表面涂色的正方体
- 格式:docx
- 大小:22.48 KB
- 文档页数:4
苏教版数学六上1.5《表面涂色的正方体》教案一. 教材分析苏教版数学六上1.5《表面涂色的正方体》一课,是在学生已经掌握了正方体的特征、正方体的表面积的计算方法的基础上进行教学的。
本节课主要让学生学习正方体的表面涂色问题,通过观察、操作、交流等活动,进一步深化学生对正方体的认识,提高学生的空间想象力。
二. 学情分析学生在进入六年级之前,已经对正方体有了初步的认识,能够说出正方体的特征,知道正方体的表面积的计算方法。
但是,学生对于正方体的表面涂色问题还比较陌生,需要通过实践活动来进一步理解和掌握。
同时,学生的空间想象力各不相同,需要老师在教学中给予不同的引导和帮助。
三. 教学目标1.让学生通过观察、操作、交流等活动,理解正方体的表面涂色问题。
2.让学生能够运用所学的知识,解决一些简单的表面涂色问题。
3.提高学生的空间想象力,培养学生的观察能力和操作能力。
四. 教学重难点1.教学重点:让学生理解正方体的表面涂色问题,能够解决一些简单的表面涂色问题。
2.教学难点:让学生能够运用所学的知识,解决一些复杂的表面涂色问题。
五. 教学方法1.观察法:让学生通过观察正方体的表面涂色情况,发现规律。
2.操作法:让学生通过动手操作,进一步理解正方体的表面涂色问题。
3.交流法:让学生通过与同伴的交流,共同解决问题,提高学生的沟通能力。
六. 教学准备1.教具:正方体模型、正方体图片、彩色笔等。
2.学具:每个学生准备一个正方体模型,彩色笔等。
七. 教学过程导入(5分钟)教师出示一个正方体模型,让学生观察并说出正方体的特征。
然后,教师提出问题:“如果我们要给这个正方体模型涂色,你们觉得应该怎么涂呢?”让学生思考并回答。
呈现(10分钟)教师展示一些正方体图片,让学生观察这些正方体的涂色情况,并提出问题:“你们发现这些正方体的涂色有什么规律吗?”让学生思考并回答。
操练(10分钟)教师让学生拿出口袋里的正方体模型,并给每个小组发放彩色笔。
六年级上册苏教版数学《表面涂色的正方体》教案与反思一. 教材分析本节课的内容是苏教版六年级上册的数学《表面涂色的正方体》。
这部分内容是在学生已经掌握了立体图形的知识的基础上进行学习的,旨在让学生通过观察、操作、思考、交流等活动,进一步理解正方体的特征,提高空间想象能力和逻辑思维能力。
二. 学情分析六年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对立体图形有了一定的了解。
但是,对于正方体的表面涂色问题,部分学生可能还存在一定的困难。
因此,在教学过程中,我们需要关注这部分学生的学习情况,通过引导和激励,帮助他们理解和掌握正方体的表面涂色问题。
三. 教学目标1.知识与技能:让学生掌握正方体的表面涂色方法,能够独立完成正方体的表面涂色任务。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:让学生体验数学学习的乐趣,提高学生对数学学习的兴趣。
四. 教学重难点1.重点:正方体的表面涂色方法。
2.难点:理解正方体表面涂色的规律,能够灵活运用规律进行涂色。
五. 教学方法采用问题驱动法、情境教学法、合作学习法等,引导学生通过观察、操作、思考、交流等活动,理解和掌握正方体的表面涂色方法。
六. 教学准备正方体模型、正方体图片、视频资料、涂色工具等。
七. 教学过程1.导入(5分钟)利用正方体模型或图片,引导学生回顾正方体的特征,为新课的学习做好铺垫。
2.呈现(10分钟)展示正方体涂色的视频资料,让学生直观地感受正方体涂色的过程,并提出问题:“正方体有哪些面需要涂色?如何进行涂色?”3.操练(10分钟)学生分组进行正方体涂色的实践操作,教师巡回指导,帮助学生掌握正方体涂色的方法。
4.巩固(10分钟)学生独立完成正方体涂色任务,教师选取部分学生的作品进行展示和评价,让学生在评价中巩固所学知识。
5.拓展(10分钟)引导学生思考:正方体涂色问题是否只有一种解决方法?是否存在其他的涂色规律?学生分组讨论,分享自己的发现。
《表面涂色的正方体(探索规律)》精品教案教学目标:1.使学生经历把表面涂有颜色的正方体切成若干个同样大的小正方体,探索表面涂有颜色的小正方体的各种情况以及其中隐含的简单规律的过程,进一步积累探索简单数学规律的经验,感悟数学思想方法,法杖数学思维能力和空间观念。
2.使学生在探索数学规律的过程中,感受数学的结构美,获得成功发现数学规律的愉悦体验,激发学习数学的兴趣。
教学重点:应用发现的变化规律解决简单实际问题。
教学难点:变化规律的探索。
教学准备:课件教学过程:活动一:提出问题。
(5分钟左右)1.出示一个表面涂色的正方体。
提问:照此切开后,得到的小正方体的表面可能有几个面涂色?2.再把这个正方体的每条棱都被平均分成了2份。
(如教材所示)提问:能切成多少个同样大的小正方体?每个小正方体有几面涂色?3.变式:由这个例子还能想到什么?引导提出把正方体的棱平均分成3份、4份、5份……结果会怎样的问题。
活动二:自主探索。
(12分钟左右)1.出示每条棱都被平均分成3份的正方体,并和平均分成2份的正方体比较。
思考:切开后,与上一个的涂色面的不同之处?3面涂色、2面涂色、1面涂色的各有多少个?分别在大正方体的什么位置?2.自主探索每条棱分别平均分成4份、5份的正方体,完成书本的表格。
提醒:每种情况,都要从小正方体的个数和所在位置这两方面思考。
活动三:发现规律。
(12分钟左右)1. 小组交流交流内容①观察填出的表格,你能发现什么规律?②完成书本P27的字母表达式。
引导归纳并总结规律,并用字母得出一般式。
活动四:回顾总结。
(2分钟左右)回顾探索过程,说说体会。
提高题:一个正方体切成64个小正方体,三面涂了红色的小正方体有几个?两面涂了红色的小正方体有几个?一面涂了红色的小正方体有几个?全没涂上红色的小正方体有几个?五、家作。
1.《课课练》第( )页第( )题。
2.阅读小数报、时代报第几版什么内容或布置其他数学课外阅读材料。
1.一个表面涂色的正方体,每条棱都平均分成2份。
如图所示,能切成多少个同样大的小正方体?每个小正方体有几个面涂色?2.如果把棱长是3、4的小正方体切开,那么有几个3面涂色、2面涂色、1面涂色、0面涂色呢?棱长为3:3面()个,2面()个,1面()个,0面()个棱长为4:3面()个,2面()个,1面()个,0面()个3.那如果这个正方体的棱长为5,此时的3面、2面、1面、0面各是多少个呢?06 表面涂色的正方体【例1】如图,将边长为3和4的两个大正方体的表面刷上红色的漆,再将其分割成边长为1的小正方体,其中三面、两面、一面有红色的小正方体的个数如下表,请尝试找到规律并在【例2】小明将一个表面涂色的正方体木块的棱长平均分成若干份,并锯成同样大的小正方体。
他想要48个两面涂色的小正方体,需要把棱长平均分成多少份?【例3】把一个正方体木块的表面全涂上红色,然后切成27个相同的小正方体(如下图)。
(1)三个面涂红色的有多少个?(2)两个面涂红色的有多少个?(3)一个面涂红色的有多少个?(4)六个面都没有涂色的有多少个?1.(2023秋·六年级课时练习)如图,将一个正方体沿虚线切三刀以后,表面积增加96平方厘米,这个正方体的体积是()立方厘米。
A.32B.64C.128D.2562.(2023秋·六年级课时练习)把一根长1米的长方体木料锯成两段后,表面积增加了200平方厘米,它的体积是()。
A.100立方厘米B.10000立方厘米C.2立方分米3.(2022秋·安徽合肥·六年级统考期末)一个表面涂色的正方体,每条棱都平均分成5份,如果照图的样子把它切开,切成同样大的小正方体。
切成的小正方体中2面涂色的有()个。
A.8B.36C.544.(2022秋·江苏南通·六年级统考期末)小娟用棱长1厘米的小正方体木块拼成一个棱长5厘米的大正方体,并把这个大正方体的表面涂成红色,其中一面涂色的小正方体有()个。
探索规律《表面涂色的正方体》教材分析
一个较大的正方体的6个面上都涂了颜色。
如果把这个正方体切成若干个同样大的小正方体,这些小正方体的6个面上不会都涂了颜色。
切成的小正方体可能有多少面涂了颜色?其中有没有规律?会是什么规律?回答这些问题是这次活动的数学内容。
较大正方体切成的小正方体,分布在大正方体的各个位置上。
正是由于各个小正方体在大正方体上的位置不同,所以它们涂颜色面的个数不同。
研究小正方体涂色面的规律,要分类整理各种小正方体的原来位置,与刚刚教学的正方体知识有联系,对空间想象力提出了新的内容与要求,有益于学生空间观念的发展。
教材分三段安排学生开展探索规律的活动,依次是:提出问题与观察想象、揭示规律与写出关系式、回顾过程与反思体验。
(一)提出问题,呈现现象,数数想想,初步发现规律
大正方体切成的小正方体个数越多,数出表面涂颜色的小正方体个数就越难。
教材由少到多,逐渐增加难度:先把大正方体的每条棱平均分成2份,图示一个表面涂了颜色的大正方体被平均分的情境,让学生看着实物图数数、想想、说说,“能切成多少个大小相等的小正方体?有几个面涂了颜色?”这是多数学生没有想过的、富有挑战性的问题。
教材希望学生围绕小正方体“有多少个面涂有颜色,哪些面涂了颜色”这些问题进行思考和讨论,发现切成的每个小正方体都有3个面涂了颜色,3个面没有涂颜色。
从切成的小正方体的面有些在大正方体的表面上、有些在大正方体的里面,找到小正方体有涂色的面,也有没涂色面的原因。
接着把大正方体的每条棱平均分成3份,并切出大小相等的小正方体。
这时的情况就比较复杂了,有些小正方体的3个面上涂了颜色,有些小正方体的2个面上涂了颜色,有些小正方体的1个面上涂了颜色,有些小正方体所有面上都没有涂颜色。
教学应引导学生研究,为什么小正方体涂颜色面的个数不同?引导他们认识到由于有些小正方体在大正方体的顶点位置、有些在大正方体棱的位置、有些在大正方体表面的中间位置、有些在大正方体的里面,所以有3
面涂色的、2面涂色的、1面涂色的、没有面涂色的小正方体,并且理解小正方体最多有3面涂了颜色。
然后把大正方体的每条棱平均分成4份、5份,仍然切成大小相同的小正方体,继续研究小正方体面上涂颜色的问题。
由于学生已经研究过大正方体每条棱平均分成3份的情况,其中的研究方法与经验可以应用于更加复杂些的情形之中,所以教材同时呈现了大正方体每条棱平均分成4份和5份的实物图,让学生独立进行研究活动,并把数得的结果填在教材的表格里。
学生从表格里的数据中会发现:随着把大正方体的每条棱平均分的份数越来越多,切出的小正方体中,3面涂颜色的总是8个,2面涂颜色、1面涂颜色、没有面涂颜色的小正方体的个数也越来越多。
于是会思考,为什么3面涂颜色的小正方体总是8个?2面涂色、1面涂色、没有面涂色的小正方体的个数有没有规律?能不能计算?这就进入了问题情境,产生了探索规律的兴趣。
仔细观察与想象,能够发现:一个正方体被切成若干个同样大的小正方体,3面涂色的小正方体都在大正方体的顶点位置上,大正方体有8个顶点,3面涂色的小正方体一定是8个。
2面涂色的小正方体个数不固定,可能没有,可能是12个、24个、36个……这些数都是12(大正方体棱的条数)的倍数,这些小正方体总在大正方体每条棱的中间位置上。
1面涂色的小正方体个数也不固定,可能没有,可能6个、24个、54个……这些数分别是6(大正方体面的个数)的1倍、4(22)倍、9(32)倍……这些小正方体在大正方体每个面的中间位置上。
没有面涂色的小正方体个数仍然不固定,可能没有,可能1个、8个、27个……这些数刚好是0、13、23、33……这些小正方体都在大正方体的里面。
(二)写出含有字母的关系式,用数学模型表达规律
3面涂色的小正方体一定是8个,个数确定且不变就是规律。
2面涂色的小正方体在大正方体每条棱中间位置上,个数虽然不固定,却是有规律的,这就可以用数学的方法与形式来刻画规律。
教材引导学生联系用字母表示数的经验,用a表示2面涂色小正方体的个数,n表示大正方体的棱平均分的份数。
这样,2面涂色的小正方体个数可以通过式子12(n-2)计算,a=12(n-2)概括地表示了2面涂色小正方体个数与大正方体棱平均分的份数的关
系。
在学生写出含有字母的式子时,要让他们看到2面涂色小正方体的个数与两个要素有关:一与正方体棱的条数有关;二与大正方体的棱被平均分的份数有关。
大正方体的每条棱都平均分成n份,沿着每条棱的2面涂色的小正方体有(n-2)个。
大正方体有12条棱,2面涂色的小正方体一共有12(n-2)个。
教学应引导学生结合填写在表格里的数据,得出(n-2)并理解其意思。
学生用含有字母的式子表示数量关系,是参与一次建立数学模型的活动,不应要求他们记忆和应用写出的式子,也不应要求把这个用字母表示的关系式作为基础知识加以掌握,但应该经历写出式子的过程。
1面涂色的小正方体在大正方体每个面的中间位置上,个数也是既不固定又有规律的。
也可以用含有字母的式子来表达规律,不过式子更加复杂些。
1面涂色的小正方体个数与大正方体面的个数“6”有关,还与大正方体的棱被平均分的份数有关。
如果用b表示1面涂色小正方体的个数,n表示大正方体的棱被平均分的份数,那么大正方体一个面上能切出1面涂色的小正方体(n-2)2个,6个面一共能切出1面涂色的小正方体6(n-2)2个。
式子b=6(n-2)2表示1面涂色小正方体的个数与大正方体的棱被平均分的份数之间的关系。
一个面也不涂色的小正方体都在大正方体的内部。
如果用c表示没有涂色面的小正方体个数,n表示大正方体的棱平均分的份数,那么这些没有涂色面的小正方体形成一个棱长为(n-2)的正方体,其中有(n-2)个小正方体。
式子
c=(n-2)表示没有涂色面的小正方体个数与大正方体的棱长被平均分的份数之间的关系。
学生独立得出上面这些关系式会有点困难,部分学生理解这些关系式也不容易,可以在教师帮助下写出和解释这些关系式。
一定要把观察想象和揭示规律有机结合,在学生观察想象达到一定程度时,组织他们用适当的形式表达规律,用自己的语言解释规律。
(三)回顾发现规律的过程,体会其中的经验
回顾与反思是数学学习的重要步骤。
当学生完成一段数学活动以后,及时回顾活动过程,反思活动的方式方法,有利于他们积累数学活动经验,增添继续学习数学的后劲。
33
这次探索规律教学的最后,要求学生说说自己的收获,体会如何仔细观察、充分想象,如何通过数数、算算找到有关数据,如何根据数据归纳出规律,如何用含有字母的式子准确、清楚、概括地表达规律……这些体会的作用与价值,将体现在以后的数学学习之中。