣D的大小为,所以根据余弦定理可得AE=时,二面角D1﹣EC﹣D的大小为.解答:解法(一):(1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1=,AD1=,故,而.∴,∴,∴.(3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,∴∠DHD1为二面角D1﹣EC﹣D的平面角.设AE=x,则BE=2﹣x在Rt△D1DH中,∵,∴DH=1.∵在Rt△ADE中,DE=,∴在Rt△DHE中,EH=x,在Rt△DHC中CH=,在Rt△CBE中CE=.∴.∴时,二面角D1﹣EC﹣D的大小为.解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)(1)因为=(1,0,1)•(1,x,﹣1)=0,所以.(2)因为E为AB的中点,则E(1,1,0),从而,,设平面ACD1的法向量为,则也即,得,从而,所以点E到平面AD1C的距离为.(3)设平面D1EC的法向量,∴,由令b=1,∴c=2,a=2﹣x,∴.依题意.∴(不合,舍去),.∴AE=时,二面角D1﹣EC﹣D的大小为.点评:本小题主要考查棱柱,二面角、点到平面的距离和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.18.(14分)如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路l(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数y=﹣x2+2(0≤x≤)的图象,且点M到边OA距离为.(1)当t=时,求直路l所在的直线方程;(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值是多少?考点:基本不等式;利用导数研究曲线上某点切线方程.专题:不等式的解法及应用;直线与圆.分析:(Ⅰ)求当t=时,直路l所在的直线方程,即求抛物线y=﹣x2+2(0≤x≤)在x=时的切线方程,利用求函数的导函数得到切线的斜率,运用点斜式写切线方程;(Ⅱ)求出x=t时的抛物线y=﹣x2+2(0≤x≤)的切线方程,进一步求出切线截正方形在直线右上方的长度,利用三角形面积公式写出面积,得到的面积是关于t的函数,利用导数分析面积函数在(0<t<)上的极大值,也就是最大值.解答:解:(I)∵y=﹣x2+2,∴y′=﹣2x,∴过点M(t,﹣t2+2)的切线的斜率为﹣2t,所以,过点M的切线方程为y﹣(﹣t2+2)=﹣2t(x﹣t),即y=﹣2tx+t2+2,当t=时,切线l的方程为y=﹣x+,即当t=时,直路l所在的直线方程为12x+9y﹣22=0;(Ⅱ)由(I)知,切线l的方程为y=﹣2tx+t2+2,令y=2,得x=,故切线l与线段AB交点为F(),令y=0,得x=,故切线l与线段OC交点为().地块OABC在切线l右上部分为三角形FBG,如图,则地块OABC在直路l不含泳池那侧的面积为S=(2﹣)×2=4﹣t﹣=4﹣(t+)≤2.当且仅当t=1时,取等号.∴当t=100米时,地块OABC在直路l不含游泳池那侧的面积最大,最大值为xx0平方米.点评:本题考查了函数模型的选择与应用,考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,在实际问题中,函数在定义域内仅含一个极值,该极值往往就是最值.属中档题型.19.(14分)已知如图,椭圆方程为(4>b>0).P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.(1)求M点的轨迹T的方程;(2)已知O(0,0)、E(2,1),试探究是否存在这样的点Q:Q是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积S△OEQ=2?若存在,求出点Q的坐标,若不存在,说明理由.考点:圆与圆锥曲线的综合.专题:计算题;数形结合.分析:(1)延长F1M与F2P的延长线相交于点N,连接OM,利用条件求出M是线段NF1的中点,转化出|OM|=4即可求出M点的轨迹T的方程;(2)可以先观察出轨迹T上有两个点A(﹣4,0),B(4,0)满足S△OEA=S△OEB=2,再利用同底等高的两个三角形的面积相等,,,知道符合条件的点均在过A、B作直线OE的两条平行线l1、l2上,再利用点Q是轨迹T内部的整点即可求出点Q的坐标.解答:解:(1)当点P不在x轴上时,延长F1M与F2P的延长线相交于点N,连接OM,∵∠NPM=∠MPF1,∠NMP=∠PMF1∴△PNM≌△PF1M∴M是线段NF1的中点,|PN|=|PF1||(2分)∴|OM|=|F2N|=(|F2P|+|PN|)=(|F2P|+|PF1|)∵点P在椭圆上∴|PF2|+|PF1|=8∴|OM|=4,(4分)当点P在x轴上时,M与P重合∴M点的轨迹T的方程为:x2+y2=42.(6分)(2)连接OE,易知轨迹T上有两个点A(﹣4,0),B(4,0)满足S△OEA=S△OEB=2,分别过A、B作直线OE的两条平行线l1、l2.∵同底等高的两个三角形的面积相等∴符合条件的点均在直线l1、l2上.(7分)∵∴直线l1、l2的方程分别为:、(8分)设点Q(x,y)(x,y∈Z)∵Q在轨迹T内,∴x2+y2<16(9分)分别解与得与(11分)∵x,y∈Z∴x为偶数,在上x=﹣2,,0,2对应的y=1,2,3在上x=﹣2,0,2,对应的y=﹣3,﹣2,﹣1(13分)∴满足条件的点Q存在,共有6个,它们的坐标分别为:(﹣2,1),(0,2),(2,3),(﹣2,﹣3),(0,﹣2),(2,﹣1).(14分)点评:本题涉及到轨迹方程的求法.在求动点的轨迹方程时,一般多是利用题中条件得出关于动点坐标的等式,整理可得动点的轨迹方程.20.(14分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=(b,c∈N)有且只有两个不动点0,2,且f(﹣2),(1)求函数f(x)的解析式;(2)已知各项不为零的数列{a n}满足4S n•f()=1,求数列通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证:当n≥2时,恒有a n<3成立.考点:反证法与放缩法;数列的函数特性;数列递推式.专题:综合题;等差数列与等比数列.分析:(1)由=x,化简为(1﹣b)x2+cx+a=0,利用韦达定理可求得,代入f(x)=(b,c∈N),依题意可求得c=2,b=2,从而可得函数f(x)的解析式;(2)由4S n﹣=1,整理得2S n=a n﹣(*),于是有2S n﹣1=a n﹣1﹣(**),二式相减得(a n+a n﹣1)(a n﹣a n﹣1+1)=0,讨论后即可求得数列通项a n;(3)由a n+1=f(a n)得,a n+1=,取倒数得=﹣2+≤⇒a n+1<0或a n+1≥2,分别讨论即可.解答:解:(1)依题意有=x,化简为(1﹣b)x2+cx+a=0,由韦达定理得:,解得,代入表达式f(x)=,由f(﹣2)=<﹣,得c<3,又c∈N,b∈N,若c=0,b=1,则f(x)=x不止有两个不动点,∴c=2,b=2,故f(x)=,(x≠1).(2)由题设得4S n•=1,整理得:2S n=a n﹣,(*)且a n≠1,以n﹣1代n得2S n﹣1=a n﹣1﹣,(**)由(*)与(**)两式相减得:2a n=(a n﹣a n﹣1)﹣(﹣),即(a n+a n﹣1)(a n﹣a n﹣1+1)=0,∴a n=﹣a n﹣1或a n﹣a n﹣1=﹣1,以n=1代入(*)得:2a1=a1﹣,解得a1=0(舍去)或a1=﹣1,由a1=﹣1,若a n=﹣a n﹣1得a2=1,这与a n≠1矛盾,∴a n﹣a n﹣1=﹣1,即{a n}是以﹣1为首项,﹣1为公差的等差数列.(3)由a n+1=f(a n)得,a n+1=,=﹣2+≤,∴a n+1<0或a n+1≥2.若a n+1<0,则a n+1<0<3成立;若a n+1≥2,此时n≥2,从而a n+1﹣a n=≤0,即数列{a n}在n≥2时单调递减,由a2=2知,a n≤a2=2<3,在n≥2上成立.综上所述,当n≥2时,恒有a n<3成立.点评:本题考查数列的函数特性,着重考查等差数列的判定,考查推理证明能力,考查转化思想与分类讨论思想的综合应用,属于难题. 36365 8E0D 踍37704 9348 鍈4 27966 6D3E 派z ^Ko32962 80C2 胂T32069 7D45 絅26795 68AB 梫。
2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。
2021-2022学年陕西省渭南市白水县高二上学期期末数学(理)试题一、单选题1.在等比数列{}n a 中,66a =,99a =,则3a 等于( ) A .2 B .4 C .169D .32【答案】B【分析】由等比数列的性质进行求解即可.【详解】由等比数列的性质,2639a a a =⋅,∴3369a =,∴34a =. 故选:B.2.若,,a b c R ∈且a b >,则下列不等式中一定成立的是( ) A .ac bc > B .2()0a b c ->C .11a b<D .22a b -<-【答案】D【分析】根据不等式的性质即可判断. 【详解】对于A ,若0c ≤,则不等式不成立; 对于B ,若0c ,则不等式不成立; 对于C ,若,a b 均为负值,则不等式不成立;对于D ,不等号的两边同乘负值,不等号的方向改变,故正确; 故选:D【点睛】本题主要考查不等式的性质,需熟练掌握性质,属于基础题.3.设双曲线2222:1(0,0)x y C a b a b-=>>的实轴长与焦距分别为2,4,则双曲线C 的渐近线方程为( )A .y =B .13y x =±C .y =D .3y x =±【答案】C【分析】由已知可求出,,a b c ,即可得出渐近线方程.【详解】因为22,24a c ==,所以1,2,a c b ===C 的渐近线方程为y =. 故选:C.4.已知命题p :∀x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)≥0,则⌝p 是 A .∃x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)<0D .∀x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)<0 【答案】C【详解】全称命题的的否定是存在性命题,因为,命题p :∀x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)≥0,所以,⌝p 是∃x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)<0,故选C. 【解析】全称命题与存在性命题.点评:简单题,全称命题的的否定是存在性命题.5.设0a >,m =n ). A .m n < B .m n =C .m n >D .m ,n 的大小不定【答案】A【分析】利用作差法即可比较大小.【详解】由已知m =225m a =++n 225n a =++又因为0,0m n >>,且220n m ->,所以n m >. 故选:A6.已知点,,,O A B C 为空间不共面的四点,且向量a OA OB OC =++,向量b OA OB OC =+-,则与,a b 不能构成空间基底的向量是( ) A .OA B .OB C .OC D .OA 或OB【答案】C【分析】利用空间向量的基底的意义即可得出. 【详解】111()()()222OC a b OA OB OC OA OB OC =-=++-+-,∴OC 与a 、b 不能构成空间基底;故选:C .7.在ABC 中,若()()3a b c b c a bc +++-=,且sin 2sin cos A B C =,则ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形【答案】B【分析】将()()3a b c b c a bc +++-=化简并结合余弦定理可得A 的值,再对sin 2sin cos A B C =结合正余弦定理化简可得边长关系,进行判定三角形形状.【详解】由()()3a b c b c a bc +++-=,得22()3b c a bc +-=,整理得222b c a bc +-=,则2221cos 22b c a A bc +-==, 因为()0,πA ∈,所以π3A =, 又由sin 2sin cos A B C =,得22222a b c a b ab+-=⋅化简得b c =,所以ABC 为等边三角形, 故选:B8.若x ,y 满足约束条件1121x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则2z x y =+的最大值是( ).A .2B .3C .8D .12【答案】C【分析】画出可行域及目标函数,利用几何意义求出最值.【详解】画出可行域,如图所示,当2z x y =+经过点A 时,取得最大值,联立121x y x y -=-⎧⎨-=⎩,解得:23x y =⎧⎨=⎩,故()2,3A ,此时2268z x y =+=+=, 故2z x y =+的最大值为8. 故选:C9.在正四面体-P ABC 中,棱长为1,且D 为棱AB 的中点,则PD PC ⋅的值为( ).A .14-B .18-C .12-D .12【答案】D【分析】在正四面体-P ABC 中,由中点性质可得()12PD PA PB =+,则PD PC ⋅可代换为()12P PA B C P ⋅+,由向量的数量积公式即可求解. 【详解】如图,因为D 为棱AB 的中点,所以()12PD PA PB =+, ()()1122PD PC P P C P A PB PA P C PC B ⋅=⋅⋅⋅+=+, 由正四面体得性质,PA 与PC 的夹角为60°,同理PB 与PC 的夹角为60°,1PA PB PC ===,111cos602PA PC P PB C ⋅⋅==⨯⨯︒=, 故21211122PC PD ⎛⎫⋅=⨯+= ⎪⎝⎭,故选:D.10.命题p :若1y x <<,01a <<,则11x y a a<,命题q :若1y x <<,a<0,则a a x y <.在命题①p 且q ②p 或q ③非p ④非q 中,真命题是( ) A .①③ B .①④C .②③D .②④【答案】C【分析】先判断命题,p q 的真假,再根据或、且、非命题的真值表判断真假求解即可. 【详解】命题p 中,01a <<,则指数函数1y x a =单调递增,111x yy x a a <<⇒>,所以p 为假命题,命题q 中,a<0则幂函数y a x =在(0,)+∞上单调递减,由1y x <<,知a a x y <, 所以q 为真命题,所以①p 且q 为假命题 ,②p 或q 为真命题,③非p 为真命题,④非q 为假命题. 故选:C11.设椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,P 是C 上的点,212PF F F ⊥,1260F PF ∠=︒,则C 的离心率为( ).A .33B .13C .12D .36【答案】A【分析】()20F c ,,把x c =代入椭圆方程解得y ,可得p y ﹐在12Rt PF F △中,由1260PF F ∠=︒建立等式进而得出结论. 【详解】如图所示,由()20F c ,,212PF F F ⊥,把x c =代入椭圆方程可得 22221c y a b += ,解得 2b y a=±, 取 2P b y a=在12Rt PF F △中,22b PF a =,由1260F PF ∠=︒,∴212b PF a=,由椭圆定义可得22212232b b b PF PF a a a a +=+==,得2223a b =, ∴222212c a b b =-=,则有22223a c =,2213c a =则C 的离心率3c e a ==. 故选:A.12.对于正项数列{}n a ,定义12323nn a a a na G n++++=为数列{}n a 的“匀称值”.已知数列{}n a 的“匀称值”为2n G n =+,则该数列中的9a 等于( ) A .83B .125C .2110D .199【答案】D【分析】由已知得12323(2)n a a a na n n +++⋯+=+,由此推导出21n n a n+=,从而能求出9a . 【详解】解:12323nn a a a na G n+++⋯+=,数列{}n a 的“匀称值”为2n G n =+,12323(2)n a a a na n n ∴+++⋯+=+,①2n ∴时,123123(1)(1)(1)n a a a n a n n -+++⋯+-=-+,②①-②,得21n na n =+,21n n a n+∴=,2n , 当1n =时,113a G ==满足上式,21n n a n+∴=, ∴9199a =. 故选:D二、填空题13.已知向量()2,1,3a =-,()4,2,b x =-,()1,,2c x =-,若()a b c +⊥,则x =____________. 【答案】4-【分析】首先求出a b +的坐标,再根据向量垂直得到()0a b c +⋅=,即可得到方程,解得即可; 【详解】解:因为向量()2,1,3a =-,()4,2,b x =-,()1,,2c x =-,所以向量()2,1,3a b x +=-+,因为()a b c +⊥,所以()0a b c +⋅=,即()()211230x x -⨯+⨯-++=,解得4x =- 故答案为:4-14.已知不等式210ax bx --≥的解集是11|23⎧⎫-≤≤-⎨⎬⎩⎭x x ,则不等式20x bx a --< 的解集是________.【答案】{|23}x x <<【分析】根据给定的解集求出a ,b 的值,再代入解不等式即可作答.【详解】依题意,12-,13-是方程210ax bx --=的两个根,且a<0,于是得11()()23111()()23b aa ⎧-+-=⎪⎪⎨⎪-⨯-=-⎪⎩,解得:6,5ab =-=,因此,不等式20x bx a --<为:2560x x -+<,解得23x <<, 所以不等式20x bx a --< 的解集是{|23}x x <<. 故答案为:{|23}x x <<15.若a ,b ,c 均为实数,试从①2b ac =;②b ③a bb c=中选出“a ,b ,c 成等比数列”的必要条件的序号______. 【答案】①③【分析】依次判断“a ,b ,c 成等比数列”是否能推出序号中的条件即可.【详解】设1p 为“2b ac =”,2p 为“b ,3p 为“a bb c=”, q 为“a ,b ,c 成等比数列”,由于a ,b ,c 成等比数列,故0a ≠,0b ≠,0c ≠, 若i q p ⇒(1i =,2,3),则i p 是q 的必要条件,对于①,由等比中项的定义,“a ,b ,c 成等比数列”⇒“2b ac =”, ∴“2b ac =”是“a ,b ,c 成等比数列”的必要条件,故①正确; 对于②,令1a =,2b =-,4c =,则a ,b ,c 成等比数列,此时“a ,b ,c 成等比数列”“b ,∴“b 不是“a ,b ,c 成等比数列”的必要条件,故②错误; 对于③,由等比数列的定义,“a ,b ,c 成等比数列”⇒b c a b =⇔a b b c=, ∴“a ,b ,c 成等比数列”⇒“a bb c=”, ∴“a bb c=”是“a ,b ,c 成等比数列”的必要条件,故③正确. 综上所述,“a ,b ,c 成等比数列”的必要条件的序号为:①③. 故答案为:①③.16.已知抛物线()2:20C x py p =>的焦点为F ,抛物线C 的准线与y 轴交于点A ,点)0My 在抛物线C 上,074y MF =,则MAF △的面积为______.【分析】由抛物线的性质以及07||4y MF =,可得p 的值,进而解出三角形MFA △的面积. 【详解】解:由抛物线的定义及其性质可知,007||24y p MF y =+=,023py ∴=,∴2223p p =⨯, 32p ∴=,即23x y =, 3(0,)4A ∴-,M 1),3(0,)4F ,∴1322MFAS=⨯,三、解答题 17.求解下列问题: (1)解不等式3521x x->+; (2)已知1a >,0b >,2a b +=,求141a b+-的最小值. 【答案】(1)()(),17,∞∞--⋃+ (2)9【分析】(1)根据分式不等式的求法求得正确答案. (2)利用基本不等式求得正确答案. 【详解】(1)不等式3521x x->+可化简为701x x ->+, 即()()710x x -+>,解得1x <-或7x >. 故原不等式的解集为()(),17,∞∞--⋃+.(2)∵2a b +=,∴()11a b -+=,且10a ->,0b >,∴()()4114141559111a b a b a b a b a b -⎛⎫+=-++=++≥+=⎡⎤ ⎪⎣⎦---⎝⎭, 当且仅当()411a ba b-=-,即43a =,23b =时等号成立.故141a b+-的最小值为9.18.在ABC sin sin 2C c A =.(1)求角A 的大小;(2)若a =b =ABC 的面积. 【答案】(1)π6A =【分析】(1)根据题意,结合正弦定理和二倍角的正弦公式即可求解;(2)结合(1)的结论,利用余弦定理求出5c =或1c =,然后利用三角形面积公式即可求解.【详解】(1sin sin 2C c A =,sin 2sin sin cos A C C A A =,因为,(0,π)A C ∈,所以sin 0A ≠,sin 0C ≠,则有cos A = 又0πA <<,所以π6A =.(2)因为a =b =,由(1)知:π6A =, 在ABC 中,由余弦定理可得:2222cos a b c bc A =+-,即(2222c =+-⨯, 化简得2650c c -+=,解得5c =或1c =(经检验符合题意),当1c =时,111sin 1222ABC S bc A ==⨯⨯=△当5c =时,111sin 5222ABC S bc A ==⨯⨯=△19.已知数列{}n a 满足11a =,1431n n a a n +=+-,n n b a n =+. (1)证明:数列{}n b 为等比数列; (2)求数列{}n a 的前n 项和. 【答案】(1)见证明;(2)()221141322n n n --- 【分析】(1)利用等比数列的定义可以证明;(2)由(1)可求n b 的通项公式,结合n n b a n =+可得n a ,结合通项公式公式特点选择分组求和法进行求和.【详解】证明:(1)∵n n b a n =+,∴111n n b a n ++=++. 又∵1431n n a a n +=+-,∴()1143111n n n n n n a n n b a n b a n a n+++-++++==++()44n n a n a n +==+. 又∵111112b a =+=+=,∴数列{}n b 是首项为2,公比为4的等比数列.解:(2)由(1)求解知,124n n b -=⨯,∴124n n n a b n n -=-=⨯-,∴()()211221412(1444)(123)142n n n n n n S a a a n --+=++⋯+=++++-++++=--()221141322n n n =---. 【点睛】本题主要考查等比数列的证明和数列求和,一般地,数列求和时要根据数列通项公式的特征来选择合适的方法,侧重考查数学运算的核心素养.20.已知过抛物线()2:20C y px p =>的焦点,C 于()11,A x y ,()()2212,B x y x x <两点,16AB =.(1)求抛物线C 的方程;(2)O 为坐标原点,D 为C 上一点,若OD OA OB λ=+,求λ的值. 【答案】(1)212y x =;(2)0λ=或53λ=.【分析】(1)设直线AB 的方程2p y x⎫=-⎪⎭,与抛物线联立,由于直线AB 过焦点,故121622A p px x B =++=+,代入即得解;(2)设()33,D x y ,由OD OA OB λ=+,可得)331931x y λλ=+⎧⎪⎨=-⎪⎩,代入抛物线方程即得解【详解】(1)直线AB 的方程可表示为2p y x ⎫=-⎪⎭,与抛物线方程22y px =联立可得方程组222y pxp y x ⎧=⎪⎨⎫=-⎪⎪⎭⎩, 消去y 得22122030x px p -+=,解得16px =,232p x =.由于直线AB 过焦点,故121622A p p x x B =++=+, 得31626p p p ++=,解得6p , 所以抛物线C 的方程为212y x =.(2)由(1)知()1,23A -,()9,63B .设()33,D x y ,由OD OA OB λ=+,得()()()33,1,239,63x y λ=-+,所以()33192331x y λλ=+⎧⎪⎨=-⎪⎩. 因为点D 在C 上,所以()()212311291λλ-=+,化简得2350λλ-=,解得0λ=或53λ=. 21.在如图所示的几何体中,四边形ABCD 为矩形,AF ⊥平面ABCD ,EF AB ∥,2AD =,21AB AF EF ===,点P 为DF 的中点,请用空间向量知识解答下列问题:(1)求证:BF ∥平面APC ;(2)求直线DE 与平面APC 所成角的正弦值.【答案】(1)证明见解析(2)102163【分析】(1)证明BF ⊥平面APC 的法向量m 即可求解;(2)根据线面角的正弦公式带入即可求解.【详解】(1)证明:易知AB ,AD ,AF 两两相互垂直,∴以A 为坐标原点,AB ,AD ,AF 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则()0,0,0A ,()1,0,0B ,()1,2,0C ,()0,2,0D ,1,0,12E ⎛⎫ ⎪⎝⎭,()0,0,1F ,10,1,2P ⎛⎫ ⎪⎝⎭, ∴()1,0,1BF =-,10,1,2AP ⎛⎫= ⎪⎝⎭,()1,2,0AC =, 设平面APC 的一个法向量为(),,m x y z =,则00m AP m AC ⎧⋅=⎪⎨⋅=⎪⎩, 即10220y z x y ⎧+=⎪⎨⎪+=⎩,取1y =,解得212x y z =-⎧⎪=⎨⎪=-⎩. 故平面APC 的法向量为()2,1,2m =--,易知0BF m ⋅=,则BF m ⊥,又BF 平面APC ,∴BF ∥平面APC .(2)1,2,12DE ⎛⎫=- ⎪⎝⎭, 设直线DE 与平面APC 所成角为θ, 则51021sin cos ,2194DE mDE m DE m θ-⋅====⋅⋅故直线DE 与平面APC 1021. 22.已知1F ,2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,M 为C 上的动点,其中M 到1F的最短距离为1,且当12MF F △的面积最大时,12MF F △恰好为等边三角形.(1)求椭圆C 的标准方程;(2)斜率为k 的动直线l 过点2F ,且与椭圆C 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点P ,那么,2||PF AB 是否为定值?若是,请证明你的结论;若不是,请说明理由. 【答案】(1)22143x y +=;(2)2||PF AB 为定值,证明见解析 【分析】(1)当点M 在椭圆的左顶点时,M 到1F 的距离最短,可得1a c -=,当点M 在椭圆的上顶点(或下顶点)时,12MF F △的面积最大,此时12MF F △为等边三角形,可得2a c =,从而可求出,,a b c ,即可求出椭圆C 的标准方程;(2)易知直线l 的斜率存在,设其方程为(1)y k x =-,联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩,得到关于x 的一元二次方程,结合韦达定理,可求得AB 的中点的坐标,从而可得到线段AB 的垂直平分线的方程,令0y =,可求出点P 的坐标,从而可得到2PF 的表达式,然后根据弦长公式AB =,可求出AB 的表达式,从而可求得2||PF AB 为定值,经验证当0k =时,2||PF AB 为相同的定值. 【详解】(1)由题意,当点M 在椭圆的左顶点时,M 到1F 的距离最短,则1a c -=,当点M 在椭圆的上顶点(或下顶点)时,12MF F △的面积最大,此时12MF F △为等边三角形,则2a c =,联立22212a c a c a b c ⎧-=⎪=⎨⎪=+⎩,解得2,1,a c b ===故椭圆C 的方程为22143x y +=. (2)2||PF AB 为定值. 证明:由题意可知,动直线l 的斜率存在,设其方程为(1)y k x =-,联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩,得()()2222348430k x k x k +-+-=. 设()11,A x y ,()22,B x y ,则2122834k x x k +=+,()21224334k x x k -=+, 设AB 的中点为()00,Q x y ,则212024234x x k x k +==+,()0023134k y k x k -=-=+.当0k ≠时,线段AB 的垂直平分线的方程为2223143434k k y x k k k ⎛⎫--=-- ⎪++⎝⎭, 令0y =,得2234k x k =+,即22,034k P k ⎛⎫ ⎪+⎝⎭, 所以()222223113434k k PF k k +=-=++.AB()2212134k k +=+. 所以()()2222231134||412134k PF k AB k k ++==++. 当0k =时,l 的方程为0y =, 此时,24AB a ==,21PF c ==,21||4PF AB =. 综上,2||PF AB 为定值. 【点睛】方法点睛:求定值问题,常见的方法:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。
2022-2023学年四川省成都市蓉城名校联盟高二上学期期末联考数学(理)试题一、单选题1.命题“N,3sin x x x ∀∈>”的否定是( ) A .N,3sin x x x ∀∈≤B .N,3sin x x x ∀∈<C .000N,3sin xx x ∃∈>D .000N,3sin xx x ∃∈≤【答案】D【分析】由全称命题的否定的定义即可得出结果.【详解】由全称命题的否定的定义可知,N,3sin x x x ∀∈>的否定为000N,3sin xx x ∃∈≤.故选:D.2.直线0x y -=的倾斜角为( ) A .6π B .4π C .3π D .34π 【答案】B【分析】由直线的斜率与倾斜角的关系即可求出倾斜角.【详解】由0x y -+=得斜率1tan 4k π==,故选:B.3.抛物线236y x =的准线方程是( ) A .9y = B .9y =- C .9x = D .9x =-【答案】D【分析】根据抛物线方程()220y px p =>的准线方程为2px =-求解. 【详解】由236y x =得18p =,∴准线方程为92px =-=-, 故选:D4.在空间直角坐标系O xyz -中,点(2,1,4)A -与(2,1,4)A '关于( )对称. A .xOy 平面 B .yOz 平面 C .xOz 平面 D .原点【答案】B【分析】根据空间直角坐标系的定义求解.【详解】因为点(2,1,4)A -与(2,1,4)A '两点的横坐标互为相反数,其余坐标相等, 所以两点则关于yOz 平面对称, 故选:B .5.若x ,y 满足约束条件580?2310032110x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .11,3⎡⎤-⎢⎥⎣⎦B .1,43⎡⎤⎢⎥⎣⎦C .(]1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭D .[]1,4-【答案】C【分析】根据约束条件画出可行域,利用目标函数的几何意义即可求解. 【详解】画出可行域如图,()1,4A ,()2,2B -,()3,1C ,y x 表示点(),x y 与()0,0O 连线的斜率,13OC k =,1OB k =-, ∴y x 的取值范围是(]1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭, 故选:C.6.某程序框图如图所示,则输出的S =( )A .8B .27C .85D .260【答案】C【分析】直接运行程序框图即可求解. 【详解】由图可知,初始值2,1S k ==;第一次循环,112,3228k S =+==⨯+=,23k =>不成立; 第二次循环,213,38327k S =+==⨯+=,33k =>不成立; 第三次循环,314,327485k S =+==⨯+=,43k =>成立; 退出循环,输出S 的值为85. 故选:C.7.已知命题p :直线340ax y +-=与()220x a y +++=平行,命题:3q a =-,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】B【分析】判断命题p 与命题q 间关系可得答案.【详解】直线340ax y +-=与()220x a y +++=平行,则()233a a a +=⇒=-或1a =, 又当1a =或3a =-时,两直线均不重合,即命题p 等价于3a =-或1a =, 则由命题p 不能得到命题q ,但由命题q 可得命题p ,则p 是q 的必要不充分条件. 故选:B.8.下列命题是真命题的是( )A .“若x ,y 互为相反数,则0x y +=”的逆否命题B .“偶函数的图象关于y 轴对称”是特称命题C .“1x >且1y >”是”2x y +>”的充要条件D .若0xy ≠,则x ,y 只有一个不为0 【答案】A【分析】根据命题的定义一一判断即可求解. 【详解】A 选项,原命题与逆否命题等价,原命题“若x ,y 互为相反数,则0x y +=”为真命题, 则逆否命题为真命题,A 正确;B 选项,原命题可改写为“所有偶函数的图象关于y 轴对称”是全称命题,B 错误;C 选项,x >且1y >可得到2x y +>,但2x y +>,如取1,4x y =-=得不到x >且1y >,所以“1x >且1y >”是”2x y +>”的充分不必要条件,C 错误; D 选项,若0xy ≠,则x ,y 都不为0,D 错误. 故选:A.9.若直线20x y m -+=与椭圆22152x y +=交于,A B 两点,且AM MB =,则点M 的坐标可能是( )A .11,210⎛⎫- ⎪⎝⎭B .(5,1)-C .11,210⎛⎫⎪⎝⎭D .(5,1)【答案】A【分析】利用中点弦问题的点差法求解. 【详解】因为AM MB =,所以M 为AB 中点, 设112200(,),(,),(,)A x y B x y M x y ,因为,A B 在椭圆上,所以22112222152152x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得12121212()()()()052x x x x y y y y +-+-+=,即()()()()1212121225y y y y x x x x +-=-+-,即25OM AB k k ⋅=-,因为直线20x y m -+=过点,A B ,所以2AB k =, 所以0015OM y k x ==-,经检验C 、D 不满足0015y x =-, A 、B 选项均满足0015y x =-,但(5,1)-在椭圆外,不符合条件,故选:A.10.已知直线()100,0x my n m n ++-=>>与圆()2219x y +-=相交于A ,B 两点,且AB 的长度始终为6,则4n mmn+的最小值为( ) A .2 B .4 C .8 D .9【答案】D【分析】由题知,直线恒过圆心()0,1,则1m n +=,结合基本不等式即可求解. 【详解】圆()2219x y +-=的圆心()0,1,半径为3,由题知,直线恒过圆心()0,1,则1m n +=,而0,0m n >>,所以()4141441559n m m n m n mn m n m n n m +⎛⎫⎛⎫=+⨯=+⨯+=++≥= ⎪ ⎪⎝⎭⎝⎭, 当且仅当4m nn m=且1m n +=,即12,33m n ==时等号成立.故选:D.11.已知动点P 在双曲线22215x y a -=的右支上,过点P 作圆22:1C x y +=的切线,切点为M ,切线长|PM | )A .32B .52C D 2【答案】A【分析】由勾股定理知,切线长|PM |取得最小值可转化为|OP |取得最小值,即可求出,a c 进而求出离心率.【详解】解:由勾股定理知,切线长|PM |取得最小值可转化为|OP |取得最小值,当|OP |取得最小值时,P 为双曲线右顶点(a ,0),则2a =,则2223459,3,2c c a b c e a =+=+====. 故选:A.12.已知直线1x my =+与抛物线C :24y x =交于A ,B 两点,M 为抛物线上一动点,OM 与线段AB 交于点N ,且3OM ON =,则ABM 面积的最小值为( ) A .4 B .6 C .8 D .10【答案】A【分析】联立直线与抛物线方程,结合韦达定理求得弦长AB ,进而求出ABOS,由3OM ON =,得2ABMABO SS =△,根据表达式求出最值即可.【详解】由214x my y x=+⎧⎨=⎩得2440y my --=,2(4)160m ∆=-+>设1122(,),(,)A x y B x y ,则12124,4y y y y m =-+=,()241AB m =+,O 到直线1x my =+的距离d =,∴12ABO S AB d =⨯⨯=△∵3OM ON =,∴2ABM ABO S S ==△△ ∴当0m =时,ABM S △取最小值4. 故选:A .二、填空题13.双曲线22152x y -=的实半轴长为___________.【分析】根据实半轴定义求解.【详解】由题可得25a =,所以a =所以实半轴长为a =故答案为:14.粮食安全是国之大者,解决吃饭问题,根本出路在科技.某科技公司改良试种了A ,B ,C 三类稻谷品种,今年秋天分别收获了A 类稻谷1200株,B 类稻谷1500株,C 类稻谷2100株.现用分层抽样的方法从上述所有稻谷中抽取一个容量为320株的样本进行检测,则从B 类稻谷中应抽取的株数为___________. 【答案】100【分析】先求出A 、B 、C 株数之比,然后按比例抽取.【详解】A 、B 、C 株数之比为457::,则B 类抽取的株数为532010016⨯=. 故答案为:10015.天府绿道是成都人民朋友圈的热门打卡地,经统计,天府绿道旅游人数x (单位:万人)与天府绿道周边商家经济收入y (单位:万元)之间具有线性相关关系,且满足回归直线方程为ˆ12.60.6yx =+,对近五个月天府绿道旅游人数和周边商家经济收入统计如下表:则表中a 的值为___________. 【答案】88【分析】根据样本平均值满足回归直线方程求解. 【详解】样本平均值满足回归直线方程,x 的平均值为23 3.5 4.5745++++=,则y 的平均值2638436012.640.65a++++=⨯+,解得88a =,故答案为:88.三、双空题16.已知()2,0A -,()2,0B ,动点M 满足2MB MA -=,(N ,则MNB 周长的最小值为______,此时点M 的坐标为______.【答案】 10 54⎛- ⎝⎭【分析】由题意得动点M 的轨迹是以,A B 为焦点,实轴长为2的双曲线的左支,求出轨迹方程,根据双曲线定义及三点共线求得MNB 周长的最小值,将直线AN 的方程代入双曲线方程可求得M 的坐标.【详解】由题意得动点M 的轨迹是以,A B 为焦点,实轴长为2的双曲线的左支,则2,1,c a b ===M 的轨迹方程为()22103y x x -=<,∵4NB =,∴MNB 的周长最小时,MN MB +最小,2MN MB MN MA +=++,又4MN MA AN +≥=,当且仅当N ,M ,A 三点共线且M 在线段AN 上时,等号成立, ∴MNB 的周长为24610MN MB NB MN MA AN ++=+++≥+=,直线AN 的方程为)2y x =+,将其代入到2213y x -=,化简得:441x --=,54x =-,则524y ⎫-+=⎪⎭,M 的坐标为54⎛- ⎝⎭.故答案为:10,54⎛- ⎝⎭.四、解答题17.已知直线1:20l x y -+=和2:0l x y +=相交于点P .(1)若直线l 经过点P 且与3:220l x y +-=垂直,求直线l 的方程; (2)若直线l '经过点P 且与4:2310l x y --=平行,求直线l '的方程. 【答案】(1)230x y -+= (2)2350x y -+=【分析】(1)联立两直线方程,求出交点坐标,设l 的方程为20x y m -+=,将()1,1P -代入方程,求出参数m 的值,即可得解;(2)依题意设l '的方程为230x y n -+=,将()1,1P -代入方程,求出参数n 的值,即可得解;【详解】(1)解:由200x y x y -+=⎧⎨+=⎩,解得11x y =-⎧⎨=⎩,所以1:20l x y -+=与2:0l x y +=的交点P 为()1,1- 设与3:220l x y +-=垂直的直线l 的方程为20x y m -+=, 将()1,1P -代入20x y m -+=,即()2110m ⨯--+=解得3m =, 则l 的方程为230x y -+=;(2)解:依题意设l '的方程为230x y n -+=,将()1,1P -代入230x y n -+=,即()21310n ⨯--⨯+=解得5n =, ∴l '的方程为2350x y -+=.18.成都电视台在全市范围内开展创建全国文明典范城市知识竞赛,随机抽取n 名参赛者的成绩统计如下表:成绩分组 频数 频率[)50,60 10 0.10[)60,70 25a[)70,80 35 0.35[)80,90b0.20[]90,100100.10(1)请求出n ,a ,b 的值,并画出频率分布直方图;(2)请估计这n 名参赛者成绩的中位数和平均值(结果均保留一位小数) 【答案】(1)100n =,0.25a =,20b =,频率分布直方图见解析 (2)中位数为74.3,平均值为74.5【分析】(1)根据频率计算公式求出n ,a ,b 的值,进而画出频率分布直方图;(2)由中位数左边和右边的直方图的面积相等,求出中位数;由每个小矩形底边中点的横坐标与小矩形的面积的乘积之和,求出平均值. 【详解】(1)由[)70,80组数据可得:351000.35n ==, 则250.25100a ==,1000.220b =⨯=, 画出频率分布直方图如图,(2)设中位数为x ,则()0.10.250.035700.5x ++⨯-=,解得74.3x ≈, 平均值为550.1650.25750.35850.2950.174.5⨯+⨯+⨯+⨯+⨯=.19.已知m ∈R ,命题p :[]0,2x ∀∈,22m x x ≤-,命题q :()0,x ∃∈+∞,使得方程4x m x+=成立. (1)若p 是真命题,求m 的取值范围;(2)若p q ∨为真命题,p q ∧为假命题,求m 的取值范围. 【答案】(1)1m ≤- (2)(][),14,-∞-⋃+∞【分析】(1)根据恒成立的思想可知()2min 2m x x ≤-,由二次函数最值可求得结果;(2)根据基本不等式可求得44x x+≥,由能成立的思想可知4m ≥时;由题意可知,p q 一真一假,分别讨论p 真q 假和p 假q 真两种情况即可.【详解】(1)若p 是真命题,则22m x x ≤-在[]0,2上恒成立, ∵()22211x x x -=--,[]0,2x ∈,∴当1x =时,()2min 21x x -=-,∴1m ≤-;(2)对于q ,当0x >时,4424x x x x +≥⋅=,当且仅当2x =时取等号, 若()0,x ∃∈+∞,使得方程4x m x+=成立,只需4m ≥即可,若p q ∨为真命题,p q ∧为假命题,则p 和q 一真一假,当p 真q 假时,114? m m m ≤-⎧⇒≤-⎨<⎩, 当p 假q 真时,144? m m m >-⎧⇒≥⎨≥⎩综上,m 的取值范围为(][),14,-∞-⋃+∞.20.已知直线:30l x y λλ+--=和圆22:6210C x y x y +--+=(1)证明:无论λ取何值,直线l 始终与圆C 有两个公共点;(2)若l 与圆C 交于A ,B 两点,求弦长|AB |的最小值.【答案】(1)证明见解析(2)2【分析】(1)注意到直线l 过定点,再证该定点在圆C 内部即可;(2)当l 与CM 垂直的时,弦长|AB |取得最小值,即可得答案.【详解】(1)()130:l λx y -+-=,恒过点M (1,3),22:6210C x y x y +--+=化简为()()22319:C x y -+-= 将M (1,3)代入圆的方程得()()2213319-+-<,则M (1,3)在圆内,∴无论λ取何值,直线l 始终与圆C 有两个公共点;..(2)当l 与CM 垂直的时,弦长|AB |取得最小值,则CM ==C 半径r 为3,得22AB ==⨯=.21.已知动点M 到点()1,0F 的距离等于它到直线=1x -的距离,记动点M 的轨迹为曲线C .(1)求动点M 的轨迹方程C ;(2)已知()2,0A -,()0,1B ,过点B 的直线l 与曲线C 有且只有一个公共点P ,求PAB 的面积.【答案】(1)24y x =(2)1或18或12【分析】(1)根据抛物线定义得动点M 的轨迹是以()1,0F 为焦点,直线=1x -为准线的抛物线,则2p =,即可得出答案;(2)分三种情况讨论:①当l 斜率不存在时;②当l 斜率为0时;③当l 斜率存在且不为0时,根据题意求出点P 坐标,即可得出PAB 的面积.【详解】(1)根据抛物线定义得动点M 的轨迹是以()1,0F 为焦点,直线=1x -为准线的抛物线,故2p =,动点M 的轨迹方程C :24y x =;(2)①当l 斜率不存在时,点P 与原点()0,0O 重合,12112PABS =⨯⨯=; ②当l 斜率为0时,直线l :1y =与抛物线C :24y x =交于点1,14P ⎛⎫ ⎪⎝⎭,1111248PAB S =⨯⨯=△; ③当l 斜率存在且不为0时,设l :()10y kx k =+≠,由214y kx y x=+⎧⎨=⎩,得:()222410k x k x +-+=,① 因为直线l 与曲线C 有且只有一个公共点P ,则()22Δ24416160k k k =--=-=,解得1k =,将1k =代入①可得2210x x -+=,解得1x =,此时解得()1,2P , 直线AP :()20212y x -=++,即()223y x =+, 则直线AP 与y 轴交于点40,3Q ⎛⎫ ⎪⎝⎭, 故111112123232PAB BQA BQP S S S =+=⨯⨯+⨯⨯=△△△. 综上,PAB 的面积为:1或18或12. 22.已知1F ,2F 分别为椭圆C :()222210x y a b a b+=>>的左、右焦点,椭圆C 的上顶点到右焦点的距离为2,右焦点2F 与抛物线24y x =的焦点重合.(1)求椭圆C 的标准方程;(2)已知点()2,0A -,斜率为k 的动直线l 与椭圆C 交于P ,Q 两点(P ,Q 均异于点A ),且满足()3AP AQ k k k +=-,设点A 到直线l 的距离为d ,若d λ<恒成立,求实数λ的最小值.【答案】(1)22143x y += (2)1【分析】(1)根据题意求出,,a b c ,写出椭圆方程即可;(2)设直线l 的方程为y kx m =+,与椭圆方程联立,结合韦达定理与()3AP AQ k k k +=-得,m k 的关系,可得直线l 恒过点()1,0B -,则1d AB <=,即可得出答案.【详解】(1)由题意得抛物线的焦点为()21,0F ,∴1c =,∵椭圆C 的上顶点到右焦点的距离为2,∴2a =,∴b =∴椭圆C 的标准方程为:22143x y +=. (2)设直线l 的方程为y kx m =+, 联立22143y kx m x y =+⎧⎪⎨+=⎪⎩,消去y ,整理得:()()222438430k mk m x x +++-=, 设()11,P x y ,()22,Q x y ,则122843mk x x k -+=+,()21224343m x x k -=+ ()121212122222AP AQ y y kx m kx m k k k k k x x x x ⎛⎫⎛⎫++∴+=+=+ ⎪ ⎪++++⎝⎭⎝⎭()()()1212121222424kx x k m x x m k x x x x ++++=+++()()()2222224382244343438244343m mk k k m m k k k m mk k k --⋅+++++=--+⋅+++2221224341616mk k m mk k -==--+, 化简得:22032m mk k -+=,即()()20m k m k --=,则2m k =或m k =, 当2m k =时,()22y kx k k x =+=+,直线l 恒过点()2,0A -,不合题意, 当m k =时,()1y kx k k x =+=+,直线l 恒过点()1,0B -,此时点A 到直线l 的距离1d AB <=,∵d λ<恒成立,∴λ的最小值为1.。
2022年河北省唐山市丰润区第二中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 如图所示,要测量底部不能到达的某电视塔的高度,在塔的同一侧选择、两观测点,且在、两点测得塔顶的仰角分别为、,在水平面上测得,、两地相距,则电视塔的高度是()A. B. C. D.参考答案:D2. 已知函数f(x)=asinx+bx3+1(a,b∈R),f′(x)为f(x)的导函数,则f+f′=()A.2017 B.2016 C.2 D.0参考答案:C【考点】63:导数的运算.【分析】根据函数的解析式求出函数的导数,结合函数的奇偶性建立方程关系进行求解即可.【解答】解:函数的导数f′(x)=acosx+3bx2,则f′(x)为偶函数,则f′=f′=0,由f(x)=asinx+bx3+1得f=asin2016+b?20163+1,f(﹣2016)=﹣asin2016﹣b?20163+1,则f=2,则f+f′=2+0=2,故选:C3. 设、都是非零向量,则“”是“、共线”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:C4. “”是“”的A.充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件参考答案:B5.参考答案:D略6. 甲、乙、丙、丁四位同学各自对A、B两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r与残差平方和m如下表:则哪位同学的试验结果体现A、B两变量有更强的线性相关性() A.甲 B.乙 C.丙 D.丁参考答案:D略7. 甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球个数的标准差为0.3.下列说法正确的个数为()①甲队技术比乙队好②乙队发挥比甲队稳定③乙队几乎每场都进球④甲队表现时好时坏A、1B、2C、3D、4参考答案:D8. 下列说法正确的是()A.归纳推理,演绎推理都是合情合理B.合情推理得到的结论一定是正确的C.归纳推理得到的结论一定是正确的D.合情推理得到的结论不一定正确参考答案:D【考点】F5:演绎推理的意义.【分析】根据演绎推理和合情推理的定义判断即可.【解答】解:合情推理包含归纳推理和类比推理,所谓归纳推理,就是从个别性知识推出一般性结论的推理.其得出的结论不一定正确,故选:D9. 从装有2支铅笔和2支钢笔的文具袋内任取2支笔,那么互斥而不对立的两个事件是()A.恰有1支钢笔;恰有2支铅笔。
四川省遂宁市2021-2022学年高二上学期期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知三维数组,,且,则实数k的值为()A.﹣2B.2C.D.﹣92.(5分)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有一个黑球与都是红球B.至少有一个红球与都是红球C.至少有一个红球与至少有1个黑球D.恰有1个红球与恰有2个红球3.(5分)已知直线x+ay﹣2=0和直线ax+y+1=0互相平行,则a等于()A.±1B.﹣1C.1D.04.(5分)设α、β是两个不同的平面,m、n是两条不同的直线,且m⊂α,n⊂β,下列命题正确的是()A.如果m∥β,那么α∥βB.如果α∥β,那么m∥nC.如果m⊥β,那么α⊥βD.如果α⊥β,那么m⊥β5.(5分)过点P(1,1)可以向圆x2+y2+2x﹣4y+k﹣2=0引两条切线,则k的范围是()A.k>2B.0<k<7C.k<7D.2<k<76.(5分)《九章算术》是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学.“更相减损术”便是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如下流程框图,若输入的a,b分别为91,39,则输出的a=()A.3B.7C.13D.217.(5分)在直三棱柱ABC﹣A1B1C1中,已知AB⊥BC,AB=BC=2,,则异面直线AC1与A1B1所成的角为()A.30°B.45°C.60°D.90°8.(5分)甲、乙两人在相同条件下各打靶10次,每次打靶的成绩情况如图所示:下列说法错误的是()A.从平均数和方差相结合看,甲波动比较大,乙相对比较稳定B.从折线统计图上两人射击命中环数走势看,甲更有潜力C.从平均数和命中9环及9环以上的次数相结合看,甲成绩较好D.从平均数和中位数相结合看,乙成绩较好9.(5分)若直线y=kx与圆(x+2)2+(y﹣1)2=1的两个交点关于直线2x﹣y+b=0对称,则k,b的值分别为()A.,b=5B.,b=﹣3C.,b=﹣4D.k=2,b=510.(5分)甲、乙两艘轮船都要在某个泊位停靠6个小时,假定它们在一昼夜的时间中随机到达,若两船有一艘在停泊位时,另一艘船就必须等待,则这两艘轮船停靠泊位时都不需要等待的概率为()A.B.C.D.11.(5分)已知三棱锥S﹣ABC所有顶点都在球O的球面上,且SA⊥平面ABC,若SA=AB=AC=BC=1,则球O的表面积为()A.B.5πC.D.12.(5分)已知f(x)是定义在R上的增函数,函数y=f(x﹣1)的图象关于点(1,0)对称,若不等式f()+f(2﹣k(x+2))≤0的解集为区间〖a,b〗,且b﹣a=2,则k=()A.B.C.2D.﹣2二、填空题:本大题共4小题,每小题5分,共20分。
2019-2020学年陕西省西安市铁一中学高二(上)期末数学试卷(理科)一、选择题(本大题共12题,每小题4分,共计48分。
)1.(4分)复数2(1)41i z i -+=+的虚部为( )A .1-B .3-C .1D .22.(4分)已知空间向量(1a =,1-,0),(3b =,2-,1),则||(a b += )ABC .5D 3.(4分)抛物线218y x =-的准线方程是( )A .132x =B .2y =C .132y =D .2y =-4.(4分)(=⎰ ) A .4πB .2π C .12D .145.(4分)等比数列{}n a 中,10a >,则“13a a <”是“34a a <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.(4分)曲线sin x y x e =+在0x =处的切线方程是( ) A .330x y -+=B .220x y -+=C .210x y -+=D .310x y -+=7.(4分)在二项式3)n x的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且72A B +=,则展开式中常数项的值为( ) A .6B .9C .12D .188.(4分)已知甲、乙、丙三人中,一位是河南人,一位是湖南人,一位是海南人,丙比海南人年龄大,甲和湖南人不同岁,湖南人比乙年龄小,由此可以推知:甲、乙、丙三人中()A .甲不是海南人B .湖南人比甲年龄小C .湖南人比河南人年龄大D .海南人年龄最小9.(4分)设函数32cos ()412f x x x θ=++-,其中5[0,]6πθ∈,则导数(1)f '-的取值范围( )A .[3,6]B .[3,4+C .[46]-D .[44-10.(4分)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有( )种. A .150B .300C .600D .90011.(4分)如图,在三棱锥A BCD -中,平面ABC ⊥平面BCD ,BAC ∆与BCD ∆均为等腰直角三角形,且90BAC BCD ∠=∠=︒,2BC =,点P 是线段AB 上的动点,若线段CD 上存在点Q ,使得异面直线PQ 与AC 成30︒的角,则线段PA 长的取值范围是( )A .)2B .[0C .(2D . 12.(4分)已知定义域为R 的奇函数()y f x =的导函数为()y f x =',当0x ≠时,()()0f x f x x '+>,若a f =(1),2(2)b f =--,11()()22c ln f ln =,则a ,b ,c 的大小关系正确的是( ) A .a c b <<B .b c a <<C .a b c <<D .c a b <<二、填空题(本大题共4题,每小题4分,共计16分。
2022-2023学年四川省内江市高二上学期期末考试数学(理)试题一、单选题1.某个年级有男生180人,女生160人,用分层抽样的方法从该年级全体学生中抽取一个容量为68的样本,则此样本中女生人数为( ) A .40 B .36 C .34 D .32【答案】D【分析】根据分层抽样的性质计算即可. 【详解】由题意得:样本中女生人数为1606832180160⨯=+.故选:D2.已知向量()3,2,4m =-,()1,3,2n =--,则m n +=( ) A .22 B .8 C .3 D .9【答案】C【分析】由向量的运算结合模长公式计算即可. 【详解】()()()3,2,41,3,22,1,2m n +=-+--=-- ()()2222123m n +=-+-+=故选:C3.如图所示的算法流程图中,第3个输出的数是( )A .2B .32C .1D .52【答案】A【分析】模拟执行程序即得.【详解】模拟执行程序,1,1A N ==,输出1,2N =;满足条件,131+=22A =,输出32,3N =;满足条件,31+=222A =,输出2,4N =;所以第3个输出的数是2. 故选:A.4.一个四棱锥的三视图如图所示,则该几何体的体积为( )A .8B .83C .43D .323【答案】B【分析】把三视图转换为几何体,根据锥体体积公式即可求出几何体的体积. 【详解】根据几何体的三视图可知几何体为四棱锥P ABCD -, 如图所示:PD ⊥平面ABCD ,且底面为正方形,2PD AD == 所以该几何体的体积为:1822233V =⨯⨯⨯=故选:B5.经过两点(4,21)A y +,(2,3)B -的直线的倾斜角为3π4,则y =( ) A .1- B .3-C .0D .2【答案】B【分析】先由直线的倾斜角求得直线的斜率,再运用两点的斜率进行求解.【详解】由于直线AB 的倾斜角为3π4, 则该直线的斜率为3πtan14k ==-, 又因为(4,21)A y +,(2,3)B -, 所以()213142y k ++==--,解得=3y -.故选:B.6.为促进学生对航天科普知识的了解,进一步感受航天精神的深厚内涵,并从中汲取不畏艰难、奋发图强、勇于攀登的精神动力,某校特举办以《发扬航天精神,筑梦星辰大海》为题的航天科普知识讲座.现随机抽取10名学生,让他们在讲座前和讲座后各回答一份航天科普知识问卷,这10名学生在讲座前和讲座后问卷答题的正确率如下图,下列叙述正确的是( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座前问卷答题的正确率的极差小于讲座后正确率的极差 【答案】B【分析】根据题意以及表格,可分别计算中位数、平均数、极差等判断、排除选项是否正确,从而得出答案.【详解】讲座前问卷答题的正确率分别为:60%,60%,65%,65%,70%,75%,80%,85%,90%,95%,中位数为70%75%72.5%70%2+=> ,故A 错误; 讲座后问卷答题的正确率的平均数为0.80.8540.920.951289.5%85%10+⨯+⨯++⨯=> ,故B 正确;由图知讲座前问卷答题的正确率的波动性大于讲座后正确率的波动性,即讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,故C 错误;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前正确率的极差为95%-60%=35%,20%<35%,故D 错误. 故选:B.7.两条平行直线230x y -+=和340ax y -+=间的距离为d ,则a ,d 分别为( )A .6a =,d =B .6a =-,d =C .6a =-,d =D .6a =,d =【答案】D【分析】根据两直线平行的性质可得参数a ,再利用平行线间距离公式可得d . 【详解】由直线230x y -+=与直线340ax y -+=平行, 得()()2310a ⨯---⨯=,解得6a =,所以两直线分别为230x y -+=和6340x y -+=,即6390x y -+=和6340x y -+=,所以两直线间距离d = 故选:D.8.若连续抛掷两次质地均匀的骰子,得到的点数分别为m ,n ,则满足2225+<m n 的概率是( ) A .12B .1336 C .49D .512【答案】B【分析】利用列举法列出所有可能结果,再根据古典概型的概率公式计算可得.【详解】解:设连续投掷两次骰子,得到的点数依次为m 、n ,两次抛掷得到的结果可以用(,)m n 表示,则结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36种.其中满足2225+<m n 有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),共13种,所以满足2225+<m n 的概率1336P =. 故选:B9.已知三条不同的直线l ,m ,n 和两个不同的平面α,β,则下列四个命题中错误的是( ) A .若m ⊥α,n ⊥α,则m //n B .若α⊥β,l ⊂α,则l ⊥β C .若l ⊥α,m α⊂,则l ⊥m D .若l //α,l ⊥β,则α⊥β【答案】B【分析】根据线面垂直的性质定理可知A 正确;根据面面垂直的性质定理可知B 不正确; 根据线面垂直的定义可知C 正确;根据面面垂直的判定可知D 正确.【详解】对A ,根据线面垂直的性质,垂直于同一平面的两条直线互相平行可知A 正确; 对B ,根据面面垂直的性质定理可知,若α⊥β,l ⊂α,且l 垂直于两平面的交线,则l ⊥β,所以B 错误;对C ,根据线面垂直的定义可知,C 正确;对D ,因为l //α,由线面平行的性质可知在平面α内存在直线//m l ,又l ⊥β,所以m β⊥,而m α⊂,所以α⊥β,D 正确. 故选:B .10.数学家欧拉在1765年提出定理:三角形的外心,重心,垂心依次位于同一直线上,这条直线后人称之为三角形的欧拉线.已知ABC ∆的顶点(0,0),(0,2),( 6.0)A B C -,则其欧拉线的一般式方程为( ) A .31x y += B .31x y -= C .30x y += D .30x y -=【答案】C【分析】根据题意得出ABC 为直角三角形,利用给定题意得出欧拉线,最后点斜式求出方程即可. 【详解】显然ABC 为直角三角形,且BC 为斜边, 所以其欧拉线方程为斜边上的中线, 设BC 的中点为D ,由(0,2),( 6.0)B C -, 所以()3,1D -,由101303AD k -==--- 所以AD 的方程为13y x =-,所以欧拉线的一般式方程为30x y +=. 故选:C.11.已知P 是直线l :x +y -7=0上任意一点,过点P 作两条直线与圆C :()2214x y ++=相切,切点分别为A ,B .则|AB |的最小值为( )A .14B .142C .23D .3【答案】A【分析】根据直线与圆相切的几何性质可知,当||PC 取得最小值时,cos ACP ∠最大,||AB 的值最小,当PC l ⊥时,||PC 取得最小值,进而可求此时||14AB =【详解】圆C 是以(1,0)C -为圆心,2为半径的圆,由题可知,当ACP ∠最小时,||AB 的值最小. ||2cos ||||AC ACP PC PC ∠==,当||PC 取得最小值时,cos ACP ∠最大,ACP ∠最小,点C 到直线l 的距离|8|422d -==,故当||42PC =时,cos ACP ∠最大,且最大值为24,此时||||14sin 2||44AB AB ACP AC ∠===,则||14AB =.故选:A12.如图所示,在长方体1111ABCD A B C D -中,111BB B D =,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F ,下列命题错误的是( )A .四棱锥11B BED F -的体积恒为定值 B .存在点E ,使得1B D ⊥平面1BD EC .存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值D .对于棱1CC 上任意一点E ,在棱AD 上均有相应的点G ,使得CG ∥平面1EBD 【答案】D【分析】由111111B BED F E BB D F BB D V V V ---=+结合线面平行的定义,即可判断选项A ,由线面垂直的判定定理即可判断选项B ,由面面平行的性质和对称性,即可判断选项C ,由特殊位置即可判断选项D.【详解】对A ,111111B BED F E BB D F BB D V V V ---=+,又11//CC BB ,1CC ⊄平面11BB D ,1BB ⊂平面11BB D ,所以1//CC 平面11BB D ,同理1//AA 平面11BB D ,所以点E ,F 到平面11BB D 的距离为定值,则四棱锥11B BED F -的体积为定值,故选项A 正确;对于B ,因为111BB B D =,可得对角面11BB D D 为正方形,所以11B D BD ⊥,由DC ⊥平面11BCC B ,BE ⊂平面11BCC B ,所以DC BE ⊥,若1BE B C ⊥,则1B CDC C =,1,B C DC ⊂平面1B DC ,所以BE ⊥平面1B DC ,由1B D ⊂平面1B DC ,所以1B D BE ⊥,又11,,BD BE B BD BE ⋂=⊂平面1BD E ,所以1B D ⊥平面1BD E ,故B 正确;对于C ,由面面平行的性质定理可得,四边形1BED F 为平行四边形,由对称性可得,当四边形为菱形时,周长取得最小值,即存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值,故选项C 正确.对于D ,当E 点在C 处时,对于AD 上任意的点G ,直线CG 与平面1EBD 均相交,故选项D 错误. 故选:D二、填空题13.已知x 、y 满足约束条件202020x y x y -≤⎧⎪-≤⎨⎪+-≥⎩则2z x y =+的最大值是________.【答案】6【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件作出可行域如图:将目标函数2z x y =+转化为2y x z =-+表示为斜率为2-,纵截距为z 的直线, 当直线2y x z =-+过点B 时,z 取得最大值, 显然点()2,2B ,则max 2226z =⨯+=.故答案为:6.14.直线l 与圆22(1)(1)1x y ++-=相交于,A B 两点,且()0,1A .若AB l 的斜率为_________. 【答案】1±【分析】设直线方程,结合弦长求得圆心到直线的距离,利用点到直线的距离公式列出等式,即可求得答案.【详解】根据题意,直线l 与圆 22(1)(1)1x y ++-= 相交于,A B 两点,且()0,1A , 当直线斜率不存在时,直线0x = 即y 轴,显然与圆相切,不符合题意; 故直线斜率存在,设直线l 的方程为1y kx =+ ,即10kx y -+= , 因为圆22(1)(1)1x y ++-=的圆心为(1,1) ,半径为1r = ,又弦长||AB =所以圆心到直线的距离为d ===,=1k =±, 故答案为:1±.15.已知E 是正方体1111ABCD A B C D -的棱1DD 的中点,过A 、C 、E 三点作平面α与平面1111D C B A 相交,交线为l ,则直线l 与1BC 所成角的余弦值为______. 【答案】12【分析】由面面平行的性质与异面直线所成的角的求法求解即可 【详解】因为过,,A C E 三点的平面α与平面1111D C B A 相交于l , 平面α与平面ABCD 相交于AC ,平面1111D C B A 与平面ABCD 平行, 所以//l AC ,又11//A C AC ,故11//AC l所以直线l 与1BC 所成的角就是直线11A C 与1BC 所成的角, 也即是11AC B ∠(或补角) 又易知11A C B △为等边三角形,所以直线l 与1BC 所成角的余弦值为1cos602︒=, 故答案为:1216.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PAB 面积的最大值是_________. 【答案】52【详解】试题分析:易知A (0,0),B (1,3)两直线互相垂直,故222221510222PA PB PA PB AB S PA PB ++==∴=≤=为所求.【解析】基本不等式.三、解答题17.一汽车销售公司对开业4年来某种型号的汽车“五-”优惠金额与销售量之间的关系进行分析研究并做了记录,得到如下资料. 日期第一年 第二年 第三年 第四年优惠金额x (千元) 10 11 13 12 销售量y (辆) 22243127(1)求出y 关于x 的线性回归方程ˆˆˆyb x a =+; (2)若第5年优惠金额8.5千元,估计第5年的销售量y(辆)的值.参考公式:()()()11211ˆˆˆ,()n ei i i i i i pz nzlii i x x y y x y nxybay bx xx xn x ====---===---∑∑∑∑ 【答案】(1)ˆ38.5y x =-;(2)第5年优惠金额为8.5千元时,销售量估计为17辆【分析】(1)先由题中数据求出x y ,,再根据()()()()1122211,ˆˆˆˆn niii ii i nn iii i x x y y x y nxyb ay bx x x x n x ====---===---∑∑∑∑求出ˆb和ˆa ,即可得出回归方程; (2)将8.5x =代入回归方程,即可求出预测值.【详解】(1)由题中数据可得11.5,26x y ==,442111211,534i i i i i x y x ====∑∑∴()414222141211411.526153534411.554ˆi i i i i x y xybx x ==--⨯⨯====-⨯-∑∑,故26311ˆ.58.5ˆay bx =-=-⨯=-,∴38.5ˆy x =- (2)由(1)得,当8.5x =时,ˆ17y=,∴第5年优惠金额为8.5千元时,销售量估计为17辆. 【点睛】本题主要考查线性回归分析,熟记最小二乘法求ˆb和ˆa 即可,属于常考题型. 18.已知圆C 经过(6,1),(3,2)A B -两点,且圆心C 在直线230x y +-=上. (1)求经过点A ,并且在两坐标轴上的截距相等的直线的方程; (2)求圆C 的标准方程;(3)斜率为34-的直线l 过点B 且与圆C 相交于,E F 两点,求||EF .【答案】(1)60x y -=或+7=0x y -; (2)22(5)(1)5x y -++=; (3)2.【分析】(1)根据给定条件,利用直线方程的截距式,分类求解作答. (2)设出圆心坐标,由已知求出圆心及半径作答. (3)求出直线l 的方程,利用弦长公式计算作答.【详解】(1)经过点A ,在两坐标轴上的截距相等的直线,当直线过原点时,直线的方程为60x y -=, 当直线不过原点时,设直线的方程为=x y a +,将点(6,1)A 代入解得=7a ,即直线的方程为+7=0x y -, 所以所求直线的方程为60x y -=或+7=0x y -.(2)因圆心C 在直线230x y +-=上,则设圆心(32,)C b b -, 又圆C 经过(6,1),(3,2)A B -两点,于是得圆C 的半径||||r AC BC ==,1b =-,圆心(5,1)C -,圆C的半径r = 所以圆C 的标准方程为22(5)(1)5x y -++=.(3)依题意,直线l 的方程为32(3)4y x +=--,即3410x y +-=, 圆心(5,1)C -到直线的距离为|1541|25d --==, 所以22||22542EF r d =-=-=.19.直四棱柱1111ABCD A B C D -,底面ABCD 是平行四边形,60ACB ∠=︒,13,1,27,,AB BC AC E F ===分别是棱1,A C AB 的中点.(1)求证:EF 平面1A AD : (2)求三棱锥1F ACA -的体积.【答案】(1)见解析2【分析】(1)取1A D 的中点M ,连结,ME MA ,证明四边形AFEM 为平行四边形,则AM EF ∥,再根据线面平行的判定定理即可得证;(2)利用余弦定理求出AC ,再利用勾股定理求出1AA ,再根据11F ACA A AFC V V --=结合棱锥的体积公式即可得出答案.【详解】(1)证明:取1A D 的中点M ,连结,ME MA ,在1A DC 中,,M E 分别为11,A D AC 的中点, 所以ME DC ∥且12ME DC =, 底面ABCD 是平行四边形,F 是棱AB 的中点,所以AF DC 且12AF DC =, 所以ME AF ∥且ME AF =,所以四边形AFEM 为平行四边形,所以,EF AM EF ⊄∥平面1,A AD AM⊂平面1A AD ,所以EF 平面1A AD ;(2)在ABC 中,60,3,1ACB AB BC ∠===, 由余弦定理有2222cos AB AC BC AC BC ACB ∠=+-⨯⨯,解得2AC =,则1312sin6022ABC S =⨯⨯⨯=, 因为F 为AB 的中点,所以1324ACF ABC S S ==, 由已知直四棱柱1111ABCD A B C D -,可得1190,2,27A AC AC AC ∠===, 可得128426A A =-=,1111132263342F ACA A AFC AFC V V S AA --==⋅=⨯⨯=. 20.某校从参加高一年级期中考试的学生中抽出40名学生,将其数学成绩(均为整数)分成六段[)40,50,[)50,60,,[]90,100后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)根据频率分布直方图估计这次数学考试成绩的平均分;(3)若将分数从高分到低分排列,取前15%的同学评定为“优秀”档次,用样本估计总体的方法,估计本次期中数学考试“优秀”档次的分数线.【答案】(1)答案见解析(2)71(3)86【分析】(1)根据所有频率和为1求第四小组的频率,计算第四小组的对应的矩形的高,补全频率分布直方图;(2)根据在频率分布直方图中,由每个小矩形底边中点的横坐标与小矩形的面积的乘积之和,求出平均分;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,由此即可估计“优秀”档次的分数线.【详解】(1)由频率分布直方图可知,第1,2,3,5,6小组的频率分别为:0.1,0.15,0.15,0.25,0.05,所以第四小组的频率为:10.10.150.150.250.050.3-----=,∴在频率分布直方图中第四小组对应的矩形的高为0.03,补全频率分布直方图对应图形如图所示:(2)由频率分布直方图可得平均分为:0.1450.15550.15650.3750.25850.059571⨯+⨯+⨯+⨯+⨯+⨯=;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,则估计本次期中数学考试“优秀”档次的分数线为:0.158010860.25+⨯=.21.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,2AB =,1AF =,M 是线段EF 的中点.(1)求证:平面ACEF ⊥平面BDF ;(2)求证:DM ⊥平面BEF ;(3)求二面角A DF B --的大小.【答案】(1)见解析(2)见解析(3)60【分析】(1)建立空间直角坐标系,利用0AM BD =,0AM DF =,可得AM ⊥平面BDF ,进而可得面面垂直.(2)由2AB 1AF =,得3==DF DE DM EF ⊥,连BM ,得DM BM ⊥,由此能证明DM ⊥平面BEF .(3)由(1)得,(0AM =,1-,1)是平面BDF 的一个法向量.(1,1,0)DC =--是平面ADF 的一个法向量,cos AM <,1222DC >==⨯即可. 【详解】(1)四边形ACEF 是矩形,FA AC ∴⊥,平面ACEF ABCD ⊥,平面ACEF 平面ABCD AC =,AF ⊂平面ACEFAF ∴⊥平面ABCD .设AC DB O ⋂=,则OM ⊥平面ABCD建立如图的直角坐标系,则各点的坐标分别为:(0O ,0,0),(0A ,1,0),(1B -,0,0),(0C ,1-,0),(1D ,0,0),(0E ,1-,1),(0F ,1,1),(0M ,0,1).(2BD =,0,0),(1DF =-,1,1),(0AM =,1-,1),∴0AM BD =,0110AM DF =-+=, AM BD ∴⊥,AM DF ⊥,BD DF D =,,BD DF ⊂平面BDF ,AM ∴⊥平面BDF ,AM ⊂平面ACEF ,所以平面ACEF ⊥平面BDF(2)由2AB =,1AF =,得3==DF DE ,M 是线段EF 的中点,DM EF ,连接BM ,由于2222,,DM OM OD MB OM OB OB OD =+=+=,得2BM DM ==,又2BD =,222DM BM BD += DM BM ∴⊥,又BM EF M =,,MB EF ⊂平面BEF , DM ∴⊥平面BEF .(3)由(1)得,(0AM =,1-,1)是平面BDF 的一个法向量.又AF ⊥平面ABCD 得AF CD ⊥,又CD DA ⊥ ,故(1,1,0)DC =--是平面ADF 的一个法向量, 故cos AM <,11222DC >==⨯ 二面角A DF B --为锐角,∴二面角A DF B --为60.22.已知圆22:(3)9M x y -+=.设()2,0D ,过点D 作斜率非0的直线1l ,交圆M 于P 、Q 两点.(1)过点D 作与直线1l 垂直的直线2l ,交圆M 于EF 两点,记四边形EPFQ 的面积为S ,求S 的最大值;(2)设()6,0B ,过原点O 的直线OP 与BQ 相交于点N ,试讨论点N 是否在定直线上,若是,求出该直线方程;若不是,说明理由.【答案】(1)17;(2)点N 在定直线6x =-上.【分析】(1)由题意设出直线1l ,2l 方程,利用点到直线的距离公式,弦长公式以及基本不等式即可解决问题;(2)利用圆与直线的方程,写出韦达定理,求出直线OP 与直线BQ 的方程,且交于点N ,联立方程求解点N 即可证明结论.【详解】(1)由圆22:(3)9M x y -+=知,圆心为()3,0M ,半径3r =,因为直线1l 过点()2,0D 且斜率非0,所以设直线1l 方程为:()02y k x -=-,即20kx y k --=,则点M 到直线1l的距离为:1d =所以PQ == 由12l l ⊥,且直线2l 过点D ,所以设直线2l 方程为:()102y x k -=--,即20x ky +-=, 则点M 到直线2l的距离为:2d =所以EF ====故1122S EF PQ =⋅⋅=⋅2=()2217122171k k +=⨯=+,当且仅当2289981k k k +=+⇒=±时取等号,所以四边形EPFQ 的面积S 的最大值为17.(2)点N 在定直线6x =-上.证明:设()()1122,,,P x y Q x y ,直线PQ 过点D ,则设直线PQ 方程为:2x my =+,联立()22239x my x y =+⎧⎪⎨-+=⎪⎩,消去x 整理得: ()221280m y my +--=,12122228,11m y y y y m m -+==++, 所以()1212121244y y m my y y y y y +=-⇒=-+, 由111100OP y y k x x -==-, 所以直线OP 的方程为:11y y x x =, 2222066BQ y y k x x -==--, 所以直线BQ 的方程为:()2266y y x x =--, 因为直线OP 与直线BQ 交于点N , 所以联立()112266y y x x y y x x ⎧=⎪⎪⎨⎪=-⎪-⎩, 所以()12121266N x y x x y y x =-- ()()()12121262226my y my y y my +=+-+-⎡⎤⎣⎦ 12212212161224my y y my y y my y y +=+-+ 12221362my y y y y +=+ ()()122213462y y y y y ⨯-⨯++=+ 12212212112126126622y y y y y y y y y --+--===-++, 所以6N x =-,所以点N 在定直线6x =-上.。
2022-2023学年陕西省宝鸡市教育联盟高二(上)期末数学试卷(理科)1. 双曲线C:x 23−y 29=1的虚轴长为( )A. √3B. 2√3C. 3D. 6 2. 已知等比数列{a n }中,a 1=2,a 4=16,则公比q =( ) A. −2B. 2C. 4D. −43. 两抛物线x 2=√2y 与y 2=−x 的焦点间的距离为( ) A. √24B. √34C. 12D. √544. 设x ∈R ,则“|x −2|<1”是“x 2+x −2>0”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件D. 既不充分也不必要条件5. 已知平面α的一个法向量为n ⃗ =(−1,0,−1),点A(3,3,0)在平面α内,则平面外一点P(−2,1,4)到平面α的距离为( )A. 103 B. √22C. √2D. 16. 下列命题中,真命题是( ) A. 命题“若a >b ,则c 2a <c 2b ”B. 命题“当x ≠−1时,x 2+3x +2≠0”C. 命题“若两个三角形有两条边和一个内角对应相等,那么这两个三角形全等”D. 命题“若a =−b ,则a 2=b 2”7. 若x ,y 满足log 2x =−log 2y ,则x +4y 的最小值为( ) A. 12B. 14C. 8D. 48. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.若A =2π3,bc =3,且b +c =√52a ,则a =( )A. 2√3B. 3√3C. 2√2D. 3√29. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若bcosC +ccosB =b 2+c 2a,则△ABC 的形状为( )A. 等腰三角形B. 直角三角形C. 锐角三角形D. 钝角三角形10. 已知双曲线x 26−y 23=1的焦点为F 1、F 2,点M 在双曲线上且MF 1⊥x 轴,则F 1到直线F 2M的距离为( )A.3√65B.5√66C. 65D. 5611. 如图,在平行六面体ABCD −A 1B 1C 1D 1中,底面是边长为2的正方形.若∠A 1AB =∠A 1AD =60∘,且AA 1=3,则AC 1的长为( )A. √29B. 2√7C. 4√2D. 512. 设直线y =13(x +t)(t ≠0)与双曲线C :x 2a2−y 2b2=1(a >0,b >0)的两条渐近线分别交于A ,B 两点,若(MA⃗⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ )⊥AB ⃗⃗⃗⃗⃗ ,其中点M 的坐标为(0,2t),则C 的离心率为( ) A. √52B.2√33C. √62D.√10313. 设变量x ,y 满足约束条件{x ≤0x −y +1≤02x −y +2≥0,则z =x +2y 的最小值为______.14. 习近平同志提出:乡村振兴,人才是关键.要积极培养本土人才,鼓励外出能人返乡创业.为鼓励外出人员返乡创业,某镇政府决定投入“创业资金”,帮扶返乡创业人员.五年内,预计该镇政府每年投入的“创业资金”构成数列{a n }(单位:万元),且第一年投入“创业资金”3(万元),以后每年投入的“创业资金”为上一年的2倍,则该镇政府帮扶五年累计总投入的“创业资金”为______万元.15. 抛物线C :y 2=6x 与直线l 交于A ,B 两点,且AB 的中点为(m,−2),则l 的斜率为______.16. 已知点A ,B 是椭圆G:x 2a 2+y 2b2=1(a >b >0)上的两点,且直线AB 恰好平分圆x 2+y 2=R 2(R >0),M 为椭圆G 上与A ,B 不重合的一点,且直线MA ,MB 的斜率之积为−13,则椭圆G 的离心率为______.17. 已知等差数列{a n }的公差d <0,a 1=20,且a 7是a 3与a 9的等比中项.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值及对应的n 的值.18. 已知等差数列{a n}的前n项和为S n,2a2+a5=24,S8=100.(1)求{a n}的通项公式;(2)若b n=1a n a n+1,求数列{b n}的前n项和T n.19. 设动点P(x,y)与点F(√10,0)之间的距离和点P到直线l:x=√102的距离的比值为√2,记点P的轨迹为曲线C.(1)求曲线C的方程;(2)若O为坐标原点,直线y=12x+1交曲线C于A,B两点,求△OAB的面积.20. 在△ABC中,内角A、B、C所对的边分别为a、b、c,向量m⃗⃗⃗ =(bsinB,cosB),n⃗=(a−bsinC,cosC),且m⃗⃗⃗ //n⃗ .(1)求角B的大小;(2)若b=2,(1+√3)a−√2c=0,求△ABC的面积.21. 如图,在三棱锥P−ABC中,PA⊥底面ABC,PA=√6,AB=2,∠ABC=π3,BC=1,D,E分别是PC上的三等分点,F是PB的中点.(1)证明:AE⊥平面PBC;(2)求平面ADF与平面BDF的夹角的余弦值.22. 在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√63,且过点(0,−2).(1)求C的方程;(2)若动点P在直线l:x=−2√2上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN,证明:直线l′恒过定点,并求出该定点的坐标.答案和解析1.【答案】D【解析】解:因为双曲线C:x 23−y 29=1,b 2=9,所以b =3,所以双曲线的虚轴长为2b =6. 故选:D.直接利用双曲线方程求解b ,即可得到结果.本题考查双曲线的简单性质的应用,考查转化思想以及计算能力,是基础题.2.【答案】B【解析】解:∵在等比数列{a n }中,a 1=2,a 4=16, ∴a4a 1=q 3=8,解得公比q =2. 故选:B.利用等比数列的通项公式列出方程,由此能求出公比.本题考查等比数列的公比的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.3.【答案】B【解析】解:两抛物线x 2=√2y 与y 2=−x 的焦点间的距离为分别为(0,√24),(−14,0),焦点间的距离为(14)+(√24)=√34,故选:B.求出抛物线的焦点,利用两点之间的距离公式即可得出结论.本题考查了抛物线的标准方程及其性质、两点之间的距离公式,考查了推理能力与计算能力,属于基础题.4.【答案】A【解析】 【分析】本题主要考查充分条件和必要条件的判断,比较基础.根据不等式的性质,结合充分条件和必要条件的定义进行判断即可. 【解答】解:由“|x −2|<1”得1<x <3, 由x 2+x −2>0得x >1或x <−2,所以“|x −2|<1”是“x 2+x −2>0”的充分不必要条件, 故选A.5.【答案】B【解析】解:∵A(3,3,0),P(−2,1,4), ∴AP⃗⃗⃗⃗⃗ =(−5,−2,4), ∵平面α的一个法向量为n ⃗ =(−1,0,−1), ∴AP ⃗⃗⃗⃗⃗ ⋅n ⃗ =5−4=1,|n ⃗ |=√2,∴平面外一点P(−2,1,4)到平面α的距离d =|AP⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||n ⃗ |=√2=√22. 故选:B.根据题意,计算AP ⃗⃗⃗⃗⃗ ,结合平面α的一个法向量为n ⃗ ,利用d =|AP ⃗⃗⃗⃗⃗⃗⋅n ⃗ ||n ⃗ |,计算即可. 本题考查点到平面的距离计算,属于基础题.6.【答案】D【解析】解:对于A ,当a =2,b =−1,c =1时,满足a >b ,但c 2a=12>−1=c 2b,故错误; 对于B ,当x =−2时,x 2+3x +2=0,故错误;对于C ,若两个三角形有两条边和这两边的夹角对应相等,那么这两个三角形全等,故错误; 对于D ,若a =−b ,则a 2=(−b)2=b 2,故正确. 故选:D.对于A ,举反例说明即可;对于B ,当x =−2时,x 2+3x +2=0,即可判断; 对于C ,由两三角形全等的判定定理即可判断; 对于D ,将等式两边平方即可判断. 本题考查了对命题真假判断,属于基础题.7.【答案】D【解析】解:由题意得log 2x +log 2y =0, 所以xy =1,x >0,y >0, 则x +4y ≥2√4xy =4,当且仅当x =4y 且xy =1,即y =12,x =2时取等号. 故选:D.由已知结合对数运算性质及基本不等式即可求解.本题主要考查了对数的云南省性质及基本不等式求解最值,属于基础题.8.【答案】A【解析】解:由余弦定理可得:a 2=b 2+c 2−2bccosA =(b +c)2−2bc −2bccosA =(b +c)2−2bc −2bccos 2π3=(b +c)2−bc =(√52a)2−3,解得a =2√3. 故选:A.由余弦定理可得:a 2=b 2+c 2−2bccosA ,代入计算即可求a. 本题考查余弦定理,考查运算求解能力,属基础题.9.【答案】B【解析】解:∵bcosC +ccosB =b 2+c 2a, ∴abcosC +accosB =b 2+c 2, ∴ab ⋅a 2+b 2−c 22ab +ac ⋅a 2+c 2−b 22ac=b 2+c 2,∴a 2+b 2−c 22+a 2+c 2−b 22=b 2+c 2,∴a 2=b 2+c 2,∴△ABC 的形状为直角三角形. 故选:B.根据余弦定理得到a 2=b 2+c 2,即可求解. 本题考查了余弦定理的应用,属于基础题.10.【答案】C【解析】解:已知双曲线x 26−y 23=1的焦点为F 1、F 2,点M 在双曲线上且MF 1⊥x 轴,M(3,√62),则MF 1=√62,故MF 2=2√6+√62=5√62,故F 1到直线F 2M 的距离为F 1F 2⋅MF 1MF2=6×√625√62=65.故选:C.根据双曲线的方程可得双曲线的焦点坐标,根据MF 1⊥x 轴进而可得M 的坐标,则MF 1可得,进而根据双曲线的定义可求得MF 2.本题主要考查了双曲线的简单性质.要理解好双曲线的定义.11.【答案】A【解析】解:根据题意,构造空间向量有AC 1⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ )2=AB ⃗⃗⃗⃗⃗ 2+AD ⃗⃗⃗⃗⃗⃗ 2+AA 1⃗⃗⃗⃗⃗⃗⃗ 2+2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ +2AD ⃗⃗⃗⃗⃗⃗ ⋅AA 1⃗⃗⃗⃗⃗⃗⃗ +2AB ⃗⃗⃗⃗⃗ ⋅AA 1⃗⃗⃗⃗⃗⃗⃗ =4+4+9+0+2×2×3×12+2×2×3×12=29, 故|AC 1⃗⃗⃗⃗⃗⃗⃗ |=√29. 故选:A.根据题意,构造空间向量=AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ ,进行平方,结合题中∠A 1AB =∠A 1AD =60∘,且AA 1=3,计算,最后开方即可得到|AC 1⃗⃗⃗⃗⃗⃗⃗ |.本题考查立体几何与向量分解定理,属于基础题.12.【答案】B【解析】解:若(MA ⃗⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ )⊥AB ⃗⃗⃗⃗⃗ ,即(MA ⃗⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ )⋅AB ⃗⃗⃗⃗⃗ =(MA ⃗⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ )⋅(MB ⃗⃗⃗⃗⃗⃗ −MA ⃗⃗⃗⃗⃗⃗ )=0, 即有|MA|=|MB|,其中点M 的坐标为(0,2t), 设AB 的中点为N(x 0,y 0),可得MN ⊥AB ,由双曲线的渐近线方程为y =±b a x ,联立y =13(x +t)(t ≠0)可得 A(at 3b−a ,bt 3b−a ),B(at −3b−a ,bt3b+a ), 中点N(a 2t9b 2−a 2,3b 2t9b 2−a 2),由M(0,2t),k MN ⋅k AB =−1,可得2ta 2−15tb2ta 2⋅13=−1,化为a 2=3b 2, 则e =c a=√1+b 2a2=√1+13=2√33.故选:B.由向量数量积的性质可得|MA|=|MB|,设AB 的中点为N(x 0,y 0),可得MN ⊥AB ,求得双曲线的渐近线方程,联立直线AB 的方程,可得A ,B 的坐标,再由两直线垂直的条件:斜率之积为−1,化为a 2=3b 2,再由离心率公式可得所求值.本题考查双曲线的方程和性质,考查两直线垂直的条件和向量数量积的性质,考查化简整理的运算能力,属于中档题.13.【答案】−1【解析】解:画出变量x ,y 满足约束条件{x ≤0x −y +1≤02x −y +2≥0表示的平面区域, 如图所示;化目标函数为y =−12x +12z ,由图可知,当直线y =−12x +12z 过点A 时, 直线在y 轴上的截距最小, 由{x −y +1=02x −y +2=0,解得A(−1,0); ∴z 的最小值为:−1. 故答案为:−1.画出约束条件表示的平面区域,利用目标函数找出最优解,即可求出目标函数的最小值. 本题考查了简单的线性规划应用问题,是基础题.14.【答案】93【解析】解:由已知条件可得,数列{a n }是首项为3,公比为2的等比数列, 故S 5=3(25−1)2−1=93.故答案为:93.根据已知条件,结合等比数列的前n 项和公式,即可求解. 本题主要考查数列的实际应用,考查转化能力,属于基础题.15.【答案】−32【解析】解:设A(x 1,y 1),B(x 2,y 2),代入抛物线方程,可得y 12=6x 1,y 22=6x 2,相减可得(y 1+y 2)(y 1−y 2)=6(x 1−x 2),∵AB 的中点为(m,−2),∴y 1+y 2=2×(−2)=−4, 设直线l 的斜率为k ,则−4k =6,解得k =−32. 故答案为:−32.设A(x 1,y 1),B(x 2,y 2),代入抛物线方程,可得y 12=6x 1,y 22=6x 2,相减化简,结合斜率计算公式、中点坐标公式即可得出结论.本题考查了抛物线的标准方程及其性质、斜率计算公式、中点坐标公式,考查了推理能力与计算能力,属于基础题.16.【答案】√63【解析】解:由直线AB 恰好平分圆x 2+y 2=R 2(R >0),可得直线AB 过原点, 设A(x 1,y 1),则B(−x 1,−y 1),M(x 2,y 2), 可得{x 12a 2+y 12b 2=1x 22a 2+y 22b2=1,作差可得x 22−x 12a 2+y 22−y 12b2=0,可得y 22−y 12x 22−x 12=−b2a 2, 而k MA ⋅k MB =y 2−y 1x 2−x 1⋅y 2+y 1x 2+x 1=y 22−y 12x 22−x 12,所以可得−b2a 2=−13,即b 2a 2=13,所以椭圆的离心率e =c a=√1−b 2a2=√1−13=√63,故答案为:√63.由直线AB 平分圆,可得直线AB 过圆心,设A ,M 的坐标,由题意可得B 的坐标,将A ,M 的坐标代入椭圆的方程,作差可得A ,M 的坐标的关系,求出直线MA ,MB 的斜率之积,由题意可得a ,b 的关系,进而求出椭圆的离心率的值.本题考查直线平分圆的性质的应用及直线与椭圆的综合应用,属于基础题.17.【答案】解:(1)∵a 7是a 3与a 9的等比中项,∴a 72=a 3a 9,即(a 1+6d)2=(a 1+2d)(a 1+8d),整理得2a 1d +20d 2=0. ∵d <0,a 1=20,∴d =−2. 故a n =20−2(n −1)=−2n +22; (2)∵d =−2,a 1=20,∴S n =na 1+n(n−1)2d =−n 2+21n ,∴S n =−(n −212)2+(212)2,当n =10或n =11时,S n 取得最大值. 故当n =10或n =11时,S n 取最大值110.【解析】(1)由a 7是a 3与a 9的等比中项列关于首项与公差的等式,得到2a 1d +20d 2=0,结合d <0,a 1=20,求得d =−2.则{a n }的通项公式可求; (2)写出等差数列的前n 项和,再由二次函数求最值.本题考查等差数列的通项公式与前n 项和,考查等比数列的性质,训练了利用二次函数求最值,是中档题.18.【答案】解:(1)等差数列{a n }的前n 项和为S n ,2a 2+a 5=24,S 8=100,∴{2a 1+2d +a 1+4d =248a 1+8×72d =100, 解得a 1=2,d =3,∴a n =2+(n −1)×3=3n −1.∴{a n }的通项公式为a n =3n −1. (2)b n =1a n a n+1=1(3n−1)(3n+2)=13(13n−1−13n+2),∴数列{b n }的前n 项和为:T n =13(12−15+15−18+18−111+13n −4−13n −1+13n −1−13n +2) =13(12−13n +2) =n6n+4. 【解析】(1)利用等差数列通项公式、前n 项和公式列方程组,求出a 1=2,d =3,由此能求出{a n }的通项公式. (2)求出b n =1a n a n+1=1(3n−1)(3n+2)=13(13n−1−13n+2),利用裂项求和法能求出数列{b n }的前n 项和.本题考查等差数列的性质、裂项求和法等基础知识,考查运算求解能力,是中档题.19.【答案】解:(1)因为动点P(x,y)与点F(√10,0)之间的距离和点P 到直线l:x =√102的距离的比值为√2, 所以√(x−√10)2+y 2|x−√102|=√2,整理得x 25−y 25=1,所以曲线C 的方程为x 25−y 25=1;(2)因为直线y =12x +1交曲线C 于A ,B 两点, 设A(x 1,y 1),B(x 2,y 2),由{x 25−y 25=1y =12x +1,得3x 2−4x −24=0,所以x 1+x 2=43,x 1x 2=−8,所以|AB|=√1+k 2|x 1−x 2|=√1+14×√(43)2−4×(−8)=2√953,点O到直线y=12x+1即12x−y+1=0的距离d=1√1+14=2√55,所以△OAB的面积S=12|AB|⋅d=12×2√953×2√55=2√193.【解析】(1)根据已知条件列出关于x,y的方程,整理可得曲线C的方程;(2)设A(x1,y1),B(x2,y2),将直线方程与双曲线的方程联立得到韦达定理,利用弦长公式计算|AB|,然后计算O到直线y=12x+1的距离,代入三角形面积公式计算即可.本题考查了动点的轨迹方程以及直线与双曲线的位置关系,属于中档题.20.【答案】解:(1)∵m⃗⃗⃗ //n⃗,∴bcosCsinB=(a−bsinC)cosB,∴acosB=b(sinBcosC+cosBsinC)=bsin(B+C)=bsinA,由正弦定理可得sinAcosB=sinAsinB,∵A、B∈(0,π),∴sinA>0,cosB=sinB>0,∴tanB=1,故B=π4;(2)因为(1+√3)a−√2c=0,可设a=√2t(t>0),则c=(√3+1)t,由余弦定理可得4=b2=a2+c2−2accosB=2t2+(√3+1)2t2−2√2(1+√3)t2×√22=4t2,解得t=1,故a=√2,c=√3+1,故△ABC的面积为S△ABC=12acsinB=12×√2×(√3+1)×√22=√3+12.【解析】(1)利用平面向量共线的坐标表示结合正弦定理化简可得tanB的值,结合角B的取值范围可求得角B的值;(2)利用余弦定理结合已知条件可求得a、c的值,再利用三角形的面积公式可求得结果.本题主要考查解三角形,考查转化能力,属于中档题.21.【答案】解:(1)证明:∵AB=2,BC=1,∠ABC=π3,根据余弦定理得AC=√AB2+BC2−2AB⋅BC⋅cosπ3=√3,所以AB²=AC²+BC²,所以CA⊥CB,以C点为坐标原点,CB,CA所在直线为x,y轴,经过C点垂直于CA,CB的直线为z轴,建立空间直角坐标系,则A(0,√3,0),B(1,0,0),P(0,√3,√6),E(0,√33,√63),D(0,2√33,2√63),F(12,√32,√62), ∴AE⃗⃗⃗⃗⃗ =(0,−2√33,√63),CP⃗⃗⃗⃗⃗ =(0,√3,√6),CB⃗⃗⃗⃗⃗ =(1,0,0), ∵AE ⃗⃗⃗⃗⃗ ⋅CP ⃗⃗⃗⃗⃗ =−2√33×√3+√63×√6=0,AE ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0,CP ∩CB =C , ∴AE ⊥平面PBC ;(2)AD ⃗⃗⃗⃗⃗⃗ =(0,−√33,2√63),DF ⃗⃗⃗⃗⃗ =(12,−√36,−√66),BD ⃗⃗⃗⃗⃗⃗ =(−1,23√3,2√63), 设平面ADF 的一个法向量为n ⃗ =(x,y,z),由{AD ⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =−√33y +2√63z =0DF ⃗⃗⃗⃗⃗ ⋅n ⃗ =12x −√36y −√66z =0,令z =√2,则x =2√3,y =4,可得n ⃗ =(2√3,4,√2),同理可得平面BDF 的一个法向量m ⃗⃗⃗ =(0,−√2,1), ∴|cos <m ⃗⃗⃗ ,n ⃗ >|=|m⃗⃗⃗ ⋅n ⃗ ||m⃗⃗⃗ ||n ⃗ |=√2+√2|√3×√30=√55,所以平面ADF 与平面BDF 夹角的余弦值为√55.【解析】(1)用余弦定理求出AC =√3,从而得到AB ²=AC ²+BC ²,CA ⊥CB ,建立空间直角坐标系,利用空间向量证明出线面垂直;(2)求出平面的法向量,进而求出两平面的夹角余弦值. 本题主要考查平面与平面所成的角,属于中档题.22.【答案】解:(1)由题意知b =2,又椭圆的离心率为√63,所以c 2a 2=a 2−b2a 2=(√63)2=23,所以a 2=12,所以椭圆C 的方程为x 212+y 24=1.(2)因为直线l 的方程为x =−2√2,设P(−2√2,y 0),y 0∈(−2√33,2√33), 当y 0≠0时,设M(x 1,y 1)、N(x 2,y 2),显然x 1≠x 2,联立{x 1212+y 124=1x 2212+y 224=1,相减可得112(x 12−x 22)+14(y 12−y 22)=0,即y 1−y 2x 1−x 2=−13⋅x 1+x 2y 1+y 2又PM =PN ,即P 为线段MN 的中点, 故直线MN 的斜率−13⋅−2√2y 0=2√23y 0,又l′⊥MN ,所以直线l′的方程为y −y 0=−2√23y 0(x +2√2),即y =02√2+4√23),,0),显然l′恒过定点(−4√23,0);当y0=0时,l′为x轴亦过点(−4√23,0).综上所述,l′恒过定点(−4√23【解析】(1)根据椭圆的离心率和过点(0,−2)即可求出椭圆的方程.(2)直线l的方程为x=−2√2,设P(−2√2,y0),当y0≠0时,设M(x1,y1),N(x2,y2),由题意知x1≠x2,利用点差法l′的方程,从而得到l′恒过定点.当y0=0时,直线MN为,由此推导出l′恒过定点.本题考查椭圆的标准方程,考查点差法的运用,考查分类讨论的数学思想,正确运用点差法是解题的关键,属于中档题。
高二上期末数学试卷(理)(有答案)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是正确的)1.已知数列{a n}的通项公式为a n=4n﹣3,则a5的值是()A.9 B.13 C.17 D.212.下列命题为真命题的是()A.若ac>bc,则a>b B.若a2>b2,则a>bC.若,则a<b D.若,则a<b3.若a∈R,则“a=2”是“(a﹣2)(a+4)=0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.已知命题P:∀x>2,x3﹣8>0,那么¬P是()A.∀x≤2,x3﹣8≤0 B.∃x>2,x3﹣8≤0 C.∀x>2,x3﹣8≤0 D.∃x≤2,x3﹣8≤05.在正方体ABCD﹣A1B1C1D1中,(﹣)﹣=()A.B.C.D.6.等差数列{a n}中,若a1+a4+a7=39,a3+a6+a9=27,则前9项的和S9等于()A.66 B.99 C.144 D.2977.在△ABC中,a2=b2+c2+bc,则∠A等于()A.60°B.45°C.120°D.150°8.已知点(x,y)满足不等式组,则z=x﹣y的取值范围是()A.[﹣2,﹣1]B.[﹣2,1]C.[﹣1,2]D.[1,2]9.已知椭圆=1(a>5)的两个焦点为F1、F2,且|F1F2|=8,弦AB过点F1,则△ABF2的周长为()A.10 B.20 C.D.10.已知定点A(3,4),点P为抛物线y2=4x上一动点,点P到直线x=﹣1的距离为d,则|PA|+d的最小值为()A.B.2 C.D.11.若f(x)=x+,则下列结论正确的是()A.f(x)的最小值为4B.f(x)在(0,2)上单调递减,在(2,+∞)上单调递增C.f(x)的最大值为4D.f(x)在(0,2)上单调递增,在(2,+∞)上单调递减12.已知双曲线﹣=1(a>0,b>0)的右焦点为F,若过点F且倾斜角为30°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是()A.(,)B.[,]C.(,+∞)D.[,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.不等式>0的解集是.14.在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是三角形.15.公差非0的等差数列{a n}满足a3=6且a1,a2,a4成等比数列,则{a n}的公差d=.16.设x>0,y>0且x+y=1,则的最小值为.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤).17.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosC﹣csinA=0.(Ⅰ)求角C的大小;(Ⅱ)已知b=4,△ABC的面积为6,求边长c的值.18.等差数列{a n}中,a3=3,a1+a4=5.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若,求数列{b n}的前n项和S n.19.(1)已知抛物线的顶点在原点,准线方程为x=﹣,求抛物线的标准方程;(2)已知双曲线的焦点在x轴上,且过点(,﹣),(,),求双曲线的标准方程.20.已知函数f(x)=ax2+bx﹣a+2(1)若关于x的不等式f(x)>0的解集是(﹣1,3),求实数a,b的值;(2)若b=2,a>0,解关于x的不等式f(x)>0.21.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.(1)求证:平面AEC⊥平面PDB;(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小.22.已知椭圆的两个焦点为F1、F2,离心率为,直线l与椭圆相交于A、B两点,且满足|AF1|+|AF2|=4,O为坐标原点.(1)求椭圆的方程;(2)证明:△OAB的面积为定值.高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是正确的)1.已知数列{a n}的通项公式为a n=4n﹣3,则a5的值是()A.9 B.13 C.17 D.21【考点】数列的概念及简单表示法.【专题】计算题.【分析】由题目给出的数列的通项公式直接代入n的值求a5的值.【解答】解:由数列{a n}的通项公式为a n=4n﹣3,得a5=4×5﹣3=17.故选C.【点评】本题考查了数列的概念及简单表示法,考查了由数列的通项求某一项的值,是基础的计算题.2.下列命题为真命题的是()A.若ac>bc,则a>b B.若a2>b2,则a>bC.若,则a<b D.若,则a<b【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】分别举例说明选项A,B,C错误;利用基本不等式的性质说明D正确.【解答】解:由ac>bc,当c<0时,有a<b,选项A错误;若a2>b2,不一定有a>b,如(﹣3)2>(﹣2)2,但﹣3<﹣2,选项B错误;若,不一定有a<b,如,当2>﹣3,选项C错误;若,则,即a<b,选项D正确.故选:D.【点评】本题考查了命题的真假判断与应用,考查了不等式的性质,是基础题.3.若a∈R,则“a=2”是“(a﹣2)(a+4)=0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据充分必要条件的定义分别判断充分性和必要性,从而得到答案,【解答】解:若a=2,则(a﹣2)(a+4)=0,是充分条件,若(a﹣2)(a+4)=0,则a不一定等于2,是不必要条件,故选:B.【点评】本题考查了充分必要条件,是一道基础题.4.已知命题P:∀x>2,x3﹣8>0,那么¬P是()A.∀x≤2,x3﹣8≤0 B.∃x>2,x3﹣8≤0 C.∀x>2,x3﹣8≤0 D.∃x≤2,x3﹣8≤0【考点】命题的否定;全称命题.【专题】规律型.【分析】根据全称命题的否定是特称命题进行判断即可.【解答】解:命题P为全称命题,其否定为特称命题,则¬P:∃x>2,x3﹣8≤0,故选B.【点评】本题主要考查含有量词的命题的否定,特称命题的否定是全称命题,全称命题的否定是特称命题.5.在正方体ABCD﹣A1B1C1D1中,(﹣)﹣=()A.B.C.D.【考点】向量的减法及其几何意义.【专题】数形结合;转化思想;平面向量及应用.【分析】利用向量的三角形法则即可得出.【解答】解:(﹣)﹣=﹣=,故选:C.【点评】本题考查了向量的三角形法则,考查了推理能力与计算能力,属于中档题.6.等差数列{a n}中,若a1+a4+a7=39,a3+a6+a9=27,则前9项的和S9等于()A.66 B.99 C.144 D.297【考点】等差数列的前n项和.【专题】计算题.【分析】根据等差数列的通项公式化简a1+a4+a7=39和a3+a6+a9=27,分别得到①和②,用②﹣①得到d 的值,把d的值代入①即可求出a1,根据首项和公差即可求出前9项的和S9的值.【解答】解:由a1+a4+a7=3a1+9d=39,得a1+3d=13①,由a3+a6+a9=3a1+15d=27,得a1+5d=9②,②﹣①得d=﹣2,把d=﹣2代入①得到a1=19,则前9项的和S9=9×19+×(﹣2)=99.故选B.【点评】此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道中档题.7.在△ABC中,a2=b2+c2+bc,则∠A等于()A.60°B.45°C.120°D.150°【考点】余弦定理.【专题】解三角形.【分析】由余弦定理a2=b2+c2﹣2bccosA与题中等式比较,可得cosA=﹣,结合A是三角形的内角,可得A的大小.【解答】解:∵由余弦定理,得a2=b2+c2﹣2bccosA又a2=b2+c2+bc,∴cosA=﹣又∵A是三角形的内角,∴A=150°,故选:D.【点评】本题考查了余弦定理的应用,特殊角的三角函数值的求法,属于基础题.8.已知点(x,y)满足不等式组,则z=x﹣y的取值范围是()A.[﹣2,﹣1]B.[﹣2,1]C.[﹣1,2]D.[1,2]【考点】简单线性规划.【专题】数形结合;转化法;不等式.【分析】作出不等式组对应的平面区域,利用z的几何意义进行求解即可.【解答】解:作作出不等式组对应的平面区域如图:由z=x﹣y,得y=x﹣z表示,斜率为1纵截距为﹣z的一组平行直线,平移直线y=x﹣z,当直线y=x﹣z经过点C(2,0)时,直线y=x﹣z的截距最小,此时z最大,当直线经过点A(0,1)时,此时直线y=x﹣z截距最大,z最小.此时z max=2.z min=0﹣1=﹣1.∴﹣1≤z≤2,故选:C.【点评】本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.9.已知椭圆=1(a>5)的两个焦点为F1、F2,且|F1F2|=8,弦AB过点F1,则△ABF2的周长为()A.10 B.20 C.D.【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】根据椭圆=1,得出b=5,再由|F1F2|=8,可得c=4,求得a=,运用定义整体求解△ABF2的周长为4a,即可求解.【解答】解:由|F1F2|=8,可得2c=8,即c=4,由椭圆的方程=1(a>5)得:b=5,则a==,由椭圆的定义可得,△ABF2的周长为c=|AB|+|BF2|+|AF2|=|AF1|+|BF1|+|BF2|+|AF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=4a=4.故选:D.【点评】本题考查了椭圆的方程,定义,整体求解的思想方法,属于中档题.10.已知定点A(3,4),点P为抛物线y2=4x上一动点,点P到直线x=﹣1的距离为d,则|PA|+d的最小值为()A.B.2 C.D.【考点】抛物线的简单性质.【专题】计算题.【分析】先根据抛物线方程求出准线方程与焦点坐标,根据点A在抛物线外可得到|PA|+d的最小值为|AF|,再由两点间的距离公式可得答案.【解答】解:∵抛物线y2=4x的准线方程为x=﹣1,焦点F坐标(1,0)因为点A(3,4)在抛物线外,根据抛物线的定义可得|PA|+d的最小值为|AF|=故答案为:2【点评】本题主要考查抛物线的基本性质,等基础知识,考查数形结合思想,属于基础题.11.若f(x)=x+,则下列结论正确的是()A.f(x)的最小值为4B.f(x)在(0,2)上单调递减,在(2,+∞)上单调递增C.f(x)的最大值为4D.f(x)在(0,2)上单调递增,在(2,+∞)上单调递减【考点】对勾函数.【专题】作图题;函数思想;数学模型法;函数的性质及应用.【分析】直接画出对勾函数f(x)=x+的图象的大致形状,由图象得答案.【解答】解:函数f(x)=x+的定义域为{x|x≠0},函数的图象如图,由图可知,函数在定义域上无最小值,故A错误;f(x)在(0,2)上单调递减,在(2,+∞)上单调递增,故B正确;函数在定义域上无最大值,故C错误;f(x)在(0,2)上单调递减,在(2,+∞)上单调递增,故D错误.故选:B.【点评】本题考查对勾函数的图象和性质,熟记的图象是关键,是基础题.12.已知双曲线﹣=1(a>0,b>0)的右焦点为F,若过点F且倾斜角为30°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是()A.(,)B.[,]C.(,+∞)D.[,+∞)【考点】双曲线的简单性质.【专题】转化思想;分析法;圆锥曲线的定义、性质与方程.【分析】若过点F且倾斜角为30°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率.根据这个结论可以求出双曲线离心率的取值范围.【解答】解:已知双曲线﹣=1的右焦点为F,若过点F且倾斜角为30°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,即有≥,由e2===1+≥,∴e≥,故选:D.【点评】本题考查双曲线的性质及其应用,考查离心率的范围的求法,解题时要注意渐近线方程的运用,考查运算能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.不等式>0的解集是{x|﹣1<x<,x∈R}.【考点】其他不等式的解法.【专题】计算题;转化思想.【分析】不等式>0说明:1﹣2x 和x+1是同号的,可等价于(1﹣2x)(x+1)>0,然后解二次不等式即可.【解答】解:不等式>0等价于(1﹣2x)(x+1)>0,不等式对应方程(1﹣2x)(x+1)=0的两个根是x=﹣1 和x=.由于方程对应的不等式是开口向下的抛物线,所以>0的解集为{x|﹣1<x<}故答案为:{x|﹣1<x<,x∈R}【点评】本题考查分式不等式的解法,考查转化思想,计算能力,是基础题.14.在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是等腰三角形.【考点】三角形的形状判断.【专题】计算题.【分析】等式即2cosBsinA=sin(A+B),展开化简可得sin(A﹣B)=0,由﹣π<A﹣B<π,得A﹣B=0,故三角形ABC是等腰三角形.【解答】解:在△ABC中,若2cosBsinA=sinC,即2cosBsinA=sin(A+B)=sinAcosB+cosAsinB,∴sinAcosB﹣cosAsinB=0,即sin(A﹣B)=0,∵﹣π<A﹣B<π,∴A﹣B=0,故△ABC 为等腰三角形,故答案为:等腰.【点评】本题考查两角和正弦公式,诱导公式,根据三角函数的值求角,得到sin(A﹣B)=0,是解题的关键.15.公差非0的等差数列{a n}满足a3=6且a1,a2,a4成等比数列,则{a n}的公差d=2.【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】根据等差数列和等比数列的通项公式即可得到结论.【解答】解:∵a1,a2,a4成等比数列,a3=6,∴a1=6﹣2d,a2=6﹣d,a4=6+d,则(6﹣d )2=(6﹣2d )(6+d ),即3d 2=6d ,解得d=2或d=0(舍),故答案为:2.【点评】本题主要考查等差数列的公差的计算,根据条件建立方程组是解决本题的关键.16.设x >0,y >0且x+y=1,则的最小值为 9 .【考点】基本不等式在最值问题中的应用. 【专题】不等式的解法及应用.【分析】先把转化成=()(x+y )展开后利用均值不等式进行求解,注意等号成立的条件.【解答】解:∵x >0,y >0且x+y=1,∴=()(x+y )=1+4++≥5+2=9,当且仅当=,即x=3,y=6时取等号,∴的最小值是9.故答案为:9.【点评】本题主要考查了基本不等式在最值问题中的应用.基本不等式一定要把握好“一正,二定,三相等”的原则.属于基础题.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤).17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足acosC ﹣csinA=0.(Ⅰ)求角C 的大小;(Ⅱ)已知b=4,△ABC 的面积为6,求边长c 的值.【考点】正弦定理;余弦定理. 【专题】计算题;解三角形.【分析】(Ⅰ)由正弦定理得: sinAcosC ﹣sinCsinA=0,即可解得tanC=,从而求得C 的值;(Ⅱ)由面积公式可得S △ABC ==6,从而求得得a 的值,由余弦定理即可求c 的值.【解答】解:(Ⅰ)在△ABC 中,由正弦定理得: sinAcosC ﹣sinCsinA=0. …因为0<A <π,所以sinA >0,从而cosC=sinC ,又cosC ≠0,…所以tanC=,所以C=.…(Ⅱ)在△ABC中,S△ABC==6,得a=6,…由余弦定理得:c2=62+42﹣2×=28,所以c=2.…【点评】本小题主要考查正弦定理、余弦定理、三角形的面积公式、同角三角函数的基本关系式等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.18.等差数列{a n}中,a3=3,a1+a4=5.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若,求数列{b n}的前n项和S n.【考点】数列的求和;等差数列的通项公式.【专题】等差数列与等比数列.【分析】(Ⅰ)设数列{a n}的公差为d,由解得a1与d,再利用等差数列的通项公式即可得出.(Ⅱ)利用a n=n,a n+1=n+1,可得,再利用“裂项求和”即可得出.【解答】解:(Ⅰ)设数列{a n}的公差为d,由解得,∴a n=a1+(n﹣1)d=1+(n﹣1)1=n.(Ⅱ)∵a n=n,∴a n+1=n+1,∴,∴=.【点评】本题考查了等差数列的通项公式、“裂项求和”等基础知识与基本方法,属于中档题.19.(1)已知抛物线的顶点在原点,准线方程为x=﹣,求抛物线的标准方程;(2)已知双曲线的焦点在x轴上,且过点(,﹣),(,),求双曲线的标准方程.【考点】双曲线的标准方程;抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】(1)设抛物线方程为y2=2px(p>0),根据题意建立关于p的方程,解之可得p=,得到抛物线方程;(2)设双曲线方程为mx2﹣ny2=1(m>0,n>0),代入点(,﹣),(,),可得方程组,求出m,n,即可求双曲线的标准方程.【解答】解:(1)由题意,设抛物线的标准方程为y2=2px(p>0),∵抛物线的准线方程为x=﹣,∴=,解得p=,故所求抛物线的标准方程为y2=x.(2)设双曲线方程为mx2﹣ny2=1(m>0,n>0),代入点(,﹣),(,),可得,∴m=1,n=,∴双曲线的标准方程为x2﹣y2=1.【点评】本题给出抛物线的准线,求抛物线的标准方程,着重考查了抛物线的定义与标准方程的知识,考查双曲线方程,属于基础题.20.已知函数f(x)=ax2+bx﹣a+2(1)若关于x的不等式f(x)>0的解集是(﹣1,3),求实数a,b的值;(2)若b=2,a>0,解关于x的不等式f(x)>0.【考点】一元二次不等式的应用.【专题】计算题;不等式的解法及应用.【分析】(1)根据题意并结合一元二次不等式与一元二方程的关系,可得方程ax2+bx﹣a+2=0的两根分别为﹣1和3,由此建立关于a、b的方程组并解之,即可得到实数a、b的值;(2)不等式可化成(x+1)(ax﹣a+2)>0,由此讨论﹣1与的大小关系,分3种情形加以讨论,即可得到所求不等式的解集.【解答】解:(1)∵不等式f(x)>0的解集是(﹣1,3)∴﹣1,3是方程ax2+bx﹣a+2=0的两根,∴可得,解之得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)当b=2时,f(x)=ax2+2x﹣a+2=(x+1)(ax﹣a+2),∵a>0,∴①若,即a=1,解集为{x|x≠﹣1}.②若,即0<a<1,解集为.③若,即a>1,解集为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题给出二次函数,讨论不等式不等式f(x)>0的解集并求参数的值,着重考查了一元二次不等式的应用、一元二次不等式与一元二方程的关系等知识国,属于中档题.21.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.(1)求证:平面AEC⊥平面PDB;(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小.【考点】直线与平面垂直的判定;直线与平面所成的角.【专题】计算题;证明题.【分析】(Ⅰ)欲证平面AEC⊥平面PDB,根据面面垂直的判定定理可知在平面AEC内一直线与平面PDB 垂直,而根据题意可得AC⊥平面PDB;(Ⅱ)设AC∩BD=O,连接OE,根据线面所成角的定义可知∠AEO为AE与平面PDB所的角,在Rt△AOE 中求出此角即可.【解答】(Ⅰ)证明:∵四边形ABCD是正方形,∴AC⊥BD,∵PD⊥底面ABCD,∴PD⊥AC,∴AC⊥平面PDB,∴平面AEC⊥平面PDB.(Ⅱ)解:设AC∩BD=O,连接OE,由(Ⅰ)知AC⊥平面PDB于O,∴∠AEO为AE与平面PDB所的角,∴O,E分别为DB、PB的中点,∴OE∥PD,,又∵PD⊥底面ABCD,∴OE⊥底面ABCD,OE⊥AO,在Rt△AOE中,,∴∠AEO=45°,即AE与平面PDB所成的角的大小为45°.【点评】本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.22.已知椭圆的两个焦点为F1、F2,离心率为,直线l与椭圆相交于A、B两点,且满足|AF1|+|AF2|=4,O为坐标原点.(1)求椭圆的方程;(2)证明:△OAB的面积为定值.【考点】直线与圆锥曲线的综合问题.【专题】圆锥曲线的定义、性质与方程.【分析】(1)由椭圆的离心率,结合椭圆的定义及隐含条件求得a,b,c的值,则椭圆方程可求;(Ⅱ)设出直线AB的方程为y=kx+m,再设A(x1,y1),B(x2,y2),联直线方程和椭圆方程,由根与系数的关系求得A,B的横坐标的和与积,结合,得到A,B的横坐标的乘积再由y1y2=(kx1+m)(kx2+m)求得A,B的纵坐标的乘积,最后把△OAB的面积转化为含有k,m的代数式可得为定值.【解答】解:(1)由椭圆的离心率为,可得,即a=,又2a=|AF1|+|AF2|=,∴a=,c=2,∴b2=4,∴椭圆方程为:;(Ⅱ)设直线AB的方程为y=kx+m,再设A(x1,y1),B(x2,y2),联立,可得(1+2k2)x2+4kmx+2m2﹣8=0△=(4km)2﹣4(1+2k2)(2m2﹣8)=8(8k2﹣m2+4)>0,,∵,∴,∴,又y1y2=(kx1+m)(kx2+m)===.∴,∴﹣(m2﹣4)=m2﹣8k2,即4k2+2=m2,设原点到直线AB的距离为d,则====,∴当直线斜率不存在时,有A(),B(),d=2,S△OAB=.即△OAB的面积为定值2.【点评】本题考查了椭圆方程的求法,考查了直线与圆锥曲线的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,是处理这类问题的最为常用的方法,但圆锥曲线的特点是计算量比较大,要求考生具备较强的运算推理的能力,是压轴题.。