27.2(2)圆心角、弧、弦、弦心距之间的关系
- 格式:ppt
- 大小:119.50 KB
- 文档页数:17
圆心角、弧、弦、弦心距之间的关系
1、与圆心角、弧、弦、弦心距相关的定理和推理:
在上例中,若∠DOC=∠AOB,则CD=AB,弧CD=弧AB,弦心距OE=弦心距OF;若CD=AB,则∠DOC=∠AOB,弧CD=弧AB,弦心距OE=弦心距OF;若弧CD=弧AB,则∠DOC=∠AOB,CD=AB,弦心距OE=弦心距OF;若弦心距OE=弦心距OF,则∠DOC=∠AOB,CD=AB,弧CD=弧AB.(特别的对于弦心距而言,要么指出“弦心距”三字,要么指出(OE⊥DC或OF⊥AB).2、典型例题及常见辅助线的添线方法:
解法分析:本题主要利用的推论是同圆中,相等的弦心距所对的弦相等。
(1)(2)两问的添线方法一致,只是根据点在圆外、圆上、圆内分类讨论而已。
因此常见的辅助线的添线方法为作弦心距。
3、与四边形相关的综合练习:
解法分析:本题综合利用了同圆的半径相等、矩形的对角线相等且互相平分,X型基本图形、锐角三角比、三角形的内外角和知识,是一道比较综合的简单综合题。
解法分析:本题综合利用了全等三角形的判定和性质定理,勾股定理,平行四边形的性质定理。
第3问稍有难度,构造全等的直角三角形,利用垂直平分线性质定理解决问题。
解法分析:本题的第1问利用了子母三角形相似得到解析式;本题的第2问分类讨论,利用X型基本图形,列比例关系求解.
4、圆周角相关性质定理的补充:。
三.圆心角、弧、弦、弦心距之间的关系【知识要点】(1)圆的对称性:圆是以圆心为对称中心的中心对称图形.圆不仅是轴对称图形,而且还是 图形,圆独有的性质是 . (2)概念:弦、弦心距弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直线。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
【典型例题】例1.(1)过已知⊙O 中一已知点P 的弦中,最短的弦是 ;最长的弦是 .(2)已知⊙O 中,AB 是直径,长10cm ,点M 为⊙O 内的一点,OM=4cm ,则⊙O 中过点M 的弦中,最长的弦等于 .(3)在⊙O 中,弦AB ∥弦CD ,且AB 、CD 的度数分别为︒120和︒60,⊙O 的半径为6cm ,则AB 与CD 之间的距离是 .(4)如图1,⊙O 中,弦CD 与直径AB 交于E ,且∠AEC=︒30,AE=1cm ,BE=5cm ,则弦CD 的弦心距OF= cm ,弦CD 的长为 cm.(3)概念:弧,圆心角弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
圆心角 :顶点在圆心的角叫圆心角,圆心角的度数等于它所对的弧的度数。
例2.(1)如图2,在△ABC 中,︒=∠︒=∠25,90B BCA ,以C 为圆心,CA 为半径的圆交· A C FE ODB 图1· O 图4AB C图2CBDD A图3· OECAB 于D ,则AD 的度数是 .(2)在⊙O 中,弦AB 与过B 点的半径夹角为︒55,那么弦AB 所对的优弧AMB 的度数为 。
(3)一条弦的弦心距等于它所在圆的直径的41,则这条弦所对的劣弧的度数是 。
(4)已知⊙O 中,AB=2CD ,则弦AB 2CD .(填“〉”、“〈”或“=” ) (5)如图3所示,已知C 是⊙O 直径AB 上一点,过C 作弦DE ,使CD=CO ,若AD 的度数为︒40,BE 的度数 。
(6)如图4,在⊙O 中,AB 的度数是︒50,∠OBC=︒40,那么∠OAC 等于 。
圆心角、弧、弦、弦心距之间的关系(二)数学教案标题:圆心角、弧、弦、弦心距之间的关系(二)
一、教学目标
1. 理解并掌握圆心角、弧、弦、弦心距之间的基本关系。
2. 能够运用这些关系解决实际问题。
3. 培养学生的空间观念和逻辑思维能力。
二、教学重点与难点
重点:理解并掌握圆心角、弧、弦、弦心距之间的基本关系。
难点:运用这些关系解决实际问题。
三、教学过程
1. 导入新课
通过回顾上节课的内容,引导学生复习圆心角、弧、弦的概念,然后引出本节课的主题——圆心角、弧、弦、弦心距之间的关系。
2. 新课讲解
(1) 定义解释:首先对圆心角、弧、弦、弦心距的概念进行再次解释和强调。
(2) 关系阐述:详细阐述这四个元素之间的关系,例如“在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;相等的弧所对的圆心角相等,所对的弦也相等。
”等等。
(3) 举例说明:给出一些具体的例子,帮助学生理解和记忆这些关系。
3. 练习巩固
设计一些练习题,让学生运用所学的知识去解答,从而加深对知识的理解和记忆。
4. 总结提升
总结本节课的主要内容,并引导学生思考如何将这些知识应用到实际生活中去。
四、作业布置
布置一些相关的习题,以检验学生的学习效果。
第27章圆与正多边形第一节圆的基本性质§27.2圆心角、弧、弦、弦心距之间的关系教学目标(1)理解圆心角、弧、弦、弦心距等概念,知道圆是一个旋转对称图形,理解圆的旋转不变性.(2)经历利用圆的旋转不变性探索同圆中圆心角、弧、弦、弦心距之间关系的过程,掌握同圆或等圆中圆心角、弧、弦、弦心距之间关系的定理及其推论,能运用这一定理及其推论解决有关数学问题.教学重点引进圆心角、弧、弦、弦心距等概念,导出同圆或等圆中圆心角、弧、弦、弦心距之间关系的定理及其推论,并能进行简单的运用,解决有关数学问题.知识点梳理1.圆上任意两点之间的部分叫做圆弧,简称弧;联结圆上任意两点的线段叫做弦,过圆心的弦就是直径.以圆心为顶点的角叫做圆心角.(没有特别说明时,本章中的圆心角通常是指大于00且小于0180的角)2.圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫做半圆.大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.3.圆心到弦的距离叫做弦心距.4.在平面上,一个圆绕着它的圆心旋转任何一个角度(大于00且小于0360),都能与原来图形重合.所以,圆是以圆心为旋转对称中心的旋转对称图形,旋转角可为大于00且小于0360的任何一个角.5.能够重合的两条弧称为等弧.半径长相等的两个圆一定能够重合,我们把半径长相等的两个圆称为等圆.(等圆可看作同一个圆移动到不同的位置时的图形)6.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.7.推论在同圆或等圆中,如果两个圆心角、两条劣弧或优弧、两条弦、两条弦的弦心距得到的四组量中有一组量相等,那么它们所对应的其余三组量也分别相等.8.圆被等分成360份,得到的每一份弧叫做01的弧.圆心角的度数和它们对的弧的度数相等.经典题型解析(一)圆的基本概念例1.车轮要做成圆形,实际上就是根据圆的特征( )A.同弧所对的圆心角相等B.直径是圆中最大的弦C.圆上各点到圆心的距离相等D.圆是中心对称图形随堂练习:下列说法中,正确的是( )A.弦是直径B.弧是半圆C.半圆是弧D.过圆心的线段是直径例2.下列说法中,错误的是( )A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧随堂练习:下列语句中,正确的有( )A.在同圆或等圆中,相等的圆心角所对的弧相等B.平分弦的直径垂直于弦C.长度相等的两条弧相等D.圆是轴对称图形,任何一条直径都是它的对称轴例3.如图,在O中,如果AB CD、是直径,那么图中相等的弧有哪些?为什么?随堂练习:如图,已知在O中,AB CD、.⊥,垂足分别是点E F、分别是弦,OE AB⊥,OF CD请添加一个条件,使得OE OF=.(二)定理与推论例4.已知:如图,O的弦AB与CD相交于点P,OM AB、,⊥,ON DC⊥,垂足分别是点M N 且AD BC=.求证:OM ON=.随堂练习:如图,AB CECD AB.、是O的直径,CD是圆O的弦,//求证:EB AC BD==.例5.已知:如图,AB CD、.、是O的直径,弦//AE CD,联结CE BC求证:BC CE=.随堂练习:已知:如图,AD BC=分别表示弦AB和CD的弦心、是O的弦,AD BC=,OM ON距.求证:OM ON=.例6.已知:如图,AB CD=.、是O的弦,且AB CD求证:ACB DBC∆≅∆.随堂练习:已知:如图,AB是O的直径,AC和AD是分别位于AB两侧的两条相等的弦.求证:AB平分CAD∠.例7.如图,O是ABC∆的形状,并说明∠=∠,探索ABC∠,AOB BOC∆的外接圆,AO平分BAC理由. 等边三角形例8.已知:如图,AB是O的直径,M N⊥.⊥,DN AB、的中点,CM AB、分别是AO BO求证:AC BD=.例9.已知:如图,在O中,弦AB的长是半径OA的3倍,C为AB的中点,AB OC、相交于P.求证:四边形OACB为菱形.例10.已知:如图,AD的度数是090,B C、将AD三等分,弦AD与半径OB OC、.、相交于E F 求证:AE BC FD==.巩固提升一、填空题1.下列说法正确的是_________(填序号)①半径不等的圆叫做同心圆;②优弧一定大于劣弧;③不同的圆中不可能有相等的弦;④直径是同一个圆中最长的弦.2.圆是中心对称图形,它的对称中心有_________个.3.如图,AB CD =,OE AB ⊥,OF CD ⊥,025OEF ∠=,则EOF ∠=__________.(第3题) (第4题) (第5题)4.如图,在ABC ∆中,070A ∠=,圆O 截ABC ∆的三边所得的弦长都相等,则BOC ∠=_________.5.如图,半圆O 中,直径2AB =,作弦//DC AB ,设AD x =,四边形ABCD 的周长为y ,则y 与x 的函数关系式为_________,自变量x 的取值范围是_________.6.已知等边ABC ∆的三个顶点在半径为r 的圆上,则ABC ∆的周长为_________.7.已知点(1,0)(4,0)A B 、,P 是经过A B 、两点的一个动圆,当P 与y 轴相交,且在y 轴上两交点的距离为3时,则圆心P 的坐标是_________.二、选择题8.下列命题中正确的是( )A .三点确定一个圆B .在同圆中,同弧所对的圆周角相等C .平分弦的直线垂直于弦D .相等的圆心角所对的弧相等9.下列命题,①直径是弦,但弦不一定是直径;②半圆是弧,但弧不一定是半圆;③半径相等的两个圆是等圆;④一条弦把圆分成的两条弧中,至少有一条是优弧。
27.2 圆心角、弧、弦、弦心距之间的关系(3)上海市奉贤区泰日学校张忠华一、教学内容分析:本课是圆心角、弧、弦、弦心距之间的关系的第3课时,主要内容是对圆心角、弧、弦、弦心距之间关系的灵活运用.二、教学目标1.灵活运用圆心角、弧、弦、弦心距之间的关系解决相关的几何证明与计算.2.通过例题的学习,进一步发展逻辑推理能力.三、教学重点与难点圆心角、弧、弦、弦心距之间的关系的灵活运用.四、教学用具准备课件、多媒体投影仪五、教学流程六、教学过程设计(一) 温故知新回顾定理与推论:同圆或等圆中,如果两个圆心角,两条劣弧(或优弧),两条弦,两条弦的弦心距得到的四组量中有一组量相等,那么它们所对应的其余三组量也分别相等.(二)应用举例例4 如图(1)已知:点F为圆O内一点,过点F作圆O的两条图(1)图(2)F 图(3)F 弦AB 、CD ,且∠AFO =∠DFO求证:(1)AB =CD (2)变式1:将例4中条件结论互换,命题是否为真?即已知点F 为圆O 内一点,过点F 作⊙O 的两条弦AB 、CD ,AB =CD 求证:∠AFO=∠DFO (学生探索发现)变式2:若点F 为⊙O 上一点,过F 作⊙O 的弦FA 、FD 如图(2) 若∠AFO =∠DFO,求证:AF =DF (学生探索发现)变式3:如图(3)若点F 为⊙O 外一点,过F 作两条射线分别交⊙O 于点A 、B 、C 、D ,若∠AFO =∠DFO ,求证:AB =CD (学生探索发现)AC=BD例5 已知,如图(4):⊙O是△ABC的外接圆,AE平分△ABC 的外角∠DAC,O M⊥AB,ON⊥AC,垂足分别是点M、N,且OM =ON求证:(1)A E∥BC (2)AO⊥AE图(4)(三)反馈练习1、课本P11页,练习27.2(3)2、将例5条件、结论互换,变式1:把条件OM=ON与结论AE∥BC互换,命题是否为真?说明理由.3、变式2:把条件OM=ON与结论AO⊥AE互换,命题是否为真?说明理由.图(5)图(5)(四)归纳小结1.谈谈本堂课的收获2.谈谈本堂课的疑惑(五)布置作业必做题:练习册27.2(3)选做题:如图(6):已知半圆O中,直径AB=2,作弦DC∥AB,设AD=x,四边形ABCD的周长为y,求:y与x的函数关系式,及自变量x的取值范围B图(6)设计说明本节课主要内容是圆心角、弧、弦、弦心距之间关系的应用,对课本例题做了适当的变式,以问题为主线,探中有究,究中有探,通过例4的变式训练,引导学生灵活创新地运用定理、推论解决问题,根据学生已有的知识基础,设计出具有一定探索价值的问题链,进而让学生去发现、去创造,从而充分调动学生的思维,有效地提高课堂的效率,使整个课堂焕发出思维的活力.。
奋飞教育---您值得信赖的一对一个性化辅导学校咨询:3651785627.2 圆心角、弧、弦、弦心距之间的关系【学习目标】1.通过观察实验,使学生了解圆心角的概念.2.掌握在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等,以及它们在解题中的应用.【主要概念】【1】圆心角定义在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角.如图所示,∠AOB的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.【2】圆心角、弧、弦之间的关系定理在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.【定理拓展】1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,•所对的弦也分○别相等2在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的弧也分○别相等综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.【经典例题】【例1】下列说法中,正确的是( )A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【解析】根据弧、弦、圆心角的关系知:等弦所对的弧不一定相等,圆心角相等,所对的弦相等缺少等圆或同圆的条件,所以也不对;弦相等所对的圆心角相等 1奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856缺少等圆或同圆的条件,弦所对的弧也不一定是同弧,所以不正确;等弧所对的弦相等是成立的.【答案】B【例2】如图2,同心圆中,大圆的弦AB交小圆于C、D,已知AB=4,CD=2,AB的弦心距等于1,那么两个同心圆的半径之比为( )图2A.3∶2B.∶2C.∶2D.5∶4【解析】作OE⊥CD于E,则CE=DE=1,AE=BE=2,OE=1.在Rt△ODE中,OD=2+12=2.在Rt△OEB中,OB=BE2+OE2=4+1=.∴OB∶OD=∶2.【答案】C【例3】半径为R的⊙O中,弦AB=2R,弦CD=R,若两弦的弦心距分别为OE、OF,则OE∶OF等于( )A.2∶1B.3∶2C.2∶3D.0【解析】∵AB为直径,∴OE=0.∴OE∶OF=0.【答案】D【例4】一条弦把圆分成1∶3两部分,则弦所对的圆心角为_____________. 【解析】1×360°=90°,∴弦所对的圆心角为90°. 4【答案】90°【例5】弦心距是弦的一半时,弦与直径的比是____________,弦所对的圆心角是____________.【解析】OD⊥AB,OD=DB=AD.设OD=x,则AD=DB=x.在Rt△ODB中,∵OD=DB,OD⊥AB,奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856∴∠DOB=45°.∴∠AOB=2∠DOB=90°, OB=OD2+DB2+x2+x2=2 x.∴AB∶BC=1∶2=2∶2. ∴弦与直径的比为2∶2,弦所对的圆心角为90°. 【答案】2∶2 90°【例6】如图6,已知以点O为公共圆心的两个同心圆,大圆的弦AB交小圆于C、D.图6(1)求证:AC=DB;(2)如果AB=6 cm,CD=4 cm,求圆环的面积.【分析】求圆环的面积不用求出OA、OC,应用等量代换的方法.事实上,OA、OC的长也求不出来.(1)证明:作OE⊥AB于E,∴EA=EB,EC=ED.∴EA-EC=EB-ED,即AC=BD.(2)解:连结OA、OC.∵AB=6 cm,CD=4 cm,∴AE=11AB=3 cm.CE=CD=2 cm. 22∴S环=π·OA2-π·OC2=π(OA2-OC2)=π[(AE2+OE2)-(CE2+OE2)]=π(AE2-CE2)=π(32-22)=5π( cm2).【例7】如图7所示,AB是⊙O的弦(非直径),C、D是AB上的两点,并且AC=BD.求证:OC=OD.图7【分析】根据弧、弦、圆心角的关系得出.证法一:如图(1),分别连结OA、OB.∵OA=OB,∴∠A=∠B.又∵AC=BD,∴△AOC≌△BOD.∴OC=OD.奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856证法二:如图(2),过点O作OE⊥AB于E,∴AE=BE.∵AC=BD,∴CE=DE.∴OC=OD. (1) (2)【例8】如图8,⊙O的直径AB和弦CD相交于点E,已知AE=6 cm,EB=2 cm,∠CEA=30°,求CD的长.图8【分析】如何利用∠CEA=30°是解题的关键,若作弦心距OF,构造直角三角形,问题就容易解决.【解】过O作OF⊥CD于F,连结CO.∵AE=6 cm,EB=2 cm,∴AB=8 cm.∴OA=在Rt△OEF中,∵∠CEA=30°,∴OF=1OE=1(cm). 21AB=4(cm),OE=AE-AO=2(cm). 2 在Rt△CFO中,OF=1 cm,OC=OA=4(cm),∴CF=OC2 OF2=(cm). 又∵OF⊥CD,∴DF=CF.∴CD=2CF=2( cm).【例9】如图9,AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,我们知道EC和DF相等.若直线EF平移到与直径AB相交于P(P不与A、B重合),在其他条件不变的情况下,结论是否依然成立?为什么?当EF∥AB时,情况又怎样?奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856图9【分析】考查垂径定理及三角形、梯形相关知识.可适当添加辅助线.【解】当EF交AB于P时,过O作OM⊥CD于M,则CM=DM.通过三角形,梯形知识或构造矩形可证明AM=MF,∴EC=DF.当EF∥AB时,同理作OM⊥CD于M,可证四边形AEFB为矩形.所以EF=AB.且EM=MF,又由垂径定理有CM=MD,∴EC=DF.【例10】如图10所示,AB、CD是⊙O的两条直径,弦BE=BD,则弧AC与弧BE是否相等?为什么?图10【分析】欲求两弧相等,结合图形,可考虑运用“圆心角、弧、弦、弦心距”四量之间的“等对等”关系,可先求弧AC与弧BE所对的弦相等,也可利用“等量代换”的思想,先找一条弧都与弧AC以及弧BE相等.【解】弧AC=弧BE.原因如下:法一:连结AC,∵AB、CD是直径,∴∠AOC=∠BOD.∴AC=BD.又∵BE=BD,∴AC=BE.∴弧AC=弧BE.法二:∵AB、CD是直径,∴∠AOC=∠BOD.∴弧AC=弧BD.奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856∵BE=BD,∴弧BE=弧BD.∴弧AC=弧BE.【例11】如图11所示,AB是⊙O的弦,C、D为弦AB上两点,且OC=OD,延长OC、OD,分别交⊙O于点E、F.试证:弧AE=弧BF.图11【分析】欲求弧相等,结合图形,可先求弧所对的圆心角相等,即求∠AOE=∠BOF.【证明】∵OC=OD,∴∠OCD=∠ODC.∵AO=OB,∴∠A=∠B.∴∠OCD-∠A=∠ODC-∠B,即∠AOC=∠BOD,即∠AOE=∠BOF.∴弧AE=弧BF.【例12】如图12,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?图12【分析】应用圆心角、弧、弦的关系解决.证明弦相等往往转化成圆心角相等. 【解】在⊙O中,∵∠1=∠2=∠3,又∵AB、CD、EF都是⊙O的直径,∴∠FOD=∠AOC=∠BOE.∴弧DF=弧AC=弧BE.∴AC=EB=DF.奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856【例13】为美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案,要求设计的方案由圆和三角形组成(圆和三角形个数不限),并且使整个图案成对称图形,请你画出你的设计方案图(至少两种).【解析】设计的基本思路是等分圆心角,或等分圆周,取得轴(或中心)对称的对应点,适当画圆或连线,设计出一些适合要求的图案.【答案】根据题意画出如下方案供选用,如图,本题答案不唯一,只要符合条件即可.【例14】如图14,已知在⊙O中,AD是⊙O的直径,BC是弦,AD⊥BC,E为垂足,由这些条件你能推出哪些结论?(要求:不添加辅助线,不添加字母,不写推理过程,只写出6条以上的结论)图14【解析】因AD⊥BC,且AD为直径,所以可以利用垂径定理得到一些结论,同时可证得AD垂直平分BC,据此又能得到许多结论.本题是2000年新疆建设兵团的模拟题,是一个开放性试题,开放到可以不写步骤,但它比书写证明一个结论步骤的题考查面更广,因为写出六个结论考生需要证明六个题.本题是一个考查考生发散思维能力和创新意识的好题.【答案】(1)BE=CE;(2)弧BD=弧CD;(3)弧AB=弧AC(4)AB=AC;(5)BD=DC;(6)∠ABC=∠ACB;(7)∠DBC=∠DCB;(8)∠ABD=∠ACD;(9)AD是BC的中垂线;奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856(10)△ABD≌△ACD;(11)O为△ABC的外心等等.【例15】如图15,AB为⊙O的弦,P是AB上一点,AB=10 cm,OP=5 cm,PA=4 cm,求⊙O的半径.图15【分析】圆中的有关计算,大多都是通过构造由半径、弦心距、弦的一半组成的直角三角形,再利用勾股定理来解决.【解】过O作OC⊥AB于C,连结OA,则AB=2AC=2BC.在Rt△OCA和△OCP中,OC2=OA2-AC2,OC2=OP2-CP2,∴OA2-AC2=OP2-CP2.∵AB=10,PA=4,AB=2AC=2BC,∴CP=AB-PA-BC=1,AC=5.∴OA2-52=52-1.∴OA=7,即⊙O的半径为7 cm.【例16】⊙O的直径为50 cm,弦AB∥CD,且AB=40 cm,CD=48 cm,求弦AB和CD之间的距离.【分析】(1)图形的位置关系是几何的一个重要方面,应逐步加强位置感的培养.(2)本题往往会遗忘或疏漏其中的一种情况.(1)【解】(1)当弦AB和CD在圆心同侧时,如图(1),作OG⊥AB于G,交CD于E,连结OB、OD.∵AB∥CD,OG⊥AB,∴OE⊥CD.∴EG即为AB、CD之间的距离.∵OE⊥CD,OG⊥AB,∴BG=11AB=×40=20(cm), 22奋飞教育---您值得信赖的一对一个性化辅导学校咨询:36517856DE=11CD=×48=24(cm). 22在Rt△DEO中,OE=OD2-DE2=252-242=7(cm).在Rt△BGO中,OG=OB2-BG2=252-202=15(cm).∴EG=OG-OE=15-7=8(cm).(2)(2)当AB、CD在圆心两侧时,如图(2),同理可以求出OG=15 cm,OE=7 cm,∴GE=OG+OE=15+7=22(cm).综上所述,弦AB和CD间的距离为22 cm或7 cm.【1】已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么?【2】如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。
儒洋教育学科教师辅导讲义6、多边形与圆如果一个圆经过一个多边形的各顶点,那么这个圆叫做这个多边形的外接圆,这个多边形叫做这个圆的内接多边形,提示:1、与圆的确定有关的两个图形一定要学生重点理解。
2、补充两个知识点:线段垂直平分线的性质和角平分线的性质3、和学生一起重点分析课本例题1和2,理解题目考察的细节和解题方法。
二、例题分析:1、以线段AB为弦的圆的圆心的轨迹是___________。
cm。
2、已知扇形的圆心角为120°,半径为2cm,则扇形的弧长是cm,扇形的面积是23、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例1:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有d r,点在圆(2)当d=7厘米时,有d r,点在圆(3)当d=5厘米时,有d r,点在圆4、下列四边形:①平行四边形,②菱形;③矩形;④正方形。
其中四个顶点一定能在同一个圆上的有()A、①②③④B、②③④C、②③D、③④5、(07上海中考)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块 B.第②块C.第③块 D.第④块6、三角形的外接圆的圆心是(),A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点7、直角三角形的两条直角边分别为5cm和12cm,则其外接圆半径长为。
(三)巩固练习1、圆是轴对称图形,其对称轴是任意一条的直线;圆是中心对称图形,对称中心为.2、三角形的外接圆的圆心——三角形的外心——三角形的交点;三角形的内切圆的圆心——三角形的内心——三角形的交点;3、三角形的外心一定在该三角形上的三角形()(A)锐角三角形(B)钝角三角形(C)直角三角形(D)等腰三角形,第7题 (第2题) 7、如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=_______8、如图,OE ⊥AB 、OF ⊥CD ,如果OE=OF ,那么_______(只需写一个正确的结论)B A CEDOF(第8题) (第11题)9、已知,如图所示,点O 是∠EPF 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B和C 、D 。
圆⼼⾓、弧、弦、弦⼼距之间的关系--知识讲解(基础)圆⼼⾓、弧、弦、弦⼼距之间的关系--知识讲解(基础)责编:常春芳【学习⽬标】1.了解圆⼼⾓的概念;2.掌握在同圆或等圆中,四组量:两个圆⼼⾓、两条弦、两条弧,两条弦的弦⼼距之间的关系及其它们在解题中的应⽤.3.理解反证法的意义,并能⽤反证法推理证明简单⼏何题.【要点梳理】要点⼀、圆⼼⾓、弧、弦、弦⼼距之间的关系1.圆⼼⾓定义如图所⽰,∠AOB的顶点在圆⼼,像这样顶点在圆⼼的⾓叫做圆⼼⾓.2.定理:在同圆或等圆中,相等的圆⼼⾓所对的弧相等,所对的弦相等,所对的弦的弦⼼距相等.3.推论:在同圆或等圆中,如果两个圆⼼⾓以及这两个⾓所对的弧、所对的弦、所对弦的弦⼼距中,有⼀组量相等,那么其余各组量都分别相等.要点诠释:(1)⼀个⾓要是圆⼼⾓,必须具备顶点在圆⼼这⼀特征;(2)注意定理中不能忽视“同圆或等圆”这⼀前提.4. 圆⼼⾓、弧、弦、弦⼼距之间的关系:在同圆或等圆中,弦,弧,圆⼼⾓,弦⼼距等⼏何量之间是相互关联的,即它们中间只要有⼀组量相等,(例如圆⼼⾓相等),那么其它各组量也分别相等(即相对应的弦、弦⼼距以及弦所对的弧也分别相等).如果它们中间有⼀组量不相等,那么其它各组量也分别不等.要点⼆、圆的确定(1)经过⼀个已知点能作⽆数个圆;(2)经过两个已知点A、B能作⽆数个圆,这些圆的圆⼼在线段AB的垂直平分线上;(3)不在同⼀直线上的三个点确定⼀个圆.(4)经过三⾓形各个顶点的圆叫做三⾓形的外接圆,外接圆的圆⼼叫做三⾓形的外⼼,这个三⾓形叫做圆的内接三⾓形.如图:⊙O是△ABC的外接圆,△ABC是⊙O的内接三⾓形,点O是△ABC的外⼼.外⼼的性质:外⼼是△ABC三条边的垂直平分线的交点,它到三⾓形的三个顶点的距离相等.要点诠释:(1)不在同⼀直线上的三个点确定⼀个圆.“确定”的含义是“存在性和唯⼀性”.(2)只有确定了圆⼼和圆的半径,这个圆的位置和⼤⼩才唯⼀确定.要点三、反证法反证法定义:在证明时,先假设命题的结论不成⽴,然后经过推理,得出⽭盾的结果,最后断⾔结论⼀定成⽴,这样的证明⽅法叫做反证法.要点诠释:反证法也称归谬法,是⼀种重要的数学证明⽅法,⽽且有些命题只能⽤它去证明.⼀般证明步骤如下:(1)假定命题的结论不成⽴;(2)进⾏推理,在推理中出现下列情况之⼀:与已知条件⽭盾;与公理或定理⽭盾;(3)由于上述⽭盾的出现,可以断⾔,原来的假定“结论不成⽴”是错误的;(4)肯定原来命题的结论是正确的.【典型例题】类型⼀、圆⼼⾓、弧、弦、弦⼼距之间的关系及应⽤1.(2015秋?吴江市校级期中)如图,点A、B、C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB.(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求OE的长.【答案与解析】(1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠OAC.∴∠BAC=∠OAC.即AC平分∠OAB.(2)解:∵OE⊥AB,∴AE=BE=AB=1.⼜∵∠AOE=30°,∠PEA=90°,∴∠OAE=60°.∴OE=2×=.【总结升华】本题考查了垂径定理,勾股定理等的应⽤,主要考查学⽣综合运⽤性质进⾏推理和计算的能⼒.举⼀反三:【变式】(2015秋?沛县期中)如图,已知点A、B、C、D在圆O上,AB=CD.求证:AC=BD.【答案】证明:∵AB=CD,∴,∴,即,∴AC=BD.类型⼆、圆的确定2.已知:不在同⼀直线上的三点A、B、C,求作:⊙O使它经过点A、B、C.【思路点拨】作圆的关键是找圆⼼得位置及半径的⼤⼩,经过两点的圆的圆⼼⼀定在连接这两点的线段的垂直平分线上,进⽽可以作出经过不在同⼀直线上的三点的圆.【解析】作法:1、连结AB,作线段AB的垂直平分线MN;2、连接AC,作线段AC的垂直平分线EF,交MN于点O;3、以O为圆⼼,OB为半径作圆.所以⊙O就是所求作的圆.【总结升华】通过这个例题的作图可以作出锐⾓三⾓形的外⼼(图⼀),直⾓三⾓形的外⼼(图⼆),钝⾓三⾓形的外⼼(图三).探究各⾃外⼼的位置.举⼀反三:【变式】(1)过____________________上的三个点确定⼀个圆.(2)交通⼯具上的轮⼦都是做圆的,这是运⽤了圆的性质中的_________.【答案】(1)不在同⼀直线;(2)圆的旋转不变性.3.如图,⊙O 的直径为10,弦AB=8,P 是弦AB 上的⼀个动点,那么OP 的长的取值范围是 .【思路点拨】求出符合条件的OP 的最⼤值与最⼩值.【答案】3≤OP ≤5.【解析】OP 最长边应是半径长,为5;根据垂线段最短,可得到当OP ⊥AB 时,OP 最短.∵直径为10,弦AB=8∴∠OPA=90°,OA=5,由圆的对称性得AP=4,由勾股定理的22543-=,∴OP 最短为3.∴OP 的长的取值范围是3≤OP ≤5.【总结升华】关键是知道OP 何时最长与最短.举⼀反三:【变式】已知⊙O的半径为13,弦AB=24,P是弦AB上的⼀个动点,则OP的取值范围是___ ____.【答案】 OP最⼤为半径,最⼩为O到AB的距离.所以5≤OP≤13.类型三、反证法4、(2015春?兴化市⽉考)⽤反证法求证:三⾓形的⼀个外⾓等于与它不相邻的两个内⾓的和.【思路点拨】⾸先假设三⾓形的⼀个外⾓不等于与它不相邻的两个内⾓的和,根据三⾓形的内⾓和等于180°,得到⽭盾,所以假设不成⽴,进⽽证明三⾓形的⼀个外⾓等于与它不相邻的两个内⾓的和.【答案与解析】已知:如图,∠1是△ABC的⼀个外⾓,求证:∠1=∠A+∠B,证明:假设∠1≠∠A+∠B,在△ABC中,∠A+∠B+∠2=180°,∴∠A+∠B=180°﹣∠2,∵∠1+∠2=180°,∴∠1=180°﹣∠2,∴∠1=∠A+∠B,与假设相⽭盾,∴假设不成⽴,∴原命题成⽴即:∠1=∠A+∠B.【总结升华】本题考查了反证法的运⽤,反证法的⼀般解题步骤是:①假设命题的结论不成⽴;②从这个假设出发,经过推理论证,得出⽭盾;③由⽭盾判定假设不正确,从⽽肯定原命题的结论正确.举⼀反三:【变式】⽤反证法证明:“⼀个三⾓形中⾄多有⼀个钝⾓”时,应假设()A . ⼀个三⾓形中⾄少有两个钝⾓B . ⼀个三⾓形中⾄多有⼀个钝⾓C . ⼀个三⾓形中⾄少有⼀个钝⾓ D. ⼀个三⾓形中没有钝⾓【答案】A.。
27.2圆心角、弧、弦、弦心距之间的关系圆上任意两点之间的部分叫做圆弧,简称弧;联结圆上任意两点的线段叫做弦,过圆心的弦就是直径,以圆心为顶点的角叫做圆心角。
圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫做半圆。
大于半圆的⌒,读弧叫做优弧,小于半圆的弧叫做劣弧。
如图27-8,以A、C为端点的劣弧记作AC⌒作“弧AC”;以A、C为端点的优弧记作ABC ,读作“弧ABC”。
如图27-9,⊙O的一个圆心角的两边与⊙O分别相交于点A、B,这个圆心角记作∠AOB,这时,相应得到弧AB和弦AB。
反过来看,对于弧AB或弦AB,相应可作∠AOB。
⌒⌒通常的说AB (或弦AB)是∠AOB所对的弧(或弦),∠AOB是AB (或弦AB)所对的圆心角。
圆心到弦的距离叫做弦心距。
在图27-9中,过圆心O作弦AB的垂线,垂足为C,则垂线段OC的长时弦AB的弦心距。
在平面上,一个圆绕着它的圆心旋转任何一个角度(大于0°且小于360°),都能与原来图形重合。
所以,圆是以圆心为旋转对称中心的旋转对称图形,旋转角可为大于0°且小于360°的任何一个角。
问题1⌒和A`B`⌒如图27-10,在⊙O中,当圆心角∠AOB=∠A'OB'时,它们分别所对的AB是否能重合?把扇形OAB绕圆心O旋转,使OA与OA'重合。
因为∠AOB=∠A'OB',所以OB ⌒和OB'重合;而⊙O的半径长都相等,因此点A与点A'重合,点B与点B'重合,这样AB⌒就一定重合。
与A`B`⌒与能够重合的两条弧称为等弧,或者说这两条弧相等,上述AB⌒是等弧,记作AB⌒ =A`B`⌒。
A`B`半径长相等的两个圆一定能够重合,我们把半径相等的两个圆称为等圆。
⌒⌒在上述问题中,AB 与A`B` 所对的弦分别是AB和A'B',通过旋转可知,AB与A'B'重合,两弦的垂线段OC、OC'也重合(为什么),得AB=A'B',OC=OC'.于是,可以得到圆心角、弦、弦心距之间关系的定理。
圆心角、弧、弦、弦心距之间的关系第一课时圆心角、弧、弦、弦心距之间的关系(一)教学目标:(1)理解圆的旋转不变性,把握圆心角、弧、弦、弦心距之间关系定理推论及应用;(2)培育同学试验、观看、发觉新问题,探究和解决问题的力量;(3)通过教学内容向同学渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发同学的求知欲.教学重点、难点:重点:圆心角、弧、弦、弦心距之间关系定理的推论.难点:从感性到理性的熟识,发觉、归纳力量的培育.教学活动设计教学内容设计(一)圆的对称性和旋转不变性同学动手画圆,对折、观看得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.引出圆心角和弦心距的概念:圆心角定义:顶点在圆心的角叫圆心角.弦心距定义:从圆心到弦的距离叫做弦心距.(二)圆心角、弧、弦、弦心距之间的关系应用电脑动画(试验)观看,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培育同学观看、比较、分析和归纳学问的力量,又可以充分调动同学的学习的乐观性.定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等. (三)剖析定理得出推论问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不肯定有所对的弧、弦、弦心距相等这样的结论.(同学分小组争论、沟通)举出反例:如图,∠aob=∠cod,但ab cd, .(强化对定理的理解,培育同学的思维批判性.)问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(同学分小组争论、沟通,老师与同学沟通对话),归纳出推论.推论:在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)(四)应用、巩固和反思例1、如图,点o是∠epf的平分线上一点,以o为圆心的圆和角的两边所在的直线分别交于点a、b和c、d,求证:ab=cd.解(略,教材87页)例题拓展:当p点在圆上或圆内是否还有ab=cd呢?(让同学自主思索,并使图形运动起来,让同学在运动中学习和讨论几何问题)练习:(教材88页练习)1、已知:如图,ab、cd是∠o的两条弦,oe、of为ab、cd的弦心距,依据本节定理及推论填空: .(1)假如ab=cd,那么______,______,______;(2)假如oe=og,那么______,______,______;(3)假如= ,那么______,______,______;(4)假如∠aob=∠cod,那么______,______,______.(目的:巩固基础学问)共3页,当前第1页123。