探索三角形相似的条件
- 格式:doc
- 大小:77.50 KB
- 文档页数:4
全国初中数学优秀课一等奖教师说课稿:探索三角形相似的条件–说课稿一. 教材分析《探索三角形相似的条件》是人教版八年级上册数学第二章《相似三角形》的第一节内容。
本节课的主要任务是让学生掌握三角形相似的判定方法,并能够运用这些方法解决实际问题。
教材从生活实例出发,引导学生探究三角形相似的条件,培养学生的观察能力、操作能力和推理能力。
二. 学情分析八年级的学生已经掌握了相似图形的概念,对图形的变换有了一定的了解。
但在实际操作中,学生对于如何判断两个三角形相似还存在一定的困难。
因此,在教学过程中,教师需要注重引导学生从生活实际中发现问题、提出问题,并通过合作交流、探究活动等方式,培养学生解决实际问题的能力。
三. 说教学目标1.知识与技能目标:让学生掌握三角形相似的判定方法,能够判断两个三角形是否相似。
2.过程与方法目标:通过观察、操作、猜想、推理等过程,培养学生的观察能力、操作能力和推理能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队协作精神,使学生在解决实际问题中体会数学的价值。
四. 说教学重难点1.教学重点:三角形相似的判定方法。
2.教学难点:如何判断两个三角形相似,以及如何在实际问题中运用相似三角形的性质。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、探究活动法等。
2.教学手段:多媒体课件、实物模型、几何画板等。
六. 说教学过程1.导入新课:通过生活实例引入三角形相似的概念,激发学生的兴趣。
2.探究活动:让学生通过观察、操作、猜想、推理等过程,发现三角形相似的判定方法。
3.讲解与演示:教师对三角形相似的判定方法进行讲解,并用几何画板进行演示。
4.练习与交流:学生进行课堂练习,教师引导学生互相交流解题方法。
5.总结与拓展:教师引导学生总结本节课所学内容,并给出拓展问题。
七. 说板书设计板书设计如下:相似三角形的判定1.定义:形状相同的三角形称为相似三角形。
2.判定方法:a.AA相似定理:如果两个三角形的两个角分别相等,那么这两个三角形相似。
4.4探索相似三角形相似的条件【学习目标】1. 相似三角形的概念.2.相似三角形的三个判定定理.3. 进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形的概念相似三角形:三个角分别相等,三边成比例的两个三角形叫做相似三角形.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的三个判定定理定理:1.两角分别相等的两个三角形相似.2.两边成比例且夹角相等的两个三角形相似.3.三边成比例的两个三角形相似.考点一、相似三角形的概念1. 下列能够相似的一组三角形为( ).A.所有的直角三角形B.所有的等腰三角形C.所有的等腰直角三角形D.所有的一边和这边上的高相等的三角形【答案】C【解析】A中只有一组直角相等,其他的角是否对应相等不可知;B中什么条件都不满足;D中只有一条对应边的比相等;C中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等.举一反三:【变式】给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有(填序号).【答案】①②④⑤.考点二、两角分别相等的两个三角形相似.【思路点拨】(1)利用等边三角形的性质以及相似三角形的判定方法两角对应相等的两三角形相似得出即可;(2)利用对顶角的性质以及相似三角形的性质进而判断得出即可.【答案与解析】(1)证明:∵△ABC,△ADE为等边三角形,∴∠B=∠C=∠3=60°,∴∠1+∠2=∠DFC+∠2,∴∠1=∠DFC,∴△ABD∽△DCF;解:∵∠C=∠E,∠AFE=∠DFC,∴△AEF∽△DCF,∴△ABD∽△AEF,故除了△ABD∽△DCF外,图中相似三角形还有:△AEF∽△DCF,△ABD∽△AEF.举一反三【变式练习1】如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E求证:△ABD∽△CBE.【变式练习2】如图所示,在△ABC 中,AB=8cm ,BC=16cm ,点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动,如果点P 、Q 同时出发,经过多长时间后,△PBQ 与△ABC 相似?试说明理由.考点三;两边成比例且夹角相等的两个三角形相似【例题3】在Rt △ABC 中,∠C =90∘,BC =8cm ,AB =10cm ,点P 从B 点出发,沿BC 方向以2cm /s 的速度移动,点Q 从C 点出发,沿CA 方向以1cm /s 的速度移动,若点P 、Q 从B. C 两点同时出发,设运动时间为ts ,当t 为何值时,△CPQ 与△CBA 相似?【解析】解答:在Rt △ABC 中,∵∠C =90∘,BC =8cm ,AB =10cm , ∴)cm (6810BC AB AC 2222=-=-=设经过ts ,△CPQ 与△CBA 相似,则有BP =2tcm ,PC =(8−2t )cm ,CQ =tcm ,分两种情况:1.当△PQC ∽△ABC 时,有AC PC BC QC =,即6288t t -=,解得t =1132; 2.当△QPC ∽△ABC 时,有BC PC AC QC =,即8286tt -=解得t =512.综上可知,经过512s 或1132s ,△CPQ 与△CBA 相似。
《探索三角形相似的条件》作业设计方案(第一课时)一、作业目标本作业设计旨在帮助学生掌握三角形相似的概念和基本条件,加深对相似三角形相关知识的理解,并能够运用所学知识解决实际问题。
通过本课时的学习,学生应能够理解并掌握三角形相似的判定定理,并能够正确运用这些定理进行解题。
二、作业内容作业内容主要围绕《探索三角形相似的条件》这一主题展开,具体包括以下几个方面:1. 理解相似三角形的定义和基本性质,了解三角形相似的概念及其在实际生活中的应用。
2. 掌握并能够熟练运用三角形的全等条件和相似条件进行问题解决。
3. 探究不同条件下三角形相似的判定方法,如角角边法、角边边法等。
4. 结合具体问题,运用所学知识分析并解决实际问题,如利用相似三角形求解距离、面积等问题。
三、作业要求1. 学生需独立完成作业,不得抄袭他人答案或利用网络等外部资源。
2. 学生在完成作业过程中,应注重理解和掌握相关概念和定理,并能够灵活运用。
3. 对于遇到的疑难问题,学生应主动思考、尝试解决,并记录下自己的解题思路和过程。
4. 学生在完成作业后,应进行自我检查和反思,确保答案的准确性和完整性。
5. 作业应按时提交,并按照教师要求进行格式排版和书写。
四、作业评价教师将根据以下标准对学生的作业进行评价:1. 学生对相似三角形概念的理解程度及对相关定理的掌握情况。
2. 学生运用所学知识解决问题的能力及解题思路的准确性。
3. 学生的解题过程是否规范、完整,是否符合数学学科的要求。
4. 学生的作业是否按时提交,格式排版和书写是否规范。
五、作业反馈教师将根据学生的作业情况进行反馈和指导:1. 对于掌握较好的学生,教师应给予肯定和鼓励,同时提出更高的要求和挑战。
2. 对于存在问题的学生,教师应指出其错误之处并给予指导,帮助学生理解并掌握相关知识。
3. 教师将根据学生的整体表现,对全班同学进行总结性评价和建议,以便学生更好地进行后续学习。
六、结语通过本课时的学习与作业实践,期望同学们能够进一步巩固所学知识,提高解决问题的能力,为后续的学习打下坚实的基础。
2021-2022学年北师大版数学九年级上册压轴题专题精选汇编专题07 探索三角形相似的条件一.选择题1.(2021春•沂源县期末)如图,△ABC中,CE⊥AB,垂足为E,BD⊥AC,垂足为点D,CE与BD交于点F,则图中相似三角形有几对()A.6对B.5对C.4对D.3对【思路引导】根据相似三角形的判定一一证明即可.【完整解答】解:∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,∠BEF=∠CDF=90°,∵∠A=∠A,∠EFB=∠DFC,∴△AEC∽△ADB,△BEF∽△CDF,∵∠EBF=∠ABD,∠BEF=∠ADB=90°,∴△BEF∽△BDA∽△CEA∽△CDF,∴共有6对相似三角形,故选:A.2.(2021春•芝罘区期末)如图,小正方形的边长均为1,则A、B、C、D四个选项中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【思路引导】应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【完整解答】解:已知给出的三角形的各边分别为、2、、只有选项A的各边为1、、与它的各边对应成比例.故选:A.3.(2021春•周村区期末)平面直角坐标系中,直线y=﹣x+2和x轴,y轴分别交于A,B两点,在第二象限内有一点P,使△P AO和△AOB相似,则符合要求的点P的个数为()A.2B.3C.4D.5【思路引导】根据相似三角形的相似条件,画出图形即可解决问题.【完整解答】解:如图,①分别过点O、点A作AB、OB的平行线交于点P1,则△OAP1与△AOB相似(全等),②作AP2⊥OP1,垂足为P2则△AOP2与△AOB相似.③作∠AOP3=∠ABO交AP1于P3,则△AOP3与△AOB相似.④作AP4⊥OP3垂足为P4,则△AOP4与△AOB相似.故选:C.4.(2021春•雁塔区校级期末)如图,D是△ABC边AB上一点,添加一个条件后,仍不能使△ACD∽△ABC的是()A.∠ACD=∠B B.∠ADC=∠ACB C.AC2=AD•AB D.【思路引导】直接利用相似三角形的判定方法分别分析得出答案.【完整解答】解:A、当∠ACD=∠B时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;B、当∠ADC=∠ACB时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;C、当AC2=AD•AB时,即=,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;D、当=时,无法得出△ACD∽△ABC,故此选项符合题意.故选:D.5.(2021•龙湾区模拟)如图,△ABC中,P为边AB上一点,下列选项中的条件,不能说明△ACP与△ACB相似的是()A.∠ACP=∠B B.∠APC=∠ACBC.AC2=AP×AB D.AB×CP=AP×AC【思路引导】本题主要应用两三角形相似的判定定理,做题即可.【完整解答】解:A、当∠ACP=∠B,∠A=∠A时,△APC∽△ACB,故本选项不符合题意;B、当∠APC=∠ACB,∠A=∠A时,△APC∽△ACB,故本选项不符合题意;C、当AC2=AP•AB,即AC:AB=AP:AC时,结合∠A=∠A可以判定△APC∽△ACB,故本选项不符合题意;D、当AB×CP=AP×AC时,不能判断△APC和△ACB相似.故选:D.6.(2020•黄埔区模拟)如图,在四边形ABCD中,∠BAC=90°,AB=6,AC=8,E是BC 的中点,AD∥BC,AE∥DC,EF⊥CD于点F.下列结论错误的是()A.四边形AECD的周长是20B.△ABC∽△FECC.∠B+∠ACD=90°D.EF的长为【思路引导】根据平行四边形和菱形的判定即可证明A选项;根据菱形的性质和三角形的面积公式即可证明C选项和D选项;根据△ABC与△FEC的三边长即可证明B选项.【完整解答】解:∵∠BAC=90°,AB=6,AC=8,∴BC==10,∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC=5,∴四边形AECD是菱形,∴菱形AECD的周长是20,故A选项正确,不符合题意;∵四边形AECD是菱形,∴∠ACB=∠ACD,∵∠B+∠ACB=90°,∴∠B+∠ACD=90°,故C选项正确,不符合题意;如图,过A作AH⊥BC于点H,∵S△ABC=BC•AH=AB•AC,∴AH==,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.故D选项正确,不符合题意;在Rt△EFC中,EF=,EC=5,∴FC==,在Rt△CAB中,AB=6,AC=8,BC=10,∵=,=,=,∴△ABC与△FEC不相似,故B选项错误,符合题意.故选:B.7.(2020秋•叶县期中)如图,在△ABC中,点D、E分别在边AB、AC上,则在下列四个条件中:①∠AED=∠B;②DE∥BC;③;④AD•BC=DE•AC,能满足△ADE∽△ACB的条件有()A.1个B.2个C.3个D.4个【思路引导】根据相似三角形的判定定理对各条件进行逐一判断即可.【完整解答】解:①∠B=∠AED,∠A=∠A,则可判断△ADE∽△ACB,故①符合题意;②DE∥BC,则△ADE∽△ABC,故②不符合题意,③,且夹角∠A=∠A,能确定△ADE∽△ACB,故③符合题意;④由AD•BC=DE•AC可得=,此时不确定∠ADE=∠ACB,故不能确定△ADE∽△ACB,故④不符合题意,故选:B.8.(2020•浙江自主招生)已知点A,C在直线BD的同侧,且AB⊥BD于B,CD⊥BD于D,AB=6,CD=4,BD=14,现有点P在直线BD上,并且满足△ABP与△CDP相似,则这样的点P的个数为()A.3B.5C.6D.7【思路引导】设DP=x,根据已知可以分三种情况:①当点P在线段BD上时;②当点P在线段BD的右侧时;③当点P在线段BD的左侧时;分别得出比例式得出方程,解方程求出x的值,即可得出结果.【完整解答】解:∵AB⊥DB,CD⊥DB,∴∠D=∠B=90°,设DP=x,分三种情况:①当点P在线段BD上时,当PD:AB=CD:PB时,△PDC∽△ABP,∴=,解得:DP=2或12,当PD:PB=CD:AB时,△PCD∽△P AB,∴,解得:DP=5.6;②当点P在线段BD的右侧,如图1所示:当时,△PCD∽△P AB,即,解得:x=28;当时,△PCD∽△APB,即,解得:x=﹣7±(负值舍去),∴PD=﹣7+;③当点P在线段BD的左侧时,如图2所示:当时,△PCD∽△APB,即,解得:x=7±(负值舍去),∴PD=7+;综上所述:当DP=5.6或2或12或28或﹣7+或7+时,△ABP与△CDP相似,即这样的点P的个数有6个;故选:C.9.(2019春•宝安区校级月考)如图,正方形ABCD中,AB=2,点N为AD为边上一点,连接BN,作AP⊥BN于点P,点M为AB边上一点,且∠PMA=∠PCB,连接CM.下列结论正确的个数有()(1)△P AM∽△PBC(2)PM⊥PC;(3)∠MPB=∠MCB;(4)若点N为AD中点,则S△PCN=6(5)AN=AMA.5个B.4个C.3个D.2个【思路引导】根据互余角性质得∠P AM=∠PBC,进而得△P AM∽△PBC,可以判断(1);由相似三角形得∠APM=∠BPC,进而得∠CPM=∠APB,从而判断(2);由B、C、P、M四点共圆得∠MPB=∠MCB,进而判断(3);过P点作EF⊥BC,分别志AD、BC相交于点EF,由相似三角形得PF,进而由△BCN与△BCP的面积之差求得△PCN的面积便可判断(4);由△APB∽△NAB得,再结合△P AM∽△PBC便可判断(5).【完整解答】解:(1)∵AP⊥BN,∴∠P AM+∠PBA=90°,∵∠PBA+∠PBC=90°,∴∠P AM=∠PBC,∵∠PMA=∠PCB,∴△P AM∽△PBC,故(1)正确;(2)∵△P AM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故(2)正确;(3)∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,∴∠MPB=∠MCB,故(3)正确;(4)过点P作EF⊥BC,分别交AD、BC于E、F点,∵N为AD的中点,AB=2∴AN=DN=,BC=EF=2,∴BN=,易证△ANP∽△NBA,得,即,∴PN=1,∴PB=5﹣1=4,∵AD∥BC,∴△PEN∽△PFB,∴,∴PF=,∴,故(4)错误;(5)易证△P AN∽△P AB,∴,∵△P AM∽△PBC,∴,∴,∵AB=BC,∴AM=AN,故(5)正确;故选:B.二.填空题10.(2021春•濮阳期末)在△ABC中,AB=6cm,AC=9cm,动点D从点B开始沿BA边运动,速度为1cm/s;动点E从点A开始沿AC边运动,速度为2cm/s.如果D,E两动点同时运动,那么当它们运动或s时,由D,A,E三点连成的三角形与△ABC 相似.【思路引导】分两种情形①当=时,②当=时,分别构建方程求解即可.【完整解答】解:根据题意得:AE=2t,BD=t,∴AD=6﹣t,∵∠A=∠A,∴分两种情况:①当=时,即=,解得:t=;②当=时,即=,解得:t=;综上所述:当t=或时,△ADE与△ABC相似.11.(2021•葫芦岛二模)如图,在△ABC中,AB=15,AC=18,D为AB上一点,且AD=AB,在AC边上取一点E,便以A,D,E为顶点的三角形与△ABC相似,则AE等于12或.【思路引导】根据相似三角形对应边成比例得出=或=,再代值计算即可.【完整解答】解:∵△ABC∽△ADE或△ABC∽△AED,∴=或=,∵AD=AB,AB=15,∴AD=10,∵AC=18,∴=或=,解得:AE=12或.故答案为:12或.12.(2020秋•北海期末)如图,在△ABC中,AB=8,BC=16,点P是AB边的中点,点Q 是BC边上一个动点,当BQ=2或8 时,△BPQ与△BAC相似.【思路引导】直接利用△BPQ∽△BAC或△BPQ∽△BCA,分别得出答案.【完整解答】解:∵AB=8,BC=16,点P是AB边的中点,∴BP=4.当△BPQ∽△BAC时,则=,故=,解得:BQ=8;当△BPQ∽△BCA时,则=,故=,解得:BQ=2,综上所述:当BQ=2或8时,△BPQ与△BAC相似.故答案为:2或8.13.(2021•抚顺县模拟)如图,在正方形网格中有3个斜三角形:①△ABC;②△CDB;③△DEB;其中能与△ABC相似的是③△DEB.(△ABC除外)【思路引导】分别求出三个三角形的三边的比,符合这个结果就是与△ABC相似的.【完整解答】解:∵△ABC的三边之比是AB:AC:BC=1::,②△CDB的三边之比是CD:BC:BD=1::;③△DEB中DE:BD:BE=2:2:=1::.∴③(△DEB)与△ABC相似,故答案为:③△DEB.14.(2021•河北模拟)如图,在Rt△ABC的直角边AC上有一任意点P(不与点A、C重合),过点P作一条直线,将△ABC分成一个三角形和一个四边形,则所得到的三角形与原三角形相似的直线最多有 4 条.【思路引导】过点P作直线与另一边相交,使所得的三角形与原三角形已经有一个公共角,只要再作一个等于△ABC的另一个角即可.【完整解答】解:如图所示,①过点P作AB的垂线段PD,则△ADP∽△ACB;②过点P作BC的平行线PE,交AB于E,则△APE∽△ACB;③过点P作AB的平行线PF,交BC于F,则△PCF∽△ACB;④作∠PGC=∠A,则△GCP∽△ACB.故答案为:4.15.(2020秋•松江区月考)如图,△ABC中,∠C=90°,∠B=30°,AC=2,点P是边AB上一点,将△ABC沿经过点P的直线折叠,使得点A落在边BC上的A′处,若△PBA′恰好和△ABC相似,则此时AP的长为或2﹣2 .【思路引导】分两种情形:①如图1中,当∠P A′B=∠C=90°时,△BP A′∽△BAC,②如图2中,当∠PBC=90°时,△BP A′∽△BCA,分别利用相似三角形的性质构建方程求解即可.【完整解答】解:①如图1中,当∠P A′B=∠C=90°时,设P A=P A′=x.在Rt△ABC中,∵∠C=90°,AC=2,∠B=30°,∴AB=2AC=4,BC=AC=2,∵∠B=∠B,∠BA′P=∠C=90°,∴△BP A′∽△BAC,∴=,∴=,∴x=.②如图2中,当∠BP A′=90°时,△BP A′∽△BCA,∴=,∴=,∴x=2﹣2,综上所述,满足条件的AP的值为或2﹣2.16.(2020秋•江阴市月考)如图,在△ABC纸板中,AC=8,BC=4,AB=10,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是6≤AP<8 .【思路引导】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【完整解答】解:如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<8;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤8;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即42=CP×8,∴CP=2,AP=6,∴此时,6≤AP<8;综上所述,要有4种不同的剪法,使得过点P沿直线剪下一个与△ABC相似,则AP长的取值范围是6≤AP<8.故答案为:6≤AP<8.17.(2019•东平县二模)如图,△ABC是边长为6cm等边三角形,动点P、Q同时从A、B 出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点停止运动,在运动过程中作QR∥BA交AC于点R,连接PR,设运动的时间为t(s),当t=1.2 s时△APR∽△PRQ.【思路引导】先证△CRQ为等边三角形,并用含t的式子表示图中的相关线段,由QR∥BA推得∠QRP=∠APR,从而△PRQ中再有一个角等于∠A,即等于60°,即可得△APR ∽△PRQ.根据相似三角形的性质列比例式求解即可.【完整解答】解:∵△ABC是边长为6cm等边三角形,∴∠A=∠B=∠C=60°∵QR∥BA∴∠CRQ=∠A=60°,∠CQR=∠B=60°∴△CRQ为等边三角形∵点P运动的速度是1cm/s,点Q运动的速度是2cm/s∴AP=t,PB=6﹣t,BQ=2t,CQ=CR=RQ=6﹣2t,AR=2t∵QR∥BA∴∠QRP=∠APR若要△APR∽△PQR,则需满足∠RPQ=60°∴∠BPQ+∠APR=120°,∠ARP+∠APR=120°∴∠BPQ=∠ARP又∵∠A=∠B∴△APR∽△BQP∴=∴=解得t=1.2故答案为1.2.18.(2011春•成华区期末)如图,正方形ABCD的边长为4,AE=EB,MN=2,线段MN 的两端在CB、CD上滑动,当CM=或时,△ADE与△CMN相似.【思路引导】根据AE=EB,△AED中AD=2AE,所以在△MNC中,分CM与AE和AD 是对应边两种情况利用相似三角形对应边成比例求出CM与CN的关系,然后利用勾股定理列式计算即可.【完整解答】解:∵AE=EB,∴AD=2AE,又∵△AED与以M、N、C为顶点的三角形相似,∴分两种情况:①CM与AD是对应边时,CM=2CN,∴CM2+CN2=MN2=4,即CM2+CM2=4,解得:CM=;②CM与AE是对应边时,CM=CN,∴CM2+CN2=MN2=4,即CM2+4CM2=4,解得:CM=.综上所述:当CM为或时,△AED与△CMN相似.故答案是:或.19.(2003•武汉)△ABC中,以AB为直径的▱O交BC边于点D,连接AD,要使△ABD与△ACD相似,则△ABC的边AB与AC之间,应满足的条件为AB⊥AC.(填入一个即可)【思路引导】本题主要应用两三角形相似的判定定理,做题即可.【完整解答】解:∵AB为▱O的直径∴∠ADC=∠BDA=90°∴当∠CAD=∠B时,△ABD∽△CAD∵∠CAD+∠C=90°∴∠B+∠C=90°∴AB⊥AC答案不唯一,如AB⊥AC.三.解答题20.(2021春•朝阳区校级期末)如图所示,在四边形ABCD中,CA是∠BCD的角平分线,且AC2=CD•BC,求证:△ABC∽△DAC.【思路引导】根据两边成比例夹角相等两三角形相似证明即可.【完整解答】证明:∵AC平分∠BCD,∴∠ACB=∠ACD,∵AC2=CD•BC,∴=,∴△ABC∽△DAC.21.(2021春•龙口市期末)如图,在Rt△ABC中,∠C=90°,AC=10cm,BC=8cm.点M从点C出发,以2cm/s的速度沿CA向点A匀速运动,点N从点B出发,以1cm/s的速度沿BC向点C匀速运动,当一个点到达终点时,另一点也随即停止运动.(1)经过几秒后,△MCN的面积等于△ABC面积的?(2)经过几秒,△MCN与△ABC相似?【思路引导】(1)设经过x秒,△MCN的面积等于△ABC面积的,根据三角形的面积和已知列出方程,求出方程的解即可;(2)根据相似三角形的判定得出两种情况,再求出t即可.【完整解答】解:(1)设经过x秒,△MCN的面积等于△ABC面积的.×2x(8﹣x)=×8×10×.解得x1=x2=4.答:经过4秒后,△MCN的面积等于△ABC面积的;(2)设经过t秒,△MCN与△ABC相似.∵∠C=∠C,∴可分为两种情况:①=,即=,解得t=;②=,即=.解得t=.答:经过或秒,△MCN与△ABC相似.22.(2021•越秀区校级二模)如图,在△P AB中,点C、D在AB上,PC=PD=CD,∠A=∠BPD,求证:△APC∽△PBD.【思路引导】根据等腰三角形的性质得出∠PCD=∠PDC,根据三角形的外角性质得出∠A+∠APC=∠PCD,∠B+∠BPD=∠PDC,求出∠B=∠APC,再根据相似三角形的判定推出即可.【完整解答】证明:∵PC=PD,∴∠PCD=∠PDC,∵∠A+∠APC=∠PCD,∠B+∠BPD=∠PDC,又∵∠A=∠BPD,∴∠B=∠APC,∴△APC∽△PBD.23.(2020秋•崇川区期末)如图,已知BD⊥AB于点B,AC⊥AB于点A,且BD=4,AC=3,AB=a,在线段AB上是否存在一点E,使△BDE∽△ACE?【思路引导】当∠ACE=∠BDE时,△ACE∽△BDE,利用相似三角形的性质解答.【完整解答】解:存在,理由如下:∵BD⊥AB于点B,AC⊥AB,∴∠A=∠B=90°,当∠ACE=∠BDE时,△ACE∽△BDE,∴==,∴AE=BE,∴AE=AB=a.∴点E在线段AB上,距离点A的距离是a.24.(2020秋•宁德期末)如图,在矩形ABCD中,点E是BC边上的点,AC⊥DE,垂足为F.求证:△ABC∽△ECD.【思路引导】利用“两角法”证得结论.【完整解答】证明:∵四边形ABCD是矩形,∴∠B=∠BCD=90°.∴∠ACB+∠ACD=90°.又∵AC⊥DE,∴∠CDE+∠ACD=90°.∴∠ACB=∠CDE.∴△ABC∽△ECD.25.(2021•拱墅区二模)如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.【思路引导】(1)首先利用中位线定理得到DE∥AB以及DE的长,再证明∠DEC=∠F 即可;(2)根据等腰三角形的性质得到∠A=∠B,进而求出∠CDE=∠F并结合∠CED=∠DEF即可证明△CDE∽△DFE.【完整解答】解:(1)∵D、E分别是AC、BC的中点,∴DE∥AB,DE=AB=5,∵DE∥AB,∴∠DEC=∠B,而∠F=∠B,∴∠DEC=∠F,∴DF=DE=5;(2)∵AC=BC,∴∠A=∠B,∵∠CDE=∠A,∠CED=∠B,∴∠CDE=∠B,∵∠B=∠F,∴∠CDE=∠F,∵∠CED=∠DEF,∴△CDE∽△DFE.26.(2020秋•肇源县期末)已知:如图,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?【思路引导】先利用勾股定理计算出AB=5,由于∠P AQ=∠BAC,根据两组对应边的比相等且夹角对应相等的两个三角形相似,当=时,△APQ∽△ABC,即=;当=时,△APQ∽△ACB,即=,然后分别解方程求出t即可.【完整解答】解:∵∠C=90°,AC=4cm,BC=3cm,∴AB==5,则BP=t,AQ=2t,AP=5﹣t,∵∠P AQ=∠BAC,当=时,△APQ∽△ABC,即=,解得t=;当=时,△APQ∽△ACB,即=,解得t=;答:t为s或s时,以A、P、Q为顶点的三角形与△ABC相似.27.(2019秋•临安区期末)如图,点B、D、E在一条直线上,BE交AC于点F,=,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BCF.【思路引导】(1)根据相似三角形的判定定理证明;(2)根据相似三角形的性质定理得到∠C=∠E,结合图形,证明即可.【完整解答】(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中=,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E、在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BCF.28.(2020春•肇源县期末)如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,点P从点A开始,沿AB边以1cm/s的速度向点B运动:点Q从点B开始,沿BC边以2cm/s的速度向点C运动,当点P运动到点B时,运动停止,如果P、Q分别从A、B两点同时出发.(1)几秒后△PBQ的面积等于8cm2?(2)几秒后以P、B、Q为顶点的三角形与△ABC相似?【思路引导】(1)设t秒后△PBQ的面积等于8cm,此时,AP=t,BP=6﹣t,BQ=2t,再由三角形的面积公式即可得出结论;(2)设x秒后以P、B、Q为顶点的三角形与△ABC相似,此时,AP=x,BP=6﹣x,BQ=2x,再分△BPQ∽△BAC与△BPQ∽△BCA两种情况进行讨论即可.【完整解答】解:(1)设t秒后△PBQ的面积等于8cm,此时,AP=t,BP=6﹣t,BQ=2t,∵S△PBQ=BP•BQ,即(6﹣t)×2t=8,即t2﹣6t+8=0,解得t1=2,t2=4.∴2秒或4秒后,△PBQ的面积等于8cm2;(2)设x秒后以P、B、Q为顶点的三角形与△ABC相似,此时,AP=x,BP=6﹣x,BQ=2x,①若△BPQ∽△BAC,则=,即=,解得x=3;②若△BPQ∽△BCA,则=,即=,解得x=1.2.综上所述,1.2秒或3秒后,以P、B、Q为顶点的三角形与△ABC相似.。
探索三角形相似的条件一周强化一、一周知识概述相似三角形的判定方法(1)定义法:各角对应相等、各边对应成比例的两个三角形相似.(2)判定方法1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.(3)判定方法2:平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.(4)判定方法3:如果一个三角形的两边与另一个三角形的两边对应成比例,并且相应的夹角相等,那么这两个三角形相似.(5)判定方法4:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.二、重难点知识归纳1、相似的传递性:若△ABC∽△A′B′C′,且△A′B′C′∽△A″B″C″,则△ABC∽△A″B″C″.2、“平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”的基本图形有三种情况,如图,其符号语言:因为DE∥BC,所以△ABC∽△ADE;这个判定方法有着广泛的应用,要做到“见平行想相似,见平行想比例”.3、相似三角形判定方法的选择(1)已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定方法1或判定方法3;(2)已有两边对应成比例时,可考虑利用判定方法3或判定方法4.但是,在选择利用判定方法3时,一对对应角相等必须是成比例两边的夹角对应相等.4、有关三角形的相似的基本图形.(1)平行线型(如图)(2)双直角三角形中的相似三角形(如图)△ABC∽△DBA,△ABC∽△DAC,△ABD∽△CADAB2=BD·BC,AC2=CD·CB,AD2=BD·DC三、典型例题讲解例1、如图,在△ABC中,点D在AB上,请再添加一个适当条件,使△ADC∽△ACB,那么要添加的条件是__________(只需填写满足要求的一个条件即可).解析:由于要判定的两个相似三角形隐含着一个公共角∠A,因此根据判定方法1或判定方法3,只要再找一个角对应相等,或找夹∠A的两边对应成比例,即可填∠ACD=∠B,或∠ADC=∠ACB,或AC2=AD·AB.例2、如图,在□ABCD 中,E是AB延长线上一点,连结DE,交AC于点G,交BC 于点F,那么图中相似的三角形(不含全等三角形)共有()A.6对B.5对C.4对D.3对解:由AE∥DC,可得△AEG∽△CDG,△DFC∽△EFB;由BC∥AD,可得△BFE∽△ADE,△FCG∽△DAG,△DCF∽△EAD.故选B.点评:本题主要是考查相似三角形识别的掌握情况.可运用平行线去直接找相似三角形,也可利用相似三角形的判定方法来找相似三角形,但要注意不要漏找.例3、(1)如图,O是△ABC内任一点,D、E、F分别是OA、OB、OC的中点,求证:△DEF∽△ABC;(2)如图,正方形ABCD中,E是BC的中点,DF=3CF,写出图中所有相似三角形,并证明.分析:(1)根据题设,观察图形易见,DE、EF、FD分别是△AOB、△BOC、△COA的中位线,利用三角形的中位线性质可证△DEF与△ABC的三边对应成比例;(2)由于正方形的四条边相等,且BE=CE,DF=3CF,设出正方形边长后,图中所有线段都能求出,故可从三边是否成比例判定哪些三角形相似.点评:①第(1)题,若点O在△ABC外,其他条件不变,结论仍成立;②第(2)题也可用判定方法3,先证△ABE∽△ECF,得出∠AEF=90°后,再证其中任意三角形与△AEF相似,显然,以上证法较简便.例4、已知:如图,在△ABC中,点D、E分别在边AB、AC上,连接DE并延长交BC的延长线于F,连接DC,BE.若∠BDE+∠BCE=180°.(1)写出图中三对相似三角形(注意:不得添加其他字母和线);(2)请在你所找出的相似三角形中选取一对,说明它们相似的理由.分析:先由角的关系入手,由∠BDE+∠BCE=180°和图形中∠BDE+∠ADE=∠BCE+∠ECF=180°,可得∠BDE=∠ECF,∠ADE=∠BCE,易得△ADE∽△ACB(∠A为公共角)、△ECF∽△BDF(∠F为公共角),其次,由△ECF∽△BDF得,可得△FDC∽△FBE(∠F为公共角).解:(1)△ADE∽△ACB,△ECF∽△BDF,△FDC∽△FBE.(2)①△ADE∽△ACB.证明如下:因为∠BDE+∠BCE=180°,又因为∠BDE+∠ADE=180°,所以∠ADE=∠BCE.因为∠A=∠A,所以△ADE∽△ACB.②△ECF∽△BDF.证明如下:因为∠BDE+∠BCE=180°,又因为∠BCE+∠ECF=180°,所以∠BDE=∠ECF.因为∠F=∠F,所以△ECF∽△BDF.③△FDC∽△FBE.证明如下:因为∠BDE+∠BCE=180°,又因为∠BCE+∠ECF=180°,所以∠BDE=∠ECF.因为∠F=∠F,所以△ECF∽△BDF.所以.因为∠F=∠F,所以△FDC∽△FBE.点评:这是一道结论开放型试题,这种题型要求根据题意去探求,往往结论不唯一,具有开放性,解题时,要充分利用已知条件进行大胆而合理地猜想,发现结论,这就要求平时要注意发散性思维和所学基本知识的应用能力的培养.例5、如图(1)在△ABC中,AB=AC,AD是中线,P是AD上一点,过点C作CF∥AB,延长BP交AC于点E,交CF与点F,试证明:BP2=PE·PF.分析:证明型的一般方法是把等积式写成比例式,然后再观察所在的两个三角形是否相似.如本题BP、PE、PF在一条直线上,就要看能否通过等量代换,自然要连结PC ,用BP的等量PC代入,再找出两个三角形相似,即可得解.证明:连结PC.因为AB=AC,AD是中线,所以AD⊥BC (三线合一性质).所以AD是BC的垂直平分线.所以BP=PC.又∠PBC=∠PCB,∠ABC=∠ACB,所以∠ABP=∠ACP.而AB∥CF,所以∠ABC=∠F.所以∠F=∠ACP.又∠EPC=∠CPF,所以△EPC∽△CPF,所以.即PC2=PE·PF.故BP2=PE·PF.点评:①证形如时,还要注意两个基本图形如图⑵、⑶所示.如图⑵.因为△CDB∽△ADC∽△ACB,易得BC2=BD·AB ,AC2=AD·AB,CD2=AD·DB.如图⑶,当∠A=∠1时,∠C是公共角.所以△ABC∽△BDC,易得BC2=DC·AC.②在图⑵中,△ACB是直角三角形,CD是斜边上的高,还要注意面积的应用,易得AC·CB=AB·CD的结论.例6、如图,在正方形ABCD中,M、N分别是AB、BC上的点,BM=BN,BP⊥MC 于点P.求证:(1)△PBN∽△PCD;(2)PN⊥PD.分析:要证PN⊥PD,即证∠DPN=90°,由已知∠BPC=90°,而∠BPC与∠DPN有公共部分∠CPN,因此只要证明∠4=∠5即可.这就必须先证明出结论(1).在△PBN与△PCD 中,易证∠1=∠3,以下只要证明夹∠1、∠3的两边对应成比例.证明:(1)在正方形ABCD中,AB∥CD,∠ABC=90°.因为BP⊥MC,所以△PBM∽△PCB.点评:要注意观察出图中存在的“母子相似三角形”基本图形,从而充分利用它得出∠1=∠2及△PBM∽△PCB等重要结论.。
教学过程教学内容个案调整教师主导活动学生主体活动4. 平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC∥,则5.平行的判定定理:如上图,如果有BCDEACAEABAD==,那么三.交流展示:1.看图说比例式2.如图:DE∥BC,AB=15,AC=7,AD=2,求EC。
四.释疑拓展:如图,在△ABC中,DG∥EH∥FI∥BC.(1)请找出图中所有的相似三角形;(2)如果AD=1,DB=3,那么DG∶BC=_____.先让学生独立思考,然后请学生板演并讲评.AB CD EE DCBAABCD3()2() AB DE1() DE BCAB CDEABCDEA BCDEFB CDEA教学过程教学内容个案调整教师主导活动学生主体活动(2)△ABC与△A″B″C″若∠A=∠A″,∠B=∠B″,那么这个三角形有何关系?请说明理由.4.巩固:1.关于三角形相似下列叙述不正确的是( )A 有一个底角对应相等的两个等腰三角形相似B 所有等边三角形都相似C 有一个角对应相等的两个等腰三角形相似D 顶角对应相等的两个等腰三角形相似2. 判断题①所有的等腰三角形都相似 ( )②所有的等腰直角三角形都相似( )③所有的等边三角形都相似 ( )④所有的直角三角形都相似 ( )⑤有一个角是100°的两个等腰三角形相似()⑥有一个角是70°的两个等腰三角形相似()四.释疑拓展:1.如图,在△ABC和△A′B′C′中,已知∠A=50°,∠B=∠B′=60°,∠C′=70°,△ABC与△A′B′C′相似吗?为什么?2.如图,在Rt△ABC中,∠ACB=90°,CD是△ABC的高.找出图中所有的相似三角形.3.过△ABC(∠C>∠B)的边AB上一点D作一条直线与另一边AC相交,截得的小三角形与△ABC相似,这样的直线有几条?请把它们一一作出来.1.先让学生独立思考,然后让学生板演,最后学生点评.2.先让学生独立思考,然后请学生板演并讲评.3.让学生自主探究,自由交流.教学过程教学内容个案调整教师主导活动学生主体活动三.交流展示:1.如图,在△ABC和△DEF中,∠B=∠E,要使△ABC∽△DEF,需要添加什么条件?2.如图,△ABC与△A'B'C'相似吗?有哪些判断方法?四.释疑拓展:1 1. 如图,已知23ECAEBDAD==,试求BCDE的值;2 如图,在△ABC中,AB=4cm,AC=2cm,(1)在AB上取一点D,当AD=________时,△ACD∽△ABC;(2)在AC的延长线上取一点E,当CE=________时,△AEB∽△ABC,此时,BE与DC有怎样的位置关系?为什么?让学生先独立思考,然后小组讨论交流,最后全班展示交流,并让学生自己归纳发现的结论.先让学生独立思考,然后让学生板演,最后学生点评C'B'A'CBAADECB教学过程教学内容个案调整教师主导活动学生主体活动3.归纳三角形相似判定方法三文字语言:几何语言:在△ABC和△A′B′C′中,∵∴4.试一试:(1)在ΔABC与ΔA′B′C′中,若AB=3, BC=4,AC=5;A′B′=6,B′C′=8,A′C′=10,ΔABC与ΔA′B′C′相似吗?(2)在ΔABC与ΔA′B′C′中,若AB=3, BC=3,AC=4;A′B′=6,B′C′=6,A′C′=10,ΔABC与ΔA′B′C′相似吗?三.释疑拓展:1.△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,△ABC与△DEF相似吗?为什么?2.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4,6,8.另一个三角形框架的一边长为2,它的另外两条边长应当是多少?你有几种答案?学生自己归纳发现的结论.先让学生独立思考,然后让学生板演,最后学生点评.让学生谈谈自己是如何思考的AB CA′B′C′。
探索三角形相似的条件
一、选择题:
1.下列命题错误的是( )
A.两角对应相等的两个三角形相似;
B.两边对应成比例的两个三角形相似
C.两边对应成比例且夹角相等的两个三角形相似;
D.三边对应成比例的两个三角形相似
2.下面关于直角三角形的相似叙述错误的是( )
A.有一锐角对应相等的两个直角三角形相似;
B.两直角边对应成比例的两个直角三角形相似
C.直角边与斜边对应成比例的两个直角三角形相似;
D.两个等腰直角三角形相似
3.使△ABC 和△ABC 不相似的条件是( ) A.∠A=∠A ′=65°,∠B=45°,∠C ′=70°
B.AB=1,BC=1.2,AC=1.5,A ′B ′=6,B ′C ′=4,A ′C ′=4.8
C.∠A=∠A ′,AB=4,BC=2,A ′B ′=6,B ′C ′=3
D.AB=3,BC=4,AC=5,A ′B ′=6,B ′C ′=8,A ′C ′=10
4.有一个角等于40°的两个等腰三角形( )
A.全等
B.相似
C.既不相似也不全等
D.无法确定
5.如图1,∠AED=∠B,一定可得 ( )
A.AD:AC=AE:AB
B.DE:BC=AD:DB
C.DE:BC=AE:AC
D.AD:AB=AE:AC
E
D
C
B
A
C
B A
P
E
D
C
A
D
B
A
(1) (2) (3) (4) 6.如图2,P 是AB 上一点,补充下列条件①∠ACP=∠B; ②∠APC=∠ACB;③
AP AC AC AB =;④AP PC
AC BC
=,其中一定能使△ACP ∽△ABC 的是( )
A.①②③
B.①②④
C.②③④
D.①②③④
二、填空题:
1.如图3,在Rt △ABC 中,AC ⊥BC,DE ⊥AB,则________∽________.
2.P 是Rt △ABC 斜边BC 上异于B 、C 的一点,过点P 作直线截△ABC,使截得的三角形与△ABC 相似,满足这样条件的直线共有________条.
3.如图4,在△ABC 中,点D 在AB 上,请再添一个适当的条件,使△ADC ∽△ACB,•那么要添加的 条件是_________.
4.如图,在△ABC 中,AB=AC,∠A=36°,BD 是∠ABC 的平分线,则_______•和______________相似.
D
B
A
5.一个直角三角形的两条直角边长分别为8cm 和12cm,另一个直角三角形的两条直角边长分别是6cm 和9cm,这两个直角三角形______相似三角形(填是或不是),理由是_____________.
6.一个三角形的三边长分别为8、9、12,另一个三角形的三边长分别为12、27
2
、18,•那么这两个三角形的关系是________,理由是_______.
三、计算题
1.如图,根据图形中提供的数据,你能得到三角形相似吗?为什么?
3
1.5
2
1
E
D
C
B A
2.如图,∠A=52°,AB=2.5,AC=5.5,△DEF 中,∠E=52°,DE=7,EF=3,•△ABC•与△EDF 是否相似?为什么?
52︒
5.5
2.5
C
B A
52︒
3
7
D E
F
3.如图,在□ABCD 中,E 为BA 延长线上一点,EC 交AD 于F,找出图中相似的三角形,并进行证明.
D
F
E C
B
A
四、将两块完全相同的等腰直角三角板摆放成如图的样子,试问△ABE ∽△DAE 成立吗?
D F
E
C
B
A G
五、已知:如图,D、E分别是△ABC两边AB、AC上的点,∠A=60°,∠C=70•°,•∠AED=50°.
试问:AD·AB=AE·AC成立吗?
A
D
E
C
六、如图,△ABC中,D为BC上一点,且∠CAD=∠B,AD=8,AB=10,AC=9,求:DC的长.•
A
D C
七、如图,在Rt△ABC中,∠C=90°,CD⊥AB.
(1)找出图中相似的三角形;(2)设计一种分法,把Rt△ABC分割成四个小直角三角形,使每个小直角三角形与Rt△ABC相似.
A
D
答案:
一、1.B 2.C 3.C 4.D 5.A 6.A
二、1.△BDE;△BAC
2.3
3.∠ADC=∠ACB或其他的
4.△ABC;△BDC
5.是;两边对应成比例且夹角相等的两个三角形相似
6.相似,对应边成比例的两个三角形相似
三、1.能:因为
11
123
AD
AB
==
+
,
1.51
1.533
AE
AC
==
+
所以AD AE AB AC
=,
又因为∠A=∠A所以△ADE∽△ABC
2.不相似,因为对应边不成比例
3.△EAF∽△EBC;△EAF∽△CDF;△EBC∽△CDF
因为 ABCD中,AD∥BC,AB∥CD,
所以∠EAF=∠B,∠EFA=∠ECB;∠EAF=∠D,∠E=∠FCD;∠B=∠D, 所以△EAF∽△EBC,•△EAF∽△CDF,△EBC∽△CDF
四、成立,△ABC和△AFG都是等腰直角三角形
∠B=∠DAE=45°
∠ADE=∠B+∠BAD
⇒∠ADE=∠DAE+∠BAD=∠BAE
⇒△ABE∽△DAE
五、成立, ∠A=60°,∠C=70°
∴∠B=50°,∠AED=50°,
∴∠B=∠AED,∠A=∠A
⇒△ADE∽△ACB⇒AD AE
AC AB
=⇒AD·AB=AE·AC
六、∠CAD=∠B,∠C=∠C⇒
△ACD∽△BCA⇒CD AD
AC AB
= ,即
8
910
CD
=
∴CD=7.2
七、(1)△ADC∽△ACB;△ADC∽△CDB;△CDB∽△ACB
(2)过点D作DE⊥AC,DF⊥CB即可.。