2019版高考数学一轮复习第8章平面解析几何8.4直线与圆圆与圆的位置关系学案理
- 格式:doc
- 大小:389.50 KB
- 文档页数:17
第四节直线与圆、圆与圆的位置关系1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:d<r⇔相交;d=r⇔相切;d>r⇔相离.(2)代数法:联立直线l与圆C的方程,消去y(或x),得一元二次方程,计算判别式Δ=b2-4ac,Δ>0⇔相交,Δ=0⇔相切,Δ<0⇔相离.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.( )(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( )(3)如果两圆的圆心距小于两半径之和,则两圆相交.( )(4)若两圆相交,则两圆方程相减消去二次项后得到的二元一次方程是公共弦所在直线的方程.( )[解析]依据直线与圆、圆与圆的位置关系,只有(4)正确.[答案](1)×(2)×(3)×(4)√2.(教材改编)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为( )A.内切B.相交C.外切D.相离B[两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d=42+1=17.∵3-2<d <3+2,∴两圆相交.]3.(2017·嘉兴调研)直线3x +4y =b 与圆x 2+y 2-2x -2y +1=0相切,则b 的值是( )A .-2或12B .2或-12C .-2或-12D .2或12D [由圆x 2+y 2-2x -2y +1=0,知圆心(1,1),半径为1,所以|3×1+4×1-b |32+42=1,解得b =2或12.]4.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为__________.2555[圆心为(2,-1),半径r =2. 圆心到直线的距离d =|2+--3|1+4=355,所以弦长为2r 2-d 2=222-⎝⎛⎭⎪⎫3552=2555.] 5.设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________. 【导学号:51062274】4π [圆C :x 2+y 2-2ay -2=0化为标准方程是C :x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2.|AB |=23,点C 到直线y =x +2a 即x -y +2a =0的距离d =|0-a +2a |2,由勾股定理得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|0-a +2a |22=a 2+2,解得a 2=2,所以r =2,所以圆C 的面积为π×22=4π.]+(y -1)2=5的位置关系是( )A .相交B .相切C .相离D .不确定(2)若点P (1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为__________. (1)A (2)x +2y -5=0 [(1)法一:∵圆心(0,1)到直线l 的距离d =|m |m 2+1<1< 5.故直线l 与圆相交.法二:直线l :mx -y +1-m =0过定点(1,1),∵点(1,1)在圆C :x 2+(y -1)2=5的内部,∴直线l 与圆C 相交.(2)∵以原点O 为圆心的圆过点P (1,2), ∴圆的方程为x 2+y 2=5. ∵k OP =2,∴切线的斜率k =-12.由点斜式可得切线方程为y -2=-12(x -1),即x +2y -5=0.][规律方法] 1.(1)利用圆心到直线的距离可判断直线与圆的位置关系,也可利用直线的方程与圆的方程联立后得到的一元二次方程的判别式来判断直线与圆的位置关系;(2)注意灵活运用圆的几何性质,联系圆的几何特征,数形结合,简化运算.如“切线与过切点的半径垂直”等.2.与弦长有关的问题常用几何法,即利用弦心距、半径和弦长的一半构成直角三角形进行求解.[变式训练1] (1)(2017·宁波中学模拟)过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0(2)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=__________.(1)B (2)4 [(1)依题意知,点(3,1)在圆(x -1)2+y 2=r 2上,且为切点. ∴圆心(1,0)与切点(3,1)连线的斜率为12.因此切线的斜率k =-2.故圆的切线方程为y -1=-2(x -3),即2x +y -7=0. (2)由圆x 2+y 2=12知圆心O (0,0),半径r =2 3. ∴圆心(0,0)到直线x -3y +6=0的 距离d =61+3=3,|AB |=212-32=2 3.过C 作CE ⊥BD 于E .如图所示,则|CE |=|AB |=2 3.∵直线l 的方程为x -3y +6=0, ∴k AB =33,则∠BPD =30°,从而∠BDP =60°. ∴|CD |=|CE |sin 60°=|AB |sin 60°=2332=4.]已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离B [法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0得两交点为(0,0),(-a ,a ).∵圆M 截直线所得线段长度为22, ∴a 2+-a2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0,即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2. 又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=-2+-2= 2.∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3,∴两圆相交. 法二:∵x 2+y 2-2ay =0(a >0)⇔x 2+(y -a )2=a 2(a >0), ∴M (0,a ),r 1=a .∵圆M 截直线x +y =0所得线段的长度为22,∴圆心M 到直线x +y =0的距离d =a2=a 2-2,解得a =2.以下同法一.][规律方法] 1.圆与圆的位置关系取决于圆心距与两个半径的和与差的大小关系. 2.若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到.3.若两圆相交,则两圆的连心线垂直平分公共弦.[变式训练2] 若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是__________.4 [由题意⊙O 1与⊙O 在A 处的切线互相垂直,则两切线分别过另一圆的圆心,∴O 1A ⊥OA .又∵|OA |=5,|O 1A |=25, ∴|OO 1|=5.又A ,B 关于OO 1对称,∴AB 为Rt △OAO 1斜边上高的2倍. 又∵12·OA ·O 1A =12OO 1·AC ,得AC =2.∴AB =4.]M :x 2+y 2-12x-14y +60=0及其上一点A (2,4).图841(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程. [解] 圆M 的标准方程为(x -6)2+(y -7)2=25, 所以圆心M (6,7),半径为5.2分(1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1.4分 因此,圆N 的标准方程为(x -6)2+(y -1)2=1.6分 (2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m , 即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5.10分 因为BC =OA =22+42=25, 而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22, 所以25=m +25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.15分[规律方法] 1.(1)设出圆N 的圆心N (6,y 0),由条件圆M 与圆N 外切,求得圆心与半径,从而确定圆的标准方程.(2)依据平行直线,设出直线l 的方程,根据点到直线的距离公式及勾股定理求解.2.求弦长常用的方法:①弦长公式;②半弦长、半径、弦心距构成直角三角形,利用勾股定理求解(几何法).[变式训练3] 在直角坐标系xOy 中,以坐标原点O 为圆心的圆与直线:x -3y =4相切.(1)求圆O 的方程;(2)若圆O 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程. 【导学号:51062275】[解] (1)依题意,圆O 的半径r 等于原点O 到直线x -3y =4的距离, 则r =41+3=2.4分所以圆O 的方程为x 2+y 2=4.6分(2)由题意,可设直线MN 的方程为2x -y +m =0. 则圆心O 到直线MN 的距离d =|m |5.10分由垂径分弦定理,得m 25+(3)2=22,即m =± 5.12分所以直线MN 的方程为2x -y +5=0或2x -y -5=0.15分[思想与方法]1.直线与圆的位置关系体现了圆的几何性质和代数方程的结合,解题时要抓住圆的几何性质,重视数形结合思想方法的应用.2.计算直线被圆截得的弦长的常用方法:(1)几何方法:运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数方法:弦长公式|AB|=1+k2|x A-x B|=+k2x A+x B2-4x A x B].[易错与防范]1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为“-1”列方程来简化运算.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.课时分层训练(四十六)直线与圆、圆与圆的位置关系A组基础达标(建议用时:30分钟)一、选择题1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是( ) A.相切B.相交C.相离D.不确定B [由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b 2<1,故直线与圆相交.]2.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21 B .19 C .9D .-11C [圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9.]3.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-8B [由x 2+y 2+2x -2y +a =0, 得(x +1)2+(y -1)2=2-a ,所以圆心坐标为(-1,1),半径r =2-a ,圆心到直线x +y +2=0的距离为|-1+1+2|2=2,所以22+(2)2=2-a ,解得a =-4.]4.(2017·浙江金丽衢十二校模拟)过点P (4,2)作圆x 2+y 2=4的两条切线,切点分别为A ,B ,O 为坐标原点,则△OAB 外接圆的方程是( )【导学号:51062276】A .(x -2)2+(y -1)2=5 B .(x -4)2+(y -2)2=20 C .(x +2)2+(y +1)2=5 D .(x +4)2+(y +2)2=20A [由题意知,O ,A ,B ,P 四点共圆,所以所求圆的圆心为线段OP 的中点(2,1). 又圆的半径r =12|OP |=5,所以所求圆的方程为(x -2)2+(y -1)2=5.]5.(2017·杭州二中三模)已知圆C :(x -1)2+y 2=25,则过点P (2,-1)的圆C 的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( )A .1013B .921C .1023D .911C [易知最长弦为圆的直径10.又最短弦所在直线与最长弦垂直,且|PC |=2,∴最短弦的长为2r 2-|PC |2=225-2=223.故所求四边形的面积S =12×10×223=1023].二、填空题6.已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A ,B 两点,则线段AB 的中垂线方程为________________.x +y -3=0 [∵圆C 1的圆心C 1(3,0),圆C 2的圆心C 2(0,3),∴直线C 1C 2的方程为x +y-3=0,AB 的中垂线即直线C 1C 2,故其方程为x +y -3=0.]7.若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =__________.2 [如图,过点O 作OD ⊥AB 于点D ,则|OD |=532+-2=1.∵∠AOB =120°,OA =OB , ∴∠OBD =30°,∴|OB |=2|OD |=2,即r =2.]8.(2017·浙江金华十校联考)已知圆C :(x +2)2+y 2=4,直线l :kx -y -2k =0(k ∈R ),若直线l 与圆C 恒有公共点,则实数k 的最小值是__________.【导学号:51062277】-33[圆心C (-2,0),半径r =2. 又圆C 与直线l 恒有公共点.所以圆心C (-2,0)到直线l 的距离d ≤r . 因此|-2k -2k |k 2+1≤2,解得-33≤k ≤33.所以实数k 的最小值为-33.] 三、解答题9.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5). (1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S . [解] (1)由圆C :x 2+y 2-4x -6y +12=0,得(x -2)2+(y -3)2=1,圆心C (2,3).当斜率存在时,设过点A 的圆的切线方程为y -5=k (x -3),即kx -y +5-3k =0.3分由d =|2k -3+5-3k |k 2+1=1,得k =34.又斜率不存在时直线x =3也与圆相切, 故所求切线方程为x =3或3x -4y +11=0.6分 (2)直线OA 的方程为y =53x ,即5x -3y =0,又点C 到OA 的距离d =|5×2-3×3|52+-2=134.12分又|OA |=32+52=34. 所以S =12|OA |d =12.15分10.(2017·宁波镇海中学模拟)已知定点M (0,2),N (-2,0),直线l :kx -y -2k +2=0(k 为常数).(1)若点M ,N 到直线l 的距离相等,求实数k 的值;(2)对于l 上任意一点P ,∠MPN 恒为锐角,求实数k 的取值范围. [解] (1)∵点M ,N 到直线l 的距离相等, ∴l ∥MN 或l 过MN 的中点.∵M (0,2),N (-2,0),∴直线MN 的斜率k MN =1,MN 的中点坐标为C (-1,1).3分又∵直线l :kx -y -2k +2=0过定点D (2,2), ∴当l ∥MN 时,k =k MN =1; 当l 过MN 的中点时,k =k CD =13.综上可知,k 的值为1或13.6分(2)∵对于l 上任意一点P ,∠MPN 恒为锐角,∴l 与以MN 为直径的圆相离,即圆心(-1,1)到直线l 的距离大于半径,10分 ∴d =|-k -1-2k +2|k 2+1>2,解得k <-17或k >1.15分B 组 能力提升(建议用时:15分钟)1.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切,则ab 的最大值为( ) A. 2B .2C .4D .2 2 B [圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R ).化为(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1.∵圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切, ∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2. ∴ab 的最大值为2.]2.(2017·杭州质检)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=__________. 【导学号:51062278】32[如图所示,可知OA ⊥AP ,OB ⊥BP ,OP =1+3=2. 又OA =OB =1,可以求得AP =BP =3,∠APB =60°.故PA →·PB →=3×3×cos 60°=32.] 3.已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点,直线l :y =kx 与圆C 交于M ,N 两点.(1)求k 的取值范围;(2)直线l 能否将圆C 分割成弧长的比为13的两段弧? 若能,求出直线l 的方程;若不能,请说明理由.[解] (1)将y =kx 代入圆C 的方程x 2+(y -4)2=4.得(1+k 2)x 2-8kx +12=0.2分∵直线l 与圆C 交于M ,N 两点,∴Δ=(-8k )2-4×12(1+k 2)>0,得k 2>3,(*)∴k 的取值范围是(-∞,-3)∪(3,+∞).6分(2)假设直线l 将圆C 分割成弧长的比为13的两段弧,则劣弧所对的圆心角∠MCN=90°,由圆C:x2+(y-4)2=4知圆心C(0,4),半径r=2.9分在Rt△MCN中,可求弦心距d=r·sin 45°=2,故圆心C(0,4)到直线kx-y=0的距离|0-4|1+k2=2,∴1+k2=8,k=±7,经验证k=±7满足不等式(*),12分故l的方程为y=±7x.因此,存在满足条件的直线l,其方程为y=±7x.15分。
第4讲直线与圆、圆与圆的位置关系板块一知识梳理·自主学习[必备知识]考点2 圆与圆的位置关系(⊙O1、⊙O2半径r1、r2,d=|O1O2|)[必会结论]1.关注一个直角三角形当直线与圆相交时,由弦心距(圆心到直线的距离)、弦长的一半及半径构成一个直角三角形.2.圆心在过切点且垂直于切线的直线上.3.两圆相交时公共弦的方程设圆C1:x2+y2+D1x+E1y+F1=0,①圆C2:x2+y2+D2x+E2y+F2=0,②若两圆相交,则有一条公共弦,其公共弦所在直线方程由①-②所得,即:(D1-D2)x +(E1-E2)y+(F1-F2)=0.4.两圆相切时,切点与两圆心三点共线.5.两圆不同的位置关系与对应公切线的条数(1)两圆外离时,有4条公切线;(2)两圆外切时,有3条公切线;(3)两圆相交时,有2条公切线;(4)两圆内切时,有1条公切线;(5)两圆内含时,没有公切线.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.( )(2)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.( )(3)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( )(4)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( )(5)“m=0”是“直线x+y-m=0与圆(x-1)2+(y-1)2=2相切”的充分不必要条件.( )答案(1)×(2)√(3)×(4)×(5)√2.[课本改编]直线l :x -y +1=0与圆C :x 2+y 2-4x -2y +1=0的位置关系是( ) A .相离 B .相切C .相交且过圆心D .相交但不过圆心答案 D解析 圆的方程化为(x -2)2+(y -1)2=4,圆心为(2,1),半径为2,圆心到直线l 的距离为|2-1+1|2=2<2,所以直线l 与圆相交.又圆心不在直线l 上,所以直线不过圆心.故选D.3.在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长为( )A .3 3B .2 3 C. 3 D .1 答案 B解析 圆心(0,0)到直线3x +4y -5=0的距离d =|0+0-5|32+42=1,因为⎝ ⎛⎭⎪⎫|AB |22=22-12=3,所以|AB |=2 3.4.[课本改编]圆x 2+y 2-4x =0在点P (1,3)处的切线方程为 ( )A .x +3y -2=0B .x +3y -4=0C .x -2y +4=0D .x -3y +2=0答案 D解析 圆的方程为(x -2)2+y 2=4,圆心坐标为(2,0),半径为2,点P 在圆上,由题可知切线的斜率存在,设切线方程为y -3=k (x -1),即kx -y -k +3=0,∴|2k -k +3|k 2+1=2,解得k =33.∴切线方程为y -3=33(x -1),即x -3y +2=0. 5.[2018·重庆模拟]圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相离 B .相交 C .外切 D .内切 答案 B解析 圆O 1的圆心坐标为(1,0),半径长r 1=1,圆O 2的圆心坐标为(0,2),半径长r 2=2,故两圆的圆心距d =5,而r 2-r 1=1,r 1+r 2=3,则有r 2-r 1<d <r 1+r 2,故两圆相交.6.[2018·温州十校联考]对任意的实数k ,直线y =kx -1与圆C :x 2+y 2-2x -2=0的位置关系是( )A .相离B .相切C .相交D .以上三个选项均有可能答案 C解析 直线y =kx -1恒经过点A (0,-1),圆x 2+y 2-2x -2=0的圆心为C (1,0),半径为3,而|AC |=2<3,点A 在圆内,故直线y =kx -1与圆x 2+y 2-2x -2=0相交.故选C.板块二 典例探究·考向突破考向直线与圆的位置关系例1 [2018·豫南九校联考]直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( )A .相交B .相切C .相离D .不确定 答案 A解析 解法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5,消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0,则Δ=4m 4-4(1+m 2)(m 2-5)=16m 2+20>0, 所以直线l 与圆C 相交.故选A.解法二:因为圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交.选A.解法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆C :x 2+(y -1)2=5的内部,所以直线l 与圆C 相交.故选A.触类旁通判断直线与圆的位置关系常见的有两种方法(1)代数法:――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交,=0⇔相切,<0⇔相离.(2)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d <r ⇔相交,d =r ⇔相切,d >r ⇔相离.【变式训练1】 [2018·深圳模拟]已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定 答案 B解析 因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.故选B.考向直线与圆的综合问题命题角度1 圆的切线问题 例2 已知点P (2+1,2-2),点M (3,1),圆C :(x -1)2+(y -2)2=4. (1)求过点P 的圆C 的切线方程;(2)求过点M 的圆C 的切线方程,并求出切线长. 解 由题意得圆心C (1,2),半径r =2. (1)因为(2+1-1)2+(2-2-2)2=4, 所以点P 在圆C 上.又k PC =2-2-22+1-1=-1,所以切线的斜率k =-1k PC=1.所以过点P 的圆C 的切线方程是y -(2-2)=1×[x -(2+1)],即x -y +1-22=0.(2)因为(3-1)2+(1-2)2=5>4,所以点M 在圆C 外部.当过点M 的直线斜率不存在时,直线方程为x =3,即x -3=0.又点C (1,2)到直线x -3=0的距离d =3-1=2=r , 即此时满足题意,所以直线x =3是圆的切线.当切线的斜率存在时,设切线方程为y -1=k (x -3),即kx -y +1-3k =0,则圆心C 到切线的距离d =|k -2+1-3k |k 2+1=r =2,解得k =34.所以切线方程为y -1=34(x -3),即3x -4y -5=0.综上可得,过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0.因为|MC |=(3-1)2+(1-2)2=5,所以过点M 的圆C 的切线长为|MC |2-r 2=5-4=1.触类旁通圆的切线有关的结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点为A ,B ,则过A 、B 两点的直线方程为x 0x +y 0y =r 2.(4)过圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)外一点P (x 0,y 0)引圆的切线,切点为T ,则切线长为|PT |=x 20+y 20+Dy 0+Ey 0+F .(5)过圆C :(x -a )2+(y -b )2=r 2(r >0)外一点P (x 0,y 0)作圆C 的两条切线,切点分别为A ,B ,则切点弦AB 所在直线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(6)若圆的方程为(x -a )2+(y -b )2=r 2(r >0),则过圆外一点P (x 0,y 0)的切线长d =(x 0-a )2+(y 0-b )2-r 2.【变式训练2】 [2015·广东高考]平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( )A .2x +y +5=0或2x +y -5=0B .2x +y +5=0或2x +y -5=0C .2x -y +5=0或2x -y -5=0D .2x -y +5=0或2x -y -5=0 答案 A解析 设与直线2x +y +1=0平行的直线方程为2x +y +m =0(m ≠1),因为直线2x +y+m =0与圆x 2+y 2=5相切,即点(0,0)到直线2x +y +m =0的距离为5,所以|m |5=5,|m |=5.故所求直线的方程为2x +y +5=0或2x +y -5=0.命题角度2 圆的弦长问题例3 过点(-4,0)作直线l 与圆x 2+y 2+2x -4y -20=0交于A ,B 两点,若|AB |=8,则直线l 的方程为( )A .5x +12y +20=0B .5x +12y +20=0或x +4=0C .5x -12y +20=0D .5x -12y +20=0或x +4=0 答案 B解析 圆的标准方程为(x +1)2+(y -2)2=25, 由|AB |=8知,圆心(-1,2)到直线l 的距离d =3.当直线l 的斜率不存在,即直线l 的方程为x =-4时,符合题意. 当直线l 的斜率存在时,设直线l 的方程为y =k (x +4),即kx -y +4k =0. 则有|3k -2|k 2+1=3,∴k =-512.此时直线l 的方程为5x +12y +20=0. 命题角度3 圆中的最值问题 斜率型最值例4 已知实数x ,y 满足方程x 2+y 2-4x +1=0,则y x的最大值为________,最小值为________.答案3 - 3解析 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆.y x的几何意义是圆上一点与原点连线的斜率,所以设y x=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值(如图),此时|2k -0|k 2+1=3,解得k =± 3.所以y x的最大值为3,最小值为- 3. 截距型最值例5 [2018·郑州模拟]已知实数x ,y 满足x 2+y 2=4(y ≥0),则m =3x +y 的取值范围是( )A .(-23,4)B .[-23,4]C .[-4,4]D .[-4,23]答案 B解析 由于y ≥0,所以x 2+y 2=4(y ≥0)为上半圆.3x +y -m =0是直线(如图),且斜率为-3,在y 轴上截距为m ,又当直线过点(-2,0)时,m =-23,所以⎩⎨⎧m ≥-23,d ≤r ,即⎩⎪⎨⎪⎧m ≥-23,|-m |2≤2,解得m ∈[-23,4],选B. 触类旁通直线与圆综合问题的解题策略(1)用几何法求圆的弦长:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝ ⎛⎭⎪⎫l 22=r 2-d 2.(2)求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.(3)对于圆的最值问题,一般是根据条件列出关于所求目标的式子——函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法等,应用不等式的性质求出最值. 【变式训练3】 [2015·江苏高考]在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.答案 (x -1)2+y 2=2解析 解法一:设A (1,0),由mx -y -2m -1=0,得m (x -2)-(y +1)=0,则直线过定点P (2,-1),即该方程表示所有过定点P 的直线系方程.当直线与AP 垂直时,所求圆的半径最大.此时,半径为|AP |=(2-1)2+(-1-0)2= 2. 故所求圆的标准方程为(x -1)2+y 2=2.解法二:设圆的半径为r ,根据直线与圆相切的关系得r =|m +1|1+m2=m 2+2m +1m 2+1=1+2mm 2+1, 当m <0时,1+2m m 2+1<1,故1+2mm 2+1无最大值; 当m =0时,r =1;当m >0时,m 2+1≥2m (当且仅当m =1时取等号). 所以r ≤1+1=2,即r max =2, 故半径最大的圆的方程为(x -1)2+y 2=2.考向两圆的位置关系例6 (1)[2016·山东高考]已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离 答案 B解析 由题意知圆M 的圆心为(0,a ),半径R =a ,因为圆M 截直线x +y =0所得线段的长度为22,所以圆心M 到直线x +y =0的距离d =|a |2=a 2-2(a >0),解得a =2,又知圆N 的圆心为(1,1),半径r =1,所以|MN |=2,则R -r <2<R +r ,所以两圆的位置关系为相交,故选B.(2)若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =________. 答案 1解析 两圆的方程相减,得公共弦所在的直线方程为(x 2+y 2+2ay -6)-(x 2+y 2)=0-4⇒y =1a ,又a >0,结合图形,利用半径、弦长的一半及弦心距所构成的直角三角形,可知1a= 22-(3)2=1⇒a =1.触类旁通如何处理两圆的位置关系判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x 2、y 2项得到.【变式训练4】 已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0与圆C 2:x 2+y 2+2x -2my +m 2-3=0,若圆C 1与圆C 2相外切,则实数m =( )A .-5B .-5或2C .-6D .8答案 B解析对于圆C1与圆C2的方程,配方得圆C1:(x-m)2+(y+2)2=9,圆C2:(x+1)2+(y-m)2=4,则圆C1的圆心C1(m,-2),半径r1=3,圆C2的圆心C2(-1,m),半径r2=2.如果圆C1与圆C2相外切,那么有|C1C2|=r1+r2,即(m+1)2+(m+2)2=5,则m2+3m-10=0,解得m=-5或m=2,所以当m=-5或m=2时,圆C1与圆C2相外切.核心规律切线、弦长的求解方法(1)求圆的切线方程可用待定系数法,利用圆心到切线的距离等于半径,列出关系式求出切线的斜率即可.(2)几何方法求弦长,利用弦心距,即圆心到直线的距离、弦长的一半及半径构成直角三角形计算.满分策略1.过圆外一定点作圆的切线,有两条,若在某种条件下只求出一个结果,则要想到还有斜率不存在的情况.2.在两个圆相交的情况下,两个圆的方程相减后得到的直线方程才是公共弦所在的直线方程.板块三启智培优·破译高考数学思想系列 8——数形结合思想在圆中的妙用[2018·江西模拟]过点(2,0)引直线l与曲线y=1-x2相交于A,B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于( )A.33B.-33C.±33D.- 3解题视点如果等式、代数式的结构中蕴含着明显的几何特征,就要考虑数形结合法求解,解答本题时首先要看到曲线y=1-x2表示的是以原点为圆心,1为半径的半个圆,作出图形,结合三角形面积公式,确定面积最大时直线l的斜率.解析由y=1-x2得x2+y2=1(y≥0),即该曲线表示圆心在原点,半径为1的半圆,如图所示.故S △AOB =12|OA |·|OB |·sin∠AOB =12sin ∠AOB .所以当sin ∠AOB =1,即OA ⊥OB 时,S△AOB取得最大值,此时点O 到直线l 的距离d =|OA |·sin45°=22.设此时直线l 的斜率为k ,则方程为y =k (x -2),即kx -y -2k =0,则有22=|0-0-2k |k 2+1,解得k =±33,由图可知直线l 的倾斜角为钝角,故取k =-33. 答案 B答题启示 “数”与“形”是数学这座高楼大厦的两块最重要的基石,二者在内容上互相联系,在方法上互相渗透,在一定条件下可以互相转化,而数形结合法正是在这一学科特点的基础上发展而来的.在解答选择题的过程中,可以先根据题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论.跟踪训练[2018·湖北模拟]若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( )A .[1-22,1+22]B .[1-2,3]C .[-1,1+22]D .[1-22,3]答案 D解析 ∵y =3-4x -x 2,∴1≤y ≤3, ∴(x -2)2+(y -3)2=4(1≤y ≤3),即曲线y =3-4x -x 2表示以(2,3)为圆心,2为半径的下半圆.直线y =x +b 与曲线y =3-4x -x 2有公共点,表示两曲线至少有一个公共点.符合条件的直线应是夹在过点(0,3)和与下半圆相切的两直线之间.当直线y =x +b 过点(0,3)时,b =3;当直线y =x +b 与圆y =3-4x -x 2相切时,由点到直线的距离公式,得2=|2-3+b |2,∴|b -1|=2 2.结合图形知b =1-2 2.∴1-22≤b ≤3,故选D.板块四 模拟演练·提能增分[A 级 基础达标]1.[2018·福建漳州八校联考]已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( )A .m ∥l ,且l 与圆相交B .m ⊥l ,且l 与圆相切C .m ∥l ,且l 与圆相离D .m ⊥l ,且l 与圆相离 答案 C解析 ∵点P (a ,b )(ab ≠0)在圆内,∴a 2+b 2<r 2.因圆x 2+y 2=r 2的圆心为O (0,0),故由题意得OP ⊥m ,又k OP =b a ,∴k m =-a b ,∵直线l 的斜率为k l =-a b=k m ,圆心O 到直线l的距离d =r 2a 2+b 2>r 2r=r ,∴m ∥l ,l 与圆相离.故选C. 2.已知过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a 等于( )A .-12B .1C .2 D.12答案 C解析 圆心为C (1,0),由于P (2,2)在圆(x -1)2+y 2=5上,∴P 为切点,CP 与过点P 的切线垂直.∴k CP =2-02-1=2.又过点P 的切线与直线ax -y +1=0垂直,∴a =k CP =2,选C.3.[2018·湖北武汉调研]圆x 2+y 2=4与圆x 2+y 2-4x +4y -12=0的公共弦所在直线和两坐标轴所围成图形的面积为( )A .1B .2C .4D .8 答案 B解析 圆x 2+y 2=4与圆x 2+y 2-4x +4y -12=0的公共弦所在直线的方程为x -y +2=0,它与两坐标轴分别交于(-2,0),(0,2),所以直线和两坐标轴所围成图形的面积为12×2×2=2.故选B.4.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-8 答案 B解析 由圆的方程x 2+y 2+2x -2y +a =0可得,圆心为(-1,1),半径r =2-a .圆心到直线x +y +2=0的距离为d =|-1+1+2|2= 2.由r 2=d 2+⎝ ⎛⎭⎪⎫422,得2-a =2+4,所以a =-4.5.[2018·安徽模拟]若过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝ ⎛⎦⎥⎤0,π6B.⎝ ⎛⎦⎥⎤0,π3C.⎣⎢⎡⎦⎥⎤0,π6D.⎣⎢⎡⎦⎥⎤0,π3答案 D解析 设直线l 的方程为y +1=k (x +3), 即kx -y +3k -1=0.由d =|3k -1|k 2+1≤1, 得0≤k ≤3,所以直线l 的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π3.6.圆C 1:x 2+y 2+2x +2y -2=0与圆C 2:x 2+y 2-4x -2y +4=0的公切线有( ) A .1条 B .2条 C .3条 D .4条 答案 D解析 圆C 1:(x +1)2+(y +1)2=4,∴圆心C 1(-1,-1),半径r 1=2;圆C 2:(x -2)2+(y -1)2=1,∴圆心C 2(2,1),半径r 2=1.∴两圆心的距离d =(-1-2)2+(-1-1)2=13,r 1+r 2=3,∴d >r 1+r 2,∴两圆外离,∴两圆有4条公切线.7.由直线y =x +1上的一点向圆x 2+y 2-6x +8=0引切线,则切线长的最小值为( ) A.7 B .2 2 C .3 D. 2 答案 A解析 如图,在Rt △PAB 中,要使切线PB 最小,只需圆心与直线y =x +1上的点的距离取得相应最小值即可,易知其最小值为圆心到直线的距离,即|AP |min =42=22,故|BP |min= (22)2-12=7.8.[2018·太原质检]过点A (4,1)的圆C 与直线x -y -1=0相切于B (2,1),则圆C 的方程为________.答案 (x -3)2+y 2=2解析 设圆C 的方程为(x -a )2+(y -b )2=r 2,由题意知:点(a ,b )既在直线y -1=-(x -2)上,又在AB 的垂直平分线上,由⎩⎪⎨⎪⎧x +y -3=0,x -3=0,得圆心坐标为(3,0),r =|AC |=(4-3)2+12=2,所以圆C 的方程为(x -3)2+y 2=2.9.[2016·全国卷Ⅰ]设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.答案 4π解析 圆C 的方程可化为x 2+(y -a )2=a 2+2,可得圆心的坐标为C (0,a ),半径r =a 2+2,所以圆心到直线x -y +2a =0的距离为|-a +2a |2=|a |2,所以⎝ ⎛⎭⎪⎫|a |22+(3)2=(a 2+2)2,解得a 2=2,所以圆C 的半径为2,所以圆C 的面积为4π.10.[2018·沈阳质检]过点M (1,2)的直线l 与圆C :(x -3)2+(y -4)2=25交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程是________.答案 x +y -3=0解析 依题意得知,当∠ACB 最小时,圆心C 到直线l 的距离达到最大,此时直线l 与直线CM 垂直,又直线CM 的斜率为1,因此所求的直线l 的方程是y -2=-(x -1),即x +y -3=0.[B 级 知能提升]1.已知圆C :(x -3)2+(y -1)2=1和两点A (-t,0),B (t,0),(t >0),若圆C 上存在点P ,使得∠APB =90°,则t 的取值范围是( )A .(0,2]B .[1,2]C .[2,3]D .[1,3] 答案 D解析 由题意可知,若使圆C 上存在点P ,使得∠APB =90°,即圆C 与以原点O 为圆心,半径为t 的圆有交点,即|OC |-1≤t ≤|OC |+1,即1≤t ≤3,∴t 的取值范围为[1,3],故选D.2.[2017·河南洛阳二模]已知圆C 的方程为x 2+y 2=1,直线l 的方程为x +y =2,过圆C 上任意一点P 作与l 夹角为45°的直线交l 于点A ,则|PA |的最小值为( )A.12 B .1 C.2-1 D .2- 2 答案 D解析 解法一:由题意可知,直线PA 与坐标轴平行或重合,不妨设直线PA 与y 轴平行或重合,设P (cos α,sin α),则A (cos α,2-cos α),∴|PA |=|2-cos α-sin α|=⎪⎪⎪⎪⎪⎪2-2sin ⎝ ⎛⎭⎪⎫α+π4,∴|PA |的最小值为2- 2.故选D. 解法二:由题意可知圆心(0,0)到直线x +y =2的距离d =22=2,∴圆C 上一点到直线x +y =2的距离的最小值为2-1.由题意可得|PA |min =2(2-1)=2- 2.故选D.3.[2017·江苏高考]在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x2+y 2=50上.若PA →·PB →≤20,则点P 的横坐标的取值范围是________.答案 [-52,1]解析 解法一:因为点P 在圆O :x 2+y 2=50上, 所以设P 点坐标为(x ,±50-x 2)(-52≤x ≤52).因为A (-12,0),B (0,6),所以PA →=(-12-x ,-50-x 2)或PA →=(-12-x ,50-x 2),PB →=(-x ,6-50-x 2)或PB →=(-x,6+50-x 2).因为PA →·PB →≤20,先取P (x, 50-x 2)进行计算,所以(-12-x )(-x )+(-50-x 2)(6-50-x 2)≤20,即2x +5≤ 50-x 2. 当2x +5≤0,即x ≤-52时,上式恒成立;当2x +5≥0,即x ≥-52时,(2x +5)2≤50-x 2,解得-5≤x ≤1,故x ≤1.同理可得P (x ,-50-x 2)时,x ≤-5. 又-52≤x ≤52,所以-52≤x ≤1. 故点P 的横坐标的取值范围为[-52,1].解法二:设P (x ,y ),则PA →=(-12-x ,-y ),PB →=(-x ,6-y ).∵PA →·PB →≤20,∴(-12-x )·(-x )+(-y )(6-y )≤20, 即2x -y +5≤0.如图,作圆O :x 2+y 2=50,直线2x -y +5=0与⊙O 交于E ,F 两点, ∵P 在圆O 上且满足2x -y +5≤0,∴点P 在EDF ︵上.由⎩⎪⎨⎪⎧x 2+y 2=50,2x -y +5=0得F 点的横坐标为1.又D 点的横坐标为-52,∴P 点的横坐标的取值范围为[-52,1].4.[2017·全国卷Ⅲ]已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 解 (1)证明:设A (x 1,y 1),B (x 2,y 2),l :x =my +2,由⎩⎪⎨⎪⎧x =my +2,y 2=2x 可得y 2-2my -4=0,则y 1y 2=-4.又x 1=y 212,x 2=y 222,故x 1x 2=(y 1y 2)24=4.因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB .故坐标原点O 在圆M 上.(2)由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4. 故圆心M 的坐标为(m 2+2,m ), 圆M 的半径r =(m 2+2)2+m 2.由于圆M 过点P (4,-2),因此AP →·BP →=0, 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可得y 1y 2=-4,x 1x 2=4.所以2m 2-m -1=0,解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10,圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝ ⎛⎭⎪⎫94,-12,圆M 的半径为854, 圆M 的方程为⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y +122=8516.5.[2015·全国卷Ⅰ]已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |.解 (1)由题设,可知直线l 的方程为y =kx +1. 因为l 与C 交于两点,所以|2k -3+1|1+k2<1, 解得4-73<k <4+73,所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆心C 在l 上,所以|MN |=2.。
(浙江专版)2019高考数学一轮复习第8章平面解析几何第4节直线与圆、圆与圆的位置关系教师用书1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:d<r⇔相交;d=r⇔相切;d>r⇔相离.(2)代数法:联立直线l与圆C的方程,消去y(或x),得一元二次方程,计算判别式Δ=b2-4ac,Δ>0⇔相交,Δ=0⇔相切,Δ<0⇔相离.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.( )(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( )(3)如果两圆的圆心距小于两半径之和,则两圆相交.( )(4)若两圆相交,则两圆方程相减消去二次项后得到的二元一次方程是公共弦所在直线的方程.( )[解析]依据直线与圆、圆与圆的位置关系,只有(4)正确.[答案](1)×(2)×(3)×(4)√2.(教材改编)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为( )A.内切B.相交C.外切D.相离B[两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d=42+1=17.∵3-2<d<3+2,∴两圆相交.]3.(2017·嘉兴调研)直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是( )A .-2或12B .2或-12C .-2或-12D .2或12D [由圆x 2+y 2-2x -2y +1=0,知圆心(1,1),半径为1,所以|3×1+4×1-b |32+42=1,解得b =2或12.]4.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为__________.2555[圆心为(2,-1),半径r =2. 圆心到直线的距离d =|2+--3|1+4=355,所以弦长为2r 2-d 2=222-⎝⎛⎭⎪⎫3552=2555.] 5.设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________. 【导学号:51062274】4π [圆C :x 2+y 2-2ay -2=0化为标准方程是C :x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2.|AB |=23,点C 到直线y =x +2a 即x -y +2a =0的距离d =|0-a +2a |2,由勾股定理得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|0-a +2a |22=a 2+2,解得a 2=2,所以r =2,所以圆C 的面积为π×22=4π.]+(y -1)2=5的位置关系是( )A .相交B .相切C .相离D .不确定(2)若点P (1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为__________. (1)A (2)x +2y -5=0 [(1)法一:∵圆心(0,1)到直线l 的距离d =|m |m 2+1<1< 5.故直线l 与圆相交.法二:直线l :mx -y +1-m =0过定点(1,1),∵点(1,1)在圆C :x 2+(y -1)2=5的内部,∴直线l 与圆C 相交.(2)∵以原点O 为圆心的圆过点P (1,2), ∴圆的方程为x 2+y 2=5. ∵k OP =2,∴切线的斜率k =-12.由点斜式可得切线方程为y -2=-12(x -1),即x +2y -5=0.][规律方法] 1.(1)利用圆心到直线的距离可判断直线与圆的位置关系,也可利用直线的方程与圆的方程联立后得到的一元二次方程的判别式来判断直线与圆的位置关系;(2)注意灵活运用圆的几何性质,联系圆的几何特征,数形结合,简化运算.如“切线与过切点的半径垂直”等.2.与弦长有关的问题常用几何法,即利用弦心距、半径和弦长的一半构成直角三角形进行求解.[变式训练1] (1)(2017·宁波中学模拟)过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0(2)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=__________.(1)B (2)4 [(1)依题意知,点(3,1)在圆(x -1)2+y 2=r 2上,且为切点. ∴圆心(1,0)与切点(3,1)连线的斜率为12.因此切线的斜率k =-2.故圆的切线方程为y -1=-2(x -3),即2x +y -7=0. (2)由圆x 2+y 2=12知圆心O (0,0),半径r =2 3. ∴圆心(0,0)到直线x -3y +6=0的 距离d =61+3=3,|AB |=212-32=2 3.过C 作CE ⊥BD 于E .如图所示,则|CE |=|AB |=2 3.∵直线l 的方程为x -3y +6=0,∴k AB =33,则∠BPD =30°,从而∠BDP =60°. ∴|CD |=|CE |sin 60°=|AB |sin 60°=2332=4.]已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离B [法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0得两交点为(0,0),(-a ,a ).∵圆M 截直线所得线段长度为22, ∴a 2+-a2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0,即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2. 又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=-2+-2= 2.∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3,∴两圆相交. 法二:∵x 2+y 2-2ay =0(a >0)⇔x 2+(y -a )2=a 2(a >0), ∴M (0,a ),r 1=a .∵圆M 截直线x +y =0所得线段的长度为22,∴圆心M 到直线x +y =0的距离d =a2=a 2-2,解得a =2.以下同法一.][规律方法] 1.圆与圆的位置关系取决于圆心距与两个半径的和与差的大小关系. 2.若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到.3.若两圆相交,则两圆的连心线垂直平分公共弦.[变式训练2] 若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是__________.4 [由题意⊙O 1与⊙O 在A 处的切线互相垂直,则两切线分别过另一圆的圆心,∴O 1A ⊥OA .又∵|OA |=5,|O 1A |=25, ∴|OO 1|=5.又A ,B 关于OO 1对称,∴AB 为Rt △OAO 1斜边上高的2倍. 又∵12·OA ·O 1A =12OO 1·AC ,得AC =2.∴AB =4.]M :x 2+y 2-12x-14y +60=0及其上一点A (2,4).图841(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程. [解] 圆M 的标准方程为(x -6)2+(y -7)2=25, 所以圆心M (6,7),半径为5.2分(1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1.4分 因此,圆N 的标准方程为(x -6)2+(y -1)2=1.6分 (2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m , 即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5.10分 因为BC =OA =22+42=25, 而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22, 所以25=m +25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.15分[规律方法] 1.(1)设出圆N 的圆心N (6,y 0),由条件圆M 与圆N 外切,求得圆心与半径,从而确定圆的标准方程.(2)依据平行直线,设出直线l 的方程,根据点到直线的距离公式及勾股定理求解.2.求弦长常用的方法:①弦长公式;②半弦长、半径、弦心距构成直角三角形,利用勾股定理求解(几何法).[变式训练3] 在直角坐标系xOy 中,以坐标原点O 为圆心的圆与直线:x -3y =4相切.(1)求圆O 的方程;(2)若圆O 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程. 【导学号:51062275】[解] (1)依题意,圆O 的半径r 等于原点O 到直线x -3y =4的距离, 则r =41+3=2.4分所以圆O 的方程为x 2+y 2=4.6分(2)由题意,可设直线MN 的方程为2x -y +m =0. 则圆心O 到直线MN 的距离d =|m |5.10分由垂径分弦定理,得m 25+(3)2=22,即m =± 5.12分所以直线MN 的方程为2x -y +5=0或2x -y -5=0.15分[思想与方法]1.直线与圆的位置关系体现了圆的几何性质和代数方程的结合,解题时要抓住圆的几何性质,重视数形结合思想方法的应用.2.计算直线被圆截得的弦长的常用方法:(1)几何方法:运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数方法:弦长公式|AB|=1+k2|x A-x B|=+k2x A+x B2-4x A x B].[易错与防范]1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为“-1”列方程来简化运算.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.课时分层训练(四十六)直线与圆、圆与圆的位置关系A组基础达标(建议用时:30分钟)一、选择题1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是( ) A.相切B.相交C.相离D.不确定B [由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b 2<1,故直线与圆相交.]2.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21 B .19 C .9D .-11C [圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9.]3.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-8B [由x 2+y 2+2x -2y +a =0, 得(x +1)2+(y -1)2=2-a ,所以圆心坐标为(-1,1),半径r =2-a ,圆心到直线x +y +2=0的距离为|-1+1+2|2=2,所以22+(2)2=2-a ,解得a =-4.]4.(2017·浙江金丽衢十二校模拟)过点P (4,2)作圆x 2+y 2=4的两条切线,切点分别为A ,B ,O 为坐标原点,则△OAB 外接圆的方程是( )【导学号:51062276】A .(x -2)2+(y -1)2=5 B .(x -4)2+(y -2)2=20 C .(x +2)2+(y +1)2=5 D .(x +4)2+(y +2)2=20A [由题意知,O ,A ,B ,P 四点共圆,所以所求圆的圆心为线段OP 的中点(2,1). 又圆的半径r =12|OP |=5,所以所求圆的方程为(x -2)2+(y -1)2=5.]5.(2017·杭州二中三模)已知圆C :(x -1)2+y 2=25,则过点P (2,-1)的圆C 的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( )A .1013B .921C .1023D .911C [易知最长弦为圆的直径10.又最短弦所在直线与最长弦垂直,且|PC |=2,∴最短弦的长为2r 2-|PC |2=225-2=223.故所求四边形的面积S =12×10×223=1023].二、填空题6.已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A ,B 两点,则线段AB 的中垂线方程为________________.x +y -3=0 [∵圆C 1的圆心C 1(3,0),圆C 2的圆心C 2(0,3),∴直线C 1C 2的方程为x +y-3=0,AB 的中垂线即直线C 1C 2,故其方程为x +y -3=0.]7.若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =__________.2 [如图,过点O 作OD ⊥AB 于点D ,则|OD |=532+-2=1.∵∠AOB =120°,OA =OB , ∴∠OBD =30°,∴|OB |=2|OD |=2,即r =2.]8.(2017·浙江金华十校联考)已知圆C :(x +2)2+y 2=4,直线l :kx -y -2k =0(k ∈R ),若直线l 与圆C 恒有公共点,则实数k 的最小值是__________.【导学号:51062277】-33[圆心C (-2,0),半径r =2. 又圆C 与直线l 恒有公共点.所以圆心C (-2,0)到直线l 的距离d ≤r . 因此|-2k -2k |k 2+1≤2,解得-33≤k ≤33.所以实数k 的最小值为-33.] 三、解答题9.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5). (1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S . [解] (1)由圆C :x 2+y 2-4x -6y +12=0,得(x -2)2+(y -3)2=1,圆心C (2,3).当斜率存在时,设过点A 的圆的切线方程为y -5=k (x -3),即kx -y +5-3k =0.3分由d =|2k -3+5-3k |k 2+1=1,得k =34.又斜率不存在时直线x =3也与圆相切, 故所求切线方程为x =3或3x -4y +11=0.6分 (2)直线OA 的方程为y =53x ,即5x -3y =0,又点C 到OA 的距离d =|5×2-3×3|52+-2=134.12分又|OA |=32+52=34. 所以S =12|OA |d =12.15分10.(2017·宁波镇海中学模拟)已知定点M (0,2),N (-2,0),直线l :kx -y -2k +2=0(k 为常数).(1)若点M ,N 到直线l 的距离相等,求实数k 的值;(2)对于l 上任意一点P ,∠MPN 恒为锐角,求实数k 的取值范围. [解] (1)∵点M ,N 到直线l 的距离相等, ∴l ∥MN 或l 过MN 的中点.∵M (0,2),N (-2,0),∴直线MN 的斜率k MN =1,MN 的中点坐标为C (-1,1).3分又∵直线l :kx -y -2k +2=0过定点D (2,2), ∴当l ∥MN 时,k =k MN =1; 当l 过MN 的中点时,k =k CD =13.综上可知,k 的值为1或13.6分(2)∵对于l 上任意一点P ,∠MPN 恒为锐角,∴l 与以MN 为直径的圆相离,即圆心(-1,1)到直线l 的距离大于半径,10分 ∴d =|-k -1-2k +2|k 2+1>2,解得k <-17或k >1.15分B 组 能力提升(建议用时:15分钟)1.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切,则ab 的最大值为( ) A. 2B .2C .4D .2 2 B [圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R ).化为(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1.∵圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切, ∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2. ∴ab 的最大值为2.]2.(2017·杭州质检)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=__________. 【导学号:51062278】32[如图所示,可知OA ⊥AP ,OB ⊥BP ,OP =1+3=2. 又OA =OB =1,可以求得AP =BP =3,∠APB =60°.故PA →·PB →=3×3×cos 60°=32.] 3.已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点,直线l :y =kx 与圆C 交于M ,N 两点.(1)求k 的取值范围;(2)直线l 能否将圆C 分割成弧长的比为13的两段弧? 若能,求出直线l 的方程;若不能,请说明理由.[解] (1)将y =kx 代入圆C 的方程x 2+(y -4)2=4.得(1+k 2)x 2-8kx +12=0.2分∵直线l 与圆C 交于M ,N 两点,∴Δ=(-8k )2-4×12(1+k 2)>0,得k 2>3,(*)∴k 的取值范围是(-∞,-3)∪(3,+∞).6分(2)假设直线l 将圆C 分割成弧长的比为13的两段弧,则劣弧所对的圆心角∠MCN=90°,由圆C:x2+(y-4)2=4知圆心C(0,4),半径r=2.9分在Rt△MCN中,可求弦心距d=r·sin 45°=2,故圆心C(0,4)到直线kx-y=0的距离|0-4|1+k2=2,∴1+k2=8,k=±7,经验证k=±7满足不等式(*),12分故l的方程为y=±7x.因此,存在满足条件的直线l,其方程为y=±7x.15分。
第四节直线与圆、圆与圆的位置关系考试要求:能判断直线与圆、圆与圆的位置关系.一、教材概念·结论·性质重现1.直线与圆的位置关系的判断(1)几何法:利用圆心到直线的距离d和圆的半径r的大小关系进行判断.d<r ⇔相交;d=r⇔相切;d>r⇔相离.(2)代数法:联立直线与圆的方程,求联立后所得方程的判别式Δ,直线与圆的位置关系体现了圆的几何性质和代数方法的结合,代数法与几何法是不同的方法和思路,解题时要根据题目特点灵活选择.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=(r1>0),圆O2:(x-a2)2+(y-b2)2=(r2>0).位置关系方法几何法:圆心距d与r1,r2的关系代数法:两圆方程联立组成方程组的解的情况相离d>r1+r2无解外切d=r1+r2一组实数解相交|r1-r2|<d<r1+r2两组不同的实数解内切d=|r1-r2|(r1≠r2)一组实数解内含0≤d<|r1-r2|(r1≠r2)无解(1)用代数法判断两圆的位置关系时,要准确区分两圆内切、外切或相离、内含.(2)两圆的位置关系与公切线的条数:①内含:0条.②内切:1条.③相交:2条.④外切:3条.⑤外离:4条.(1)当两圆相交(切)时,两圆方程(x2,y2项的系数相同)相减便可得公共弦(内公切线)所在的直线方程.两圆相交时,两圆连心线垂直平分公共弦;两圆相切时,两圆连心线必过切点.(2)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)·(y -b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在的直线方程为x0x+y0y=r2.(4)直线与圆相交时,弦心距d、半径r、弦长的一半l满足关系式r2=d2+.(5)过圆内一点的最长的弦是直径,最短的是垂直这点与圆心连线的弦.二、基本技能·思想·活动经验1.判断下列说法的正误,对的画“√”,错的画“×”.(1)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( ×)(2)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.( ×) (3)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B 四点共圆且直线AB的方程是x0x+y0y=r2. ( √)(4)圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-4x-2y+1=0的公切线有且仅有2条.( √)2.“k=0”是“直线y=kx-与圆x2+y2=2相切”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件C 解析:直线与圆相切⇔=⇔k=0.3.圆C1:x2+(y-1)2=1与圆C2:(x+4)2+(y-1)2=4的公切线的条数为( )A.4 B.3C.2 D.1A 解析:两圆的圆心距|C1C2|=4>2+1,所以两圆外离,两圆的公切线有4条.4.圆x2+y2=4与圆x2+y2-4x+4y-12=0的公共弦所在直线和两坐标轴所围成图形的面积为( )A.1 B.2C.4 D.8B 解析:由(x2+y2-4)-(x2+y2-4x+4y-12)=0得公共弦所在直线的方程为x-y+2=0,它与两坐标轴分别交于(-2,0),(0,2),所以直线和两坐标轴所围成图形的面积为×2×2=2.5.直线l:3x-y-6=0与圆x2+y2-2x-4y=0相交于A,B两点,则|AB|=________.解析:圆的方程可化为(x-1)2+(y-2)2=()2,又圆心(1,2)到直线l的距离为,所以|AB|=2=.考点1 直线与圆的位置关系——基础性1.直线ax-by=0与圆x2+y2-ax+by=0的位置关系是( )A.相交B.相切C.相离D.不能确定B 解析:将圆的方程化为标准方程得+=,所以圆心坐标为,半径r==.因为圆心到直线ax-by=0的距离d===r,所以直线与圆相切.故选B.2.圆x2+y2-2x+4y=0与直线2tx-y-2-2t=0(t∈R)的位置关系为( )A.相离B.相切C.相交D.以上都有可能C 解析:由2tx-y-2-2t=0(t∈R),得(2x-2)t-(y+2)=0,所以直线2tx-y-2-2t=0(t∈R)恒过点(1,-2).因为1+4-2-8=-5<0,所以(1,-2)在圆x2+y2-2x+4y=0内部,所以直线2tx-y-2-2t=0(t∈R)与圆x2+y2-2x+4y=0相交.故选C.3.若过点A(4,0)的直线l与曲线(x-2)2+y2=1有公共点,则直线l的斜率的取值范围为( )A.[-] B.(-)C.D.C 解析:设直线方程为y=k(x-4),即kx-y-4k=0,直线l与曲线(x-2)2+y2=1有公共点,所以圆心到直线的距离小于等于半径,即d=≤1,得4k2≤k2+1,k2≤,即-≤k≤.故选C.1.注意常用方法:判断直线与圆的位置关系一般用几何法,即d与r的关系进行判断.2.注意直线上定点的作用:若直线恒过定点且定点在圆内,可判断直线与圆相交.考点2 圆与圆的位置关系——综合性(1)若圆(x+1)2+y2=m与圆x2+y2-4x+8y-16=0内切,则实数m的值为( ) A.1 B.11C.121 D.1或121D 解析:对x2+y2-4x+8y-16=0进行整理,可得(x-2)2+(y+4)2=36,故两圆的圆心坐标为(-1,0),(2,-4),半径分别为,6.因为圆(x+1)2+y2=m与圆x2+y2-4x+8y -16=0内切,所以圆心距d满足d=|r2-r1|,即=|-6|,解得m =1或121.(2)已知两圆C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.①求证:圆C1和圆C2相交;②求圆C1和圆C2的公共弦所在直线的方程和公共弦长.①证明:由题意可知,圆C1的圆心为C1(1,3),半径r1=,圆C2的圆心为C2(5,6),半径r2=4,两圆的圆心距d=|C1C2|=5,r1+r2=+4,|r1-r2|=4-,所以|r1-r2|<d<r1+r2,所以圆C1和C2相交.②解:圆C1和圆C2的方程左右两边分别相减,整理得4x+3y-23=0,所以两圆的公共弦所在直线的方程为4x+3y-23=0.圆心C2(5,6)到直线4x+3y-23=0的距离d==3,故公共弦长为2=2.本例(1)中若两圆内含,求实数m的取值范围.解:圆(x+1)2+y2=m的圆心为(-1,0),半径为;圆x2+y2-4x+8y-16=0,即(x-2)2+(y+4)2=36,故圆心为(2,-4),半径为6.由两圆内含得<|-6|,解得m<1或m>121.(1)判断两圆位置关系常用几何法,即用两圆圆心距与两圆半径和及差的绝对值的大小关系判断,一般不用代数法.注意两圆相切时,应分外切、内切两种情况.(2)两圆相交时,两圆的公共弦所在直线的方程,可由两圆的方程作差消去x2,y2项得到.(3)求两圆公共弦长,常选其中一圆,由弦心距d、半弦长、半径r构成直角三角形,利用勾股定理求解.1.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )A.内切B.相交C.外切D.相离B 解析:将圆M的方程化为x2+(y-a)2=a2,则圆心M(0,a),半径r1=a.点M到直线x +y=0的距离d=,则+2=a2,得a=2,故M(0,2),r1N的圆心N(1,1),半径r2=1,所以|MN|=,而|r1-r2|<|MN|<|r1+r2|,所以两圆相交.故选B.2.若圆O1:x2+y2=5与圆O2:(x+m)2+y2=20相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是( )A.3 B.4C.2D.8B 解析:如图,连接O1A,O2A,由于⊙O1与⊙O2在点A处的切线互相垂直,因此O1A⊥O2A,所以=O1A2+O2A2,即m2AB 交x轴于点C.在Rt△O1AO2中,sin ∠AO2O1=,所以在Rt△ACO2中,AC=AO2·sin ∠AO2O1=2=2,所以AB=2AC=4.故选B.考点3 直线与圆的综合问题——应用性考向1 弦长问题已知圆C:(x-4)2+(y-2)2=r2截y轴所得的弦长为2,过点(0,4)且斜率为k 的直线l与圆C交于A,B两点.若|AB|=2,则k的值为( )A.-B.C.-D.D 解析:已知圆C:(x-4)2+(y-2)2=r2截y轴所得的弦长为2,所以圆心坐标为(4,2),半径为r,则42+()2=r2,解得r=3.由于过点(0,4)且斜率为k的直线l与圆C交于A,B两点,|AB|=2,则设直线l的方程为y=kx+4,由点到直线的距离公式可得:=,解得k=.求弦长的两种求法(1)代数方法:将直线和圆的方程联立,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何方法:若弦心距为d,圆的半径长为r,则弦长l=2.考向2 圆的切线问题若过直线3x+4y-2=0上一点M向圆C:(x+2)2+(y+3)2=4作一条切线切于点T,则|MT|的最小值为( )A.B. 4C. 2D. 2D 解析:根据题意,圆C:(x+2)2+(y+3)2=4,其圆心为(-2,-3),半径r=2,过点M向圆C作一条切线切于点T,则|MT|==.当|MC|取得最小值时,|MT|的值最小,而|MC|的最小值为点C到直线3x+4y-2=0的距离,则|MC|min ==4,则|MT|的最小值为=2.故选D.(1)圆的切线问题的处理要抓住圆心到直线的距离等于半径这一关系,从而建立方程解决问题.(2)过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.1.若直线l与曲线y=和圆x 2+y2=都相切,则l的方程为( )A.y=2x+1 B.y =2x+C.y=x+1 D.y =x+D 解析:圆x2+y2=的圆心为原点,半径为,经检验原点与选项A,D中的直线y=2x +1,y =x+的距离均为,即两直线与圆x2+y2=均相切,原点与选项B,C中的直线y=2x +,y=x+1的距离均不是,即两直线与圆x2+y2=均不相切,所以排除选项BC.将直线方程y=2x+1代入y=,得2()2-+1=0,判别式Δ<0,所以直线y=2x+1与曲线y=不相切,所以排除选项A.故选D.2.已知直线x-y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若|AB|=6,则r的值为________.5 解析:设圆心为O(0,0),圆心到直线的距离d=AB的中点M,连接OM(图略),则OM⊥AB.在Rt△OMA中,r==5.一个圆与y轴相切,圆心在直线x-3y=0上,且在直线y=x上截得的弦长为2,求此圆的方程.[四字程序]读想算思求圆的标准方程或一般方程如何求圆的方程?1.圆的标准方程是什么?2.圆的一般方程是什么数形结合1.圆的圆心在直线上.2.圆与直线相切.3.圆在直线上截得的根据题目条件设出圆的标准方程或一般方程,利用待定系数法求解1.(x-a)2+(y-b)2=r2.2.x2+y2+Dx+Ey+F=0借助于圆的几何性质求解弦长为思路参考:根据圆心在直线上,设出圆心.由圆与直线相切,表示出半径,结合弦长求出圆的方程.解:因为所求圆的圆心在直线x-3y=0上,且与y轴相切,所以设所求圆的圆心为C (3a,a),半径为r=3|a|.又圆在直线y=x上截得的弦长为2,圆心C(3a,a)到直线y=x的距离为d=,所以有d2+()2=r2,即2a2+7=9a2,所以a=±1.故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.思路参考:设出圆的标准方程.利用圆心到直线的距离公式表示出半径,结合弦长求出圆的方程.解:设所求的圆的方程是(x-a)2+(y-b)2=r2,则圆心(a,b)到直线x-y=0的距离为,所以r2=+()2,即2r2=(a-b)2+14.①由于所求的圆与y轴相切,所以r2=a2.②又因为所求圆心在直线x-3y=0上,所以a-3b=0.③联立①②③,解得a=3,b=1,r2=9或a=-3,b=-1,r2=9.故所求的圆的方程是(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.思路参考:设出圆的一般方程,用待定系数法求解.解:设所求的圆的方程是x2+y2+Dx+Ey+F=0,圆心为,半径为.令x=0,得y2+Ey+F=0.由圆与y轴相切,得Δ=0,即E2=4F.④又圆心到直线x-y=0的距离为,由已知,得+()2=r2,即(D-E)2+56=2(D2+E2-4F).⑤又圆心在直线x-3y=0上,所以D-3E=0.⑥联立④⑤⑥,解得D=-6,E=-2,F=1或D=6,E=2,F=1.故所求圆的方程是x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0,即(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.1.本题考查圆的方程的求法,解法灵活多变,基本解题策略是设出圆的方程,借助待定系数法求解.2.基于课程标准,解答本题需要掌握圆的标准方程和一般方程的一般形式.本题的解答体现了数学运算、直观想象的核心素养.3.基于高考评价体系,本题通过圆的代数性质和几何性质之间相互联系和转化,体现了基础性.已知圆C的圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2),则圆C 的方程为______________.(x-1)2+(y+4)2=8 解析:(方法一)如图,设圆心).依题意得=1,解得x0=1,即圆心坐标为(1,-4),半径r=2,故圆的方程为(x-1)2+(y+4)2=8. (方法二)设所求方程为(x-x0)2+(y-y0)2=r2.根据已知条件得解得因此所求圆的方程为(x-1)2+(y+4)2=8.课时质量评价(四十六)A组全考点巩固练1.(2022·北京卷)若直线2x+y-1=0是圆(x-a)2+y2=1的一条对称轴,则a=( ) A.B.-C.1 D.-1A 解析:由题可知圆心为(a,0),因为直线是圆的对称轴,所以圆心在直线上,即2a+0-1=0,解得a=.故选A.2.(2023·济南质检)圆x2+(y-2)2=4与圆x2+2mx+y2+m2-1=0至少有三条公切线,则m的取值范围是( )A.(-∞,-]B.[,+∞)C.[-]D.(-∞,-]∪[,+∞)D 解析:将x2+2mx+y2+m2-1=0化为标准方程得(x+m)2+y2=1,即圆心为(-m,0),半径为1,圆x2+(y-2)2x2+(y-2)2=4与圆x2+2mx+y2+m2-1=0至少有三条公切线,所以两圆的位置关系为外切或相离,所以≥2+1,即m2≥5,解得m∈(-∞,-]∪[,+∞). 故选D.3.(多选题)若直线x-y=2被圆(x-a)2+y2=4所截得的弦长为2,则实数a的值可能为( )A.0 B.4C.-2 D.6AB 解析:由圆的方程,可知圆心坐标为(a,0),半径r,所以圆心到直线的距离d==.又d=,所以|a-2|=2,解得a=4或0.故选AB.4.已知圆的方程是x2+y2=1,则在y轴上截距为的切线方程为( )A.y=x+B.y=-x+C.y=x+或y=-x+D.x=1或y=x+C 解析:由题意知切线斜率存在,故设切线方程为y=kx+,则=1,所以k=±1,故所求切线方程为y=x+或y=-x+.5.过点P(1,2)的直线与圆x2+y2=1相切,且与直线ax+y-1=0垂直,则实数a的值为( )A.0 B.-C.0或D.C 解析:当a=0时,直线ax+y-1=0,即直线y=1,此时过点P(1,2)且与直线y=1垂直的直线为x=1,而x=1是与圆相切,满足题意,所以a=0成立.当a≠0时,过点P(1,2)且与直线ax+y-1=0垂直的直线斜率为,可设该直线方程为y -2=(x-1),即x-ay+2a-1=0,再根据直线与圆相切,即圆心到直线距离为1,可得=1,解得a=.故选C.6.直线l:y=kx+4与圆O:x2+y2=4交于A(x1,y1),B(x2,y2)两点.若x1x2+y1y2=0,则k2的值为( )A.3 B.7C.8 D.13B 解析:由条件可得x1x2≠0,圆O的圆心为(0,0),半径为2,由x1x2+y1y2=0可得·=-1,故OA⊥OB,故△AOB为等腰直角三角形.故点O到直线l的距离为,即=,解得k2=7.故选B.7.早在两千多年前,我国的墨子给出了圆的定义——一中同长也.已知O为坐标原点,P(-1,).若⊙O,⊙P的“长”分别为1,r,且两圆相切,则r=________.1或3 解析:由题意,O为坐标原点,P(-1,),根据圆的定义可知,⊙O的圆心为O(0,0),半径为1,⊙P的圆心为P(-1,),半径为r,因为两圆相切,则有|PO|=r+1或|PO|=r-1,则有r+1=2或r-1=2,解得r=1或3.8.已知圆O:x2+y2=5与圆C1:x2+y2-5x=0相交于M,N两点,点P的坐标为(3,-4).若圆C2经过M,N,P三点,则C2的方程为________.(x-5)2+y2=20 解析:把圆O:x2+y2=5与圆C1:x2+y2-5x=0相减,可得公共弦MN的方程为x=1,故M,N两点的坐标为(1,2),(1,-2).又点P的坐标为(3,-4),故要求的圆的圆心C2在x轴上,设C2(m,0),由C2M=C2P,求得m=5,故要求的圆的圆心C2(5,0),半径为C2M=,故要求的圆C2的方程为(x-5)2+y2=20.9.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若·=12,其中O为坐标原点,求|MN|.解:(1)由题意可得,直线l的斜率存在.设过点A(0,1)且斜率为k的直线l的方程:y=kx+1,即kx-y+1=0.由已知可得圆C的圆心C的坐标为(2,3),半径R=1.由直线l与圆C交于M,N两点,则<1,解得<k<.所以k的取值范围为.(2)设M(x1,y1),N(x2,y2),由题意可得,经过点M,N,A的直线方程为y=kx+1,代入圆C的方程(x-2)2+(y-3)2=1,可得(1+k2)x2-4(k+1)x+7=0,所以x1+x2=,x1x2=,所以y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1=.由·=x1x2+y1y2==12,解得k=1,故直线l的方程为y=x+1,即x-y+1=0.圆心C在直线l上,MN的长即为圆的直径.所以|MN|=2.B组新高考培优练10.已知直线l:x+y-5=0与圆C:(x-2)2+(y-1)2=r2(r>0)相交所得的弦长为2,则圆C的半径r=( )A.B.2C.2D.4B 解析:依题意,得圆C的圆心坐标为(2,1),圆心到直线l的距离d==,因为弦长为2,所以2=2,所以r=2.11.已知直线x+ay-1=0是圆C:x2+y2-4x-2y+1=0的对称轴,过点A(-4,a)作圆C 的一条切线,切点为B,则|AB|=( )A.2 B.6C.4D.2B 解析:因为圆C:x2+y2-4x-2y+1=0,即(x-2)2+(y-1)2=4,所以圆心为C(2,1),半径r=2.由题意可得,直线l:x+ay-1=0经过圆C的圆心(2,1),故有2+a-1=0,所以a=-1,点A(-4,-1).因为|AC|==2,|CB|=r=2,所以|AB|==6.故选B.12.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“|AB|=”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A 解析:依题意,注意到|AB|2=()2=等价于圆心O到直线l的距离等于,即有=,k=±1.因此,“k=1”是“|AB|=”的充分不必要条件.13.(多选题)已知直线l:x+y-4=0,圆O:x2+y2=2,M是l上一点,MA,MB分别是圆O的切线,则( )A.直线l与圆O相切B.圆O上的点到直线l的距离的最小值为C.存在点M,使∠AMB=90°D.存在点M,使△AMB为等边三角形BD 解析:对于A选项,圆心到直线的距离d==2>=r,所以直线和圆相离,故A错误;对于B选项,圆O上的点到直线l的距离的最小值为d-r=,故B正确;对于C选项,当OM⊥l时,∠AMB有最大值60°,故C错误;对于D选项,当OM⊥l时,△AMB 为等边三角形,故D正确. 故选BD.14.(多选题)(2022·德州期末)已知点A是直线l:x+y-=0上一定点,点P,Q是圆x2+y2=1上的动点.若∠PAQ的最大值为90°,则点A的坐标可以是( )A.(0,) B.(1,-1)C.(,0) D.(-1,1)AC 解析:如下图所示:原点到直线l的距离为d==1,则直线l与圆x2+y2=1相切.由图可知,当AP,AQ均为圆x2+y2=1的切线时,∠PAQ取得最大值,连接OP,OQ,由于∠PAQ的最大值为90°,且∠APO=∠AQO=90°,|OP|=|OQ|=1,则四边形APOQ为正方形,所以|OA|=|OP|=.由两点间的距离公式得设A(t,-t),|OA|==,整理得2t2-2t=0,解得t=0或,因此,点A的坐标为(0,)或(,0).故选AC.15.在①被x轴、y轴所截得的弦长均为4,且圆C的圆心位于第四象限,②与直线4x -3y+18=0相切于点B(-3,2),③过点B(-2,-5),且圆心在直线x+y=0上这三个条件中任选一个补充在下面的问题中,并加以解答.问题:已知圆C过点A(-2,3),________,求圆C的方程.解:若选①,设圆C:(x-a)2+(y-b)2=r2(a>0,b<0),由题意可知解得因此,圆C的方程为(x-1)2+(y+1)2②,由题意知圆心必在过切点B(-3,2)且垂直于切线4x-3y+18=0的直线上,可求得此直线方程为3x+4y+1=0.直线AB的斜率k AB==1,线段AB的中点坐标为,则线段AB的垂直平分线方程为y-=-,即y=-x.可知圆心必在线段AB的垂直平分线y=-x上,联立可求得圆心C(1,-1),则r=|BC|==5,因此,圆C的方程为(x-1)2+(y+1)2=25.若选③,由题意知圆心必在AB的垂直平分线上,所以AB的垂直平分线方程为y=-1.将直线y+1=0与直线x+y=0联立,可得圆心坐标C(1,-1).因为r=|BC|==5,因此,圆C的方程为(x-1)2+(y+1)2=25. 16.已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l 的右上方.(1)求圆C的方程;(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.解:(1)设圆心C(a,0),则=2,解得a=0或a=-5(舍).所以圆C:x2+y2=4.(2)如图,当直线AB⊥x轴时,x轴平分∠ANB.当直线AB的斜率存在时,设直线AB的方程为y=k(x-1),N(t,0),A(x1,y1),B(x2,y2),由得(k2+1)x2-2k2x+k2-4=0,Δ=(-2k2)2-4(k2+1)(k2-4)=12k2+16>0,所以x1+x2=,x1x2=.若x轴平分∠ANB,则k AN=-k BN⇒=0⇒=0⇒2x1x2-(t+1)(x1+x2)+2t=0⇒+2t=0⇒t=4.所以当点N为(4,0)时,能使得x轴平分∠ANB.。
第49讲直线与圆、圆与圆的位置关系考纲要求考情分析命题趋势1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.初步了解用代数方法处理几何问题的思想.2016·全国卷Ⅱ,42016·全国卷Ⅲ,162015·重庆卷,82015·江苏卷,10圆的方程、直线与圆的位置关系在高考中几乎是年年考,一般单独命题.但有时也与圆锥曲线等知识综合,重点考查函数与方程,数形结合及转化与化归思想的应用.分值:5分1.直线与圆的位置关系(1)三种位置关系:__相交__、__相切__、__相离__.(2)两种研究方法(3)圆的切线方程的常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).方法位置关系 几何法:圆心距d 与r 1,r 2的关系 代数法:两圆方程联立组成方程组的解的情况外离 __d >r 1+r 2__ __无解__ 外切 __d =r 1+r 2__ __一组实数解__ 相交 |r 1-r 2|<d <r 1+r 2__两组不同的实数解__ 内切 d =|r 1-r 2|(r 1≠r 2)__一组实数解__ 内含__0≤d <|r 1-r 2|(r 1≠r 2)____无解__1.思维辨析(在括号内打“√”或“×”).(1)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( √ ) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(4)从两圆的方程中消掉二次项后所得的方程为公共弦所在直线方程.( × ) (5)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )解析 (1)正确.直线与圆组成的方程组有一组解时,直线与圆相切,有两组解时,直线与圆相交.(2)错误.因为除外切外,还可能内切.(3)错误.因为除小于两半径和还需大于两半径差的绝对值,否则可能内切或内含. (4)错误.只有当两圆相交时,方程才是公共弦所在的直线方程. (5)正确.由已知可得O ,P ,A ,B 四点共圆, 其方程为⎝ ⎛⎭⎪⎫x -x 022+⎝ ⎛⎭⎪⎫y -y 022=⎝ ⎛⎭⎪⎫x 022+⎝ ⎛⎭⎪⎫y 022,即x 2+y 2-x 0x -y 0y =0,① 又圆O 方程为x 2+y 2=r 2,② ②-①得x 0x +y 0y =r 2,而两圆相交于A ,B 两点, 故直线AB 的方程是x 0x +y 0y =r 2.2.圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( B ) A .相切B .相交但直线不过圆心C .相交且直线过圆心D .相离解析 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+1=5<6,且2×1+(-2)-5≠0,因此该直线与圆相交但不过圆心.3.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是 ( B ) A .相离 B .相交 C .外切D .内切解析 圆O 1的圆心为(1,0),半径r 1=1,圆O 2的圆心为(0,2),半径r 2=2,故两圆的圆心距|O 1O 2|=5,而r 2-r 1=1,r 1+r 2=3,则有r 2-r 1<|O 1O 2|<r 1+r 2,故两圆相交.4.圆x 2+y 2-4x =0在点P (1,3)处的切线方程为( D ) A .x +3y -2=0 B .x +3y -4=0 C .x -3y +4=0D .x -3y +2=0解析 圆的方程为(x -2)2+y 2=4,圆心坐标为(2,0),半径为2,点P 在圆上,设切线方程为y -3=k (x -1),即kx -y -k +3=0,∴|2k -k +3|k 2+1=2,解得k =33. ∴切线方程为y -3=33(x -1),即x -3y +2=0. 5.直线x -2y +5=0与圆x 2+y 2=8相交于A ,B 两点,则||AB = 2 3 .解析 如图,取AB 中点C , 连接OC ,OA ,则OC ⊥AB , |OA |=22,|OC |=|0-2×0+5|12+(-2)2=5, ∴|AC |=8-5=3, ∴|AB |=2|AC |=2 3.一 直线与圆的位置关系判断直线与圆的位置关系时,通常利用圆心到直线的距离,注意求距离时直线方程必须化成一般式.【例1】 (1)直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( A ) A .相交 B .相切 C .相离D .不确定(2)若直线y =x +b 与曲线x =1-y 2恰有一个公共点,则b 的取值范围是 ( D ) A .b ∈(-1,1] B .b =- 2C .b =± 2D .b ∈(-1,1]或b =- 2解析 (1)由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交.(2)由x =1-y 2知,曲线表示半圆(如图所示),当-1<b ≤1时,直线y =x +b 与半圆有一个公共点;当直线与半圆相切时,也与半圆只有一个公共点,此时|b |2=1(b <-1),解得b =- 2.二 弦长问题求直线被圆所截得的弦长时,通常考虑弦心距、垂线段作为直角边的直角三角形,利用勾股定理来解决问题.【例2】 已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求||MN . 解析 (1)由题设可知直线l 的方程为y =kx +1. 因为直线l 与圆C 交于两点,所以|2k -3+1|1+k 2<1,解得4-73<k <4+73, 所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k2+8. 由题设得4k (1+k )1+k 2+8=12,解得k =1,所以直线l 的方程为y =x +1. 故圆心C 在直线l 上,所以|MN |=2.三 圆的切线问题求圆的切线方程应注意的问题求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求切线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时应注意斜率不存在的切线.【例3】 已知点P (2+1,2-2),点M (3,1),圆C :(x -1)2+(y -2)2=4. (1)求过点P 的圆C 切线方程;(2)求过点M 的圆C 的切线方程,并求出切线长. 解析 由题意得圆心C (1,2),半径r =2.(1)∵(2+1-1)2+(2-2-2)2=4,∴点P 在圆C 上. 又k PC =2-2-22+1-1=-1,∴切线的斜率k =-1k PC =1.∴过点P 的圆C 的切线方程是y -(2-2)=1×[x -(2+1)],即x -y +1-22=0. (2)∵(3-1)2+(1-2)2=5>4,∴点M 在圆C 外部.当过点M 的直线斜率不存在时,直线方程为x =3,即x -3=0. 又点C (1,2)到直线x -3=0的距离d =3-1=2=r ,即此时满足题意, ∴直线x =3是圆的切线.当切线的斜率存在时,设切线方程为y -1=k (x -3), 即kx -y +1-3k =0,则圆心C 到切线的距离d =|k -2+1-3k |k 2+1=r =2,解得k =34.∴切线方程为y -1=34(x -3),即3x -4y -5=0.综上可得,过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0. ∵|MC |=(3-1)2+(1-2)2=5,∴过点M 的圆C 的切线长为|MC |2-r 2=5-4=1.四 圆与圆的位置关系(1)处理两圆的位置关系多用圆心距与半径和或差的关系判断,一般不采用代数法. (2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到. 【例4】 已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1. (1)若圆C 1与圆C 2外切,求ab 的最大值; (2)若圆C 1与圆C 2内切,求ab 的最大值;(3)若圆C 1与圆C 2相交,求公共弦所在的直线方程;(4)若圆C 1与圆C 2有四条公切线,试判断直线x +y -1=0与圆(x -a )2+(y -b )2=1的位置关系.解析 (1)由圆C 1与圆C 2相外切,可得(a +b )2+(-2+2)2=2+1=3,即(a +b )2=9,根据基本不等式可知ab ≤⎝⎛⎭⎪⎫a +b 22=94,当且仅当a =b 时等号成立,ab 的最大值为94.(2)由C 1与C 2内切得(a +b )2+(-2+2)2=1, 即(a +b )2=1,又ab ≤⎝⎛⎭⎪⎫a +b 22=14, 当且仅当a =b 时等号成立,可知ab 的最大值为14.(3)由题意得,把圆C 1,圆C 2的方程都化为一般方程. 圆C 1:x 2+y 2-2ax +4y +a 2=0,① 圆C 2:x 2+y 2+2bx +4y +b 2+3=0,② 由②-①,得(2a +2b )x +3+b 2-a 2=0,即(2a +2b )x +3+b 2-a 2=0为所求公共弦所在的直线方程. (4)由两圆存在四条切线,可知两圆外离, 故(a +b )2+(-2+2)2>3.∴(a +b )2>9,即a +b >3或a +b <-3.又圆心(a ,b )到直线x +y -1=0的距离d =|a +b -1|2>1,∴直线x +y -1=0与圆(x -a )2+(y -b )2=1相离.1.(2018·广东揭阳一模)已知直线x +y -k =0(k >0)与x 2+y 2=4交于不同的两点A ,B ,O 为坐标原点,且|OA →+OB →|≥33|AB →|,则k 的取值范围是( B ) A .(3,+∞) B .[2,22) C .[2,+∞)D .[3,22)解析 由已知得圆心到直线的距离小于半径,即|k |2,又k >0,故0<k <2 2.①如图,取AB 的中点为M ,则由|OA →+OB →|≥33|AB →|得2|O M →|≥33|2M B →|, 即|OM →|≥33|BM →|,即∠MBO ≥π6,因为|OB |=2,|OM ||OB |=sin ∠MBO ≥sin π6=12,所以|OM |≥1,即|k |2≥1,所以k ≥ 2.②综合①②得,2≤k <22,故选B .2.若直线x -y =2被圆(x -1)2+(y +a )2=4所截得的弦长为22,则实数a 的值为 ( D )A .-2或6B .0或4C .-1或 3D .-1或3解析 圆心坐标为(1,-a ),弦长为22,∴圆心到直线x -y -2=0的距离为d =4-2=2,即2=|1+a -2|2,∴|a -1|=2,∴a =-1或3,故选D .3.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =__1__.解析 两圆的方程相减,得公共弦所在的直线方程为y =1a.又a >0,结合图象,再利用半径、弦长的一半及弦心距构成直角三角形,可知1a=22-(3)2=1⇒a =1.4.点P 在圆x 2+y 2-8x -4y +11=0上,点Q 在圆x 2+y 2+4x +2y -1=0上,则||PQ 的最小值为 35-3- 6 .解析 圆x 2+y 2-8x -4y +11=0的标准方程为(x -4)2+(y -2)2=9,圆x 2+y 2+4x +2y -1=0的标准方程为(x +2)2+(y +1)2=6.|PQ |min =两圆圆心距-R -r (R ,r 分别为两圆半径), 圆心距d =(4+2)2+(2+1)2=35, ∴|PQ |min =35-3- 6.易错点 缺乏转化思想致误错因分析:不能将问题等价转化为两圆的位置关系,而是根据题意设出直线方程,利用点到直线的距离公式建立等式,但因运算太复杂而无法求解.【例1】 在平面直角坐标系xOy 中,若与点A (2,2)的距离为1且与点B (m,0)的距离为3的直线恰有两条,则实数m 的取值范围为________.解析 因为与点A (2,2)的距离为1的直线都是以点A (2,2)为圆心,半径为1的圆的切线,与点B (m,0)的距离为3的直线都是以点B (m,0)为圆心,半径为3的圆的切线,所以与点A (2,2)的距离为1且与点B (m,0)的距离为3的直线恰有两条,即圆A 与B 有两条公切线,也即两圆相交,所以2<||AB <4,解得2-23<m <2或2<m <2+2 3.答案 (2-23,2)∪(2,2+23)【跟踪训练1】 在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为__(x -1)2+y 2=2__.解析 由mx -y -2m -1=0可得m (x -2)=y +1,易知该直线过定点(2,-1),当圆与直线相切于点(2,-1)时,圆的半径最大,此时半径r 满足r 2=(1-2)2+(0+1)2=2,故所求圆的标准方程为(x -1)2+y 2=2.课时达标 第49讲[解密考纲]直线与圆的位置关系、切线、弦长问题是高考的热点,常以选择题、填空题的形式出现,有时也在解答题中出现.一、选择题1.(2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( A )A .-43B .-34C . 3D .2解析 由圆x 2+y 2-2x -8y +13=0,得圆心坐标为(1,4),故圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43. 2.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( B ) A .内切 B .相交 C .外切D .相离解析 两圆的圆心分别为(-2,0),(2,1),半径分别为r =2,R =3,两圆的圆心距为(-2-2)2+(0-1)2=17,则R -r <17<R +r ,所以两圆相交,故选B .3.过点P (2,0)的直线l 被圆(x -2)2+(y -3)2=9截得的线段长为2时,直线l 的斜率为( A )A .±24B .±22 C .±1 D .±33解析 由题意,直线l 的斜率存在,设为k ,则直线l 的方程为y =k (x -2),即kx -y -2k =0.由点到直线的距离公式,得圆心到直线l 的距离d =|2k -3-2k |k 2+1=3k 2+1.由圆的性质可得d 2+12=r 2,即⎝ ⎛⎭⎪⎫3k 2+12+12=9,解得k 2=18,即k =±24.4.已知圆C :(x -1)2+(y -4)2=10和点M (5,t ),若圆C 上存在两点A ,B ,使得AM ⊥MB ,则实数t 的取值范围为( C )A .[-2.6]B .[-3,5]C .[2,6]D .[3,5]解析 过M 作⊙C 的切线,两切点为E ,F ,当且仅当∠EMF ≥90°时,圆C 上才存在使MA ⊥MB 的两点A ,B , 若∠EMF =90°,则四边形CEMF 是正方形,|MC |=25, 即(5-1)2+(t -4)2=20,解得t =2或t =6,故2≤t ≤6.5.若直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短,则直线l 的方程是( D )A .x =0B .y =1C .x +y -1=0D .x -y +1=0解析 依题意,直线l :y =kx +1过定点P (0,1).圆C :x 2+y 2-2x -3=0化为标准方程为(x -1)2+y 2=4,故圆心为C (1,0),半径为r =2.易知定点P (0,1)在圆内,由圆的性质可知当PC ⊥l 时,直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短.因为k PC =1-00-1=-1,所以直线l 的斜率k =1,即直线l 的方程是x -y +1=0.6.圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( A )A .52-4B .17-1C .6-2 2D .17解析 设P (x,0),设C 1(2,3)关于x 轴的对称点为C 1′(2,-3),那么|PC 1|+|PC 2|=|PC 1′|+|PC 2|≥|C 1′C 2|=(2-3)2+(-3-4)2=5 2.而|PM |≥|PC 1|-1,|PN |≥|PC 2|-3,∴|PM |+|PN |≥|PC 1|+|PC 2|-4≥52-4.二、填空题7.若直线y =kx 与圆x 2+y 2-4x +3=0相切,则k 的值是__±33___. 解析 因为直线y =kx 与圆x 2+y 2-4x +3=0相切,所以圆心(2,0)到直线的距离d =|2k |k 2+1=r =1,解得k =±33.8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-4x =0.若直线y =k (x +1)上存在一点P ,使过点P 作圆C 的两条切线相互垂直,则实数k 的取值范围是__[-22,22]__.解析 圆C 的方程为(x -2)2+y 2=4.“圆的两条切线相互垂直”转化为“点到圆心的距离不大于22”,故|3k |k 2+1≤22,解得-22≤k ≤2 2.9.(2016·全国卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2= 12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则||CD =__4__.解析 圆心(0,0)到直线x -3y +6=0的距离d =61+3=3,|AB |=212-32=23,过C 作CE ⊥BD 于E ,因为直线l 的倾斜角为30°, 所以|CD |=|CE |cos 30°=|AB |cos 30°=2332=4.三、解答题10.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A,B两点,且|AB|=22时,求直线l的方程.解析(1)由圆C的标准方程为x2+(y-4)2=4,知圆C的圆心为(0,4),半径为2.若直线l与圆C相切,则有|4+2a|a2+1=2,解得a=-34.(2)过圆心C作CD⊥AB,则根据题意和圆的性质,得⎩⎪⎨⎪⎧|CD|=|4+2a|a2+1,|CD|2+|DA|2=|AC|2=22,|DA|=12|AB|=2,解得a=-7或a=-1.故所求直线方程为7x-y+14=0或x-y+2=0.11.已知一圆C的圆心为(2,-1),且该圆被直线l:x-y-1=0截得的弦长为22,求该圆的方程及过弦的两端点的切线方程.解析设圆C的方程为(x-2)2+(y+1)2=r2(r>0),∵圆心(2,-1)到直线x-y-1=0的距离d=2,∴r2=d2+⎝⎛⎭⎪⎫2222=4,故圆C的方程为(x-2)2+(y+1)2=4.由⎩⎪⎨⎪⎧x-y-1=0,(x-2)2+(y+1)2=4,解得弦的两端点为(2,1)和(0,-1).∴过弦的两端点的圆的切线方程为y=1和x=0.12.如图所示,在平面直角坐标系xOy中,平行于x轴且过点A(33,2)的入射光线l1被直线l:y=33x反射,反射光线l2交y轴于B点,圆C过点A且与l1,l2都相切.(1)求l2所在直线的方程和圆C的方程;(2)设P,Q分别是直线l和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.解析(1)易知直线l1:y=2,设l1交l于点D,则D(23,2),因为直线l 的斜率为33, 所以l 的倾斜角为30°,所以l 2的倾斜角为60°,所以k 2=3, 所以反射光线l 2所在的直线方程为y -2=3(x -23), 即3x -y -4=0.由题意,知圆C 与l 1切于点A ,设圆心C 的坐标为(a ,b ), 因为圆心C 在过点D 且与l 垂直的直线上,所以b =-3a +8,①又圆心C 在过点A 且与l 1垂直的直线上,所以a =33,② 由①②得a =33,b =-1,所以圆C 的半径r =3, 故所求圆C 的方程为(x -33)2+(y +1)2=9.综上,l 2所在直线的方程为3x -y -4=0, 圆C 的方程为(x -33)2+(y +1)2=9.(2)设点B (0,-4)关于l 对称的点为B ′(x 0,y 0), 即y 0-42=33·x 02,且y 0+4x 0=-3, 解得x 0=-23,y 0=2,故B ′(-23,2).由题意易知,当B ′,P ,Q 三点共线时,|PB |+|PQ |最小, 故|PB |+|PQ |的最小值为|B ′C |-3=(-23-33)2+(2+1)2-3=221-3, 由⎩⎪⎨⎪⎧ y +12+1=x -33-23-33,y =33x ,得P ⎝ ⎛⎭⎪⎫32,12, 故|PB |+|PQ |的最小值为221-3, 此时点P 的坐标为⎝ ⎛⎭⎪⎫32,12.。
8.4 直线与圆、圆与圆的
位置关系
[知识梳理]
1.直线与圆的位置关系
设直线l:Ax+By+C=0(A2+B2≠0),
圆:(x-a)2+(y-b)2=r2(r>0),
d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的
判别式为Δ.
2
设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),
圆O2∶(x-a2)2+(y-b2)2=r2(r2>0).
当直线与圆相交时,由弦心距(圆心到直线的距离),弦长的一半及半径构成一个直角三角形.
(1)两圆相交时公共弦的方程
设圆C1:x2+y2+D1x+E1y+F1=0,①
圆C2:x2+y2+D2x+E2y+F2=0,②
若两圆相交,则有一条公共弦,其公共弦所在直线方程由①-②所得,即:(D1-D2)x +(E1-E2)y+(F1-F2)=0.
(2)两个圆系方程
①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方程:x2+y2+Dx+Ey +F+λ(Ax+By+C)=0(λ∈R);
②过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(其中不含圆C2,因此注意检验C2是否满足题意,以防丢解).
(3)弦长公式
|AB|=1+k2|x A-x B|
=错误!.
[诊断自测]
1.概念思辨
(1)“k=2”是“直线x+y+k=0与圆x2+y2=2相切”的必要不充分条件.( )
(2)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.( )
(3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( )
(4)从两相交圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( )
答案(1)×(2)√(3)×(4)√
2.教材衍化
(1)(必修A2P128T3)直线x-y+1=0与圆x2+y2=1的位置关系为( )
A.相切B.相交但直线不过圆心
C.直线过圆心D.相离
答案 B
解析圆心(0,0)到直线x-y+1=0的距离d=1
2
=
2
2
,而0<
2
2
<1,故选B.
(2)(必修A2P133A组T9)圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为________.
答案2 2。