浙江省2016-2017学年七年级下学期期中考试数学试题3
- 格式:doc
- 大小:205.07 KB
- 文档页数:7
2016-2017学年度第二学期期中考试七年级数学试卷第Ⅰ卷(选择题,共30分)一、选择题(每题3分,共30分)1.9的算术平方根是A .3±B .9±C .3D .-32. 在平面直角坐标系中,点P (-3,5)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限3.在同一个平面内,两条直线的位置关系是A.平行或垂直B.相交或垂直C. 平行或相交D. 不能确定 4.如图所示,四幅汽车标志设计中,能通过平移得到的是奥迪 本田 大众 铃木A . B. C. D. 5.如图,梯子的各条横档互相平行,若∠1=80,则∠2的度数是A.80B.100C.120D.1506. 如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是A.∠3=∠4B.∠1=∠2C.∠D=∠DCED.∠D+∠ACD=180°7.已知直角坐标系中点P 到y 轴的距离为5,且点P 到x 轴的距离为3,则这样的点P 的个数是 A .1 B .2 C .3D .48.在实数23-,0.7 ,34,π,16中,无理数的个数是 A .1B .2C .3D .49.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为A .53°B .55°C .57°D .60°第6题图 第5题图10.如图,直线l 1∥l 2,∠A=125°,∠B=85°,则∠1+∠2= A .30° B .35° C .36° D .40°第Ⅱ卷(非选择题 共90分)二、填空题:(每题3分,共18分)11.在直角坐标系中,写出一个在纵轴的负半轴上点的坐标 . 12.若一个数的平方根等于它本身,则这个数是13.若a 是介于3与7之间的整数,b 是2的小数部分,则ab-22的值为 14. 如图,将△ABC 沿BC 方向平移2cm 得到△DEF,若△ABC 的周长为16cm ,则四边形ABFD 的周长为 cm15.如果两个角的两边分别平行,其中一个角比另一个角的2倍少36°,那么这两个角 是16. 如图,将正整数按如图所示规律排列下去,若用有序数对(m ,n )表示m 排从左到右第n 个数。
2016~2017学年第一学期七年级期中调研试卷语文注意事项:1.本试卷6页,共100分,考试时间120分钟。
2.此卷为试题卷...上。
选择题...,答案一律填涂或书写在答题卷必须使用2B..铅笔填涂.....书....,非选择题必须使用黑色墨水笔写。
一(28分)1.在田字格内用正楷字抄写下面的名言。
(3分)博学而笃志,切问而近思。
2.给下面语境中的加点字注音或依拼音写出汉字。
(4分)今年的秋天来得晚,寒露之后,才感受到丝丝凉意。
桂花已贮.蓄了太久的热情,一簇簇金黄色的花朵儿伴着甜甜的香气在浓浓的绿叶中绽.开了。
云xiāo之外,传来几声清脆的鸟啼。
我停下脚步,在一片静mì中默默品读这迟来的美丽。
(1)贮.蓄(▲)(2)绽.开(▲)(3)云xiāo(▲)(4)静mì(▲)3.用诗文原句填空,其中(1)(5)两题还需填写作者或出处。
(12分)(1)水何澹澹,▲。
(曹操《▲》)(2)洛阳亲友如相问,▲。
(王昌龄《芙蓉楼送辛渐》)(3)▲,落花时节又逢君。
(杜甫《江南逢李龟年》)(4)▲,不亦乐乎?(《论语学而》)(5)春天像健壮的青年,▲,他领着我们上前去。
(▲《春》)(6)如果不怕刺,还可以摘到覆盆子,▲,又酸又甜,色味都比桑葚要好得远。
(鲁迅《从百草园到三味书屋》)(7)乡愁,是背井离乡的诗人心中难解的情结。
王湾在北固山下发出“乡书何处达?▲”(《次北固山下》)的感慨;马致远长期漂泊他乡,以“夕阳西下,▲”(《天净沙秋思》)传达出游子浓浓的悲哀;李益写下“不知何处吹芦管,▲”说尽了戍边将士心中绵绵的乡愁;“遥怜故园菊,▲”(《行军九日思长安故园》),岑参重阳强欲登高,深切思念着在战乱中沦陷的故乡。
4.选出下列语句中加点词语使用不当..的一项(?▲?)(3分)A.千余斤的百花蜜被预订一空,蜂农真是喜出望外....。
B.秋日的明孝陵,桂浓叶黄,美不胜收....,令人流连。
C.好友久别相逢分外亲热,连说话也显得咄咄逼人....。
2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。
浙 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一,单项选择题(本大题共10小题,每小题3分,共30分) 1.下列几个方程中,属于二元一次方程的是( )A .9xy =B .21z y -=C .1y x= D .x y +2.如图,与1∠是同位角的是( )A .2∠B .3∠C .4∠D .5∠3.下列运算中,结果正确的是( ) A .336a a a +=B .()325a a =C .348a a a ⋅=D .()3236ab a a =4.下列各式不能用平方差公式计算的是( ) A .(52)(52)x ab x ab -+B .()()ax y ax y ---C .)()(ab c ab c ---D .()()m n m n +--5.如图,点E 在AD 延长线上,下列条件能判断//AB CD 的是( )A .34∠=∠B .180C ADC ︒∠+∠= C .C CDE ∠=∠D .12∠=∠6.利用加减消元法解方程组2510536x y x y +=-⎧⎨-=⎩①②,下列做法正确的是( )A .要消去y,可以将①×5+①×2B .要消去x,可以将①×3+2×(-5)C .要消去y,可以将①×5+①×3D .要消去x,可以将①×(-5)+①×27.若34x =,97y =,则23x y -的值为( )A .47B .74C .3-D .278.父子二人并排竖直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身高的14,父子二人的身高之和为3.4米,若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组( )A . 3.4111134x y x y +=⎧⎪⎨⎛⎫⎛⎫-=- ⎪ ⎪⎪⎝⎭⎝⎭⎩B . 3.411134x y x y +=⎧⎪⎨⎛⎫-= ⎪⎪⎝⎭⎩C . 3.411134x y x y +=⎧⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩D . 3.41134x y x y +=⎧⎪⎨=⎪⎩ 9.已知5,2x y xy +==,则下列结论中①()221x y -=,①2217x y +=①2219x xy y ++=,正确的个数是( )A .0B .1C .2D .310.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .10二、填空题(本大题共7小题,每小题3分,共21分) 11.计算:a 4÷a 2=__.12.己知2x y a=-⎧⎨=⎩是方程235x y +=的一个解,则a 的值为_____.13.已知方程236x y -=,用含y 的代数式表示x 为__________.14.计划在一块长为10米,宽为7米的长方形草坪上,修建一条宽为2米的人行道,则剩余草坪的面积为_____平方米.15.已知108=x ,1016=y ,则210x y +=__________.16.已知22118x x+=,且1x >,则代数式2285x x -+=________. 17.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分) 18.化简:(1)(x -y)(x +y)-(x -2y)(2x +y). (2)-x(3x +2)+(2x -1)2.(3)(3x +5)2-(3x -5)(3x +5). (4)(a +b)2-(a -b)2+a(1-4b).19.解方程组:(1)3221x y x y =⎧⎨+=-⎩ (2)1323222x yx y ⎧-=⎪⎨⎪+=⎩20.先化简,再求值:(1)2(1)(2)(2)a a a +----,其中2a =的值.(2)22(2)(3)(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中12x =-,1y =.21.如图已知12B C ∠=∠∠=∠,,求证://AB CD .证明:①12∠=∠(已知), 且14∠=∠(__________), ①24∠∠=(__________). ①//BF _____(__________). ①∠____3=∠(__________). 又①B C ∠=∠(已知), ①_____________(等量代换). ①//AB CD (__________).22.如图,在三角形ABC 中, D ,E ,F 三点分别在AB ,AC ,BC 上,过点D 的直线与线段EF 的交点为点M ,已知2①1-①2=150°,2① 2-①1=30°. (1)求证:DM ①AC ;(2)若DE ①BC ,①C =50°,求①3的度数.23.用如图1所示的,A B两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A纸板70张,B型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A型纸板较为充足,B型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B型纸板用完)(3)经测量发现B型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽a a a),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,高分别为2,,2可以各做多少个(假设没有边角消耗,没有余料)?答案与解析一,单项选择题(本大题共10小题,每小题3分,共30分) 1.下列几个方程中,属于二元一次方程的是( )A .9xy =B .21z y -=C .1y x= D .x y +[答案]B [分析]根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别. [详解]解:A 、9xy =中xy 项的次数是2,不是二元一次方程,故不符合题意;B 、21z y -=是二元一次方程,故符合题意;C 、1y x=不是整式方程,故不符合题意; D 、x y +不是方程,故不符合题意; 故选B . [点睛]本题主要考查二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程. 2.如图,与1∠是同位角的是( )A .2∠B .3∠C .4∠D .5∠[分析]根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角即可求解. [详解]解:观察图形可知,与∠1是同位角的是∠4. 故选:C . [点睛]本题考查了同位角、内错角、同旁内角,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形. 3.下列运算中,结果正确的是( ) A .336a a a += B .()325a a =C .348a a a ⋅=D .()3236ab a a =[答案]D [分析]原式各项利用同底数幂的乘除法,以及合并同类项法则计算得到结果,即可作出判断. [详解]解:A 、原式=2a 3,错误; B 、原式=a 6,错误; C 、原式=a 7,错误; D 、原式=a 3b 6,正确. 故选:D .此题考查了同底数幂的乘除法,合并同类项,熟练掌握运算法则是解本题的关键. 4.下列各式不能用平方差公式计算的是( ) A .(52)(52)x ab x ab -+B .()()ax y ax y ---C .)()(ab c ab c ---D .()()m n m n +--[答案]D [分析]根据平方差公式对各选项进行逐一分析即可. [详解]解:A 、(52)(52)x ab x ab -+=222254x a b -,故能用平方差公式计算,不合题意; B 、()()ax y ax y ---=222a x y -+,故能用平方差公式计算,不合题意;C 、)()(ab c ab c ---=222c a b -,故能用平方差公式计算,不合题意;D 、()()m n m n +--=2()m n -+,故不能用平方差公式计算,符合题意; 故选D . [点睛]本题主要考查了平方差公式,熟记公式是解答本题的关键.平方差公式:(a+b)(a -b)=a 2-b 2. 5.如图,点E 在AD 延长线上,下列条件能判断//AB CD 的是( )A .34∠=∠B .180C ADC ︒∠+∠= C .C CDE ∠=∠D .12∠=∠[分析]根据平行线的判定定理即可直接作出判断.[详解]A、根据内错角相等,两直线平行即可证得BC∠AD,不能证AB∠CD,故选项错误;B、根据同旁内角互补,两直线平行,可证得BC∠AD,不能证AB∠CD,故选项错误;C、根据内错角相等,两直线平行即可证得BC∠AD,不能证AB∠CD,故选项错误;D、根据内错角相等,两直线平行即可证得AB∠DC,故选项正确.故选:D.[点睛]此题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.利用加减消元法解方程组2510536x yx y+=-⎧⎨-=⎩①②,下列做法正确的是( )A.要消去y,可以将①×5+①×2B.要消去x,可以将①×3+2×(-5) C.要消去y,可以将①×5+①×3D.要消去x,可以将①×(-5)+①×2 [答案]D[分析]方程组利用加减消元法求出解即可.[详解]解:对于原方程组,要消去x,可以将∠×(-5)+∠×2;若要消去y,则可以将∠×3+∠×5;[点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.若34x =,97y =,则23x y -的值为( )A .47B .74C .3-D .27[答案]A[分析]根据同底数幂的除法和幂的乘方法则,将原式变形,然后代入求解即可.[详解]解:3x -2y =3x ÷32y =3x ÷9y =4÷7=47, 故选:A .[点睛]本题考查了同底数幂的除法,幂的乘方,解答本题的关键是掌握同底数幂的除法法则. 8.父子二人并排竖直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身高的14,父子二人的身高之和为3.4米,若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组( )A . 3.4111134x y x y +=⎧⎪⎨⎛⎫⎛⎫-=- ⎪ ⎪⎪⎝⎭⎝⎭⎩B . 3.411134x y x y +=⎧⎪⎨⎛⎫-= ⎪⎪⎝⎭⎩ C . 3.411134x y x y +=⎧⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩D . 3.41134x y x y +=⎧⎪⎨=⎪⎩[分析]根据题意可得两个等量关系:∠爸爸的身高+儿子的身高=3.4米;∠父亲在水中的身高(1−13)x =儿子在水中的身高(1−14)y,根据等量关系可列出方程组. [详解]设爸爸的身高为x 米,儿子的身高为y 米, 由题意得: 3.4111134x y x y +=⎧⎪⎨⎛⎫⎛⎫-=- ⎪ ⎪⎪⎝⎭⎝⎭⎩, 故选:A .[点睛]此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出题目中的等量关系,解决此题的关键是知道父亲和儿子浸没在水中的身高是相等的.9.已知5,2x y xy +==,则下列结论中①()221x y -=,①2217x y +=①2219x xy y ++=,正确的个数是( )A .0B .1C .2D .3 [答案]A[分析]利用完全平方公式的变形逐一计算即可.[详解]解:∠()()222454217x y x y xy -=+-=-⨯=,该项结论错误;∠()2222252221x y x y xy +=+-=-⨯=,该项结论错误;∠()22225223x xy y x y xy ++=+-=-=,该项结论错误;[点睛]本题考查利用完全平方公式的变形求代数式的值,掌握完全平方公式是解题的关键. 10.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .10[答案]A[分析] 利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差,再由S 2-S 1=3b,AD=10,列出方程求得AB 便可.[详解]解:S 1=(AB -a)•a+(CD -b)(AD -a)=(AB -a)•a+(AB -b)(AD -a),S 2=AB(AD -a)+(a -b)(AB -a),∠S 2-S 1=AB(AD -a)+(a -b)(AB -a)-(AB -a)•a -(AB -b)(AD -a)=(AD -a)(AB -AB+b)+(AB -a)(a -b -a)=b•AD -ab -b•AB+ab=b(AD -AB),∠S 2-S 1=3b,AD=10,∠b(10-AB)=3b,∠AB=7.故选:A .[点睛]本题考查了列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.二、填空题(本大题共7小题,每小题3分,共21分)11.计算:a 4÷a 2=__.[答案]a 2[解析][详解]解:42422a a a a -÷==.故答案为2a12.己知2x y a=-⎧⎨=⎩是方程235x y +=的一个解,则a 的值为_____. [答案]3[分析]把x 与y 代入方程计算即可求出a 的值.[详解]解:把2x y a =-⎧⎨=⎩代入方程2x+3y=5得:-4+3a=5, 解得:a=3,故答案为:3.[点睛]本题考查二元一次方程的解,解题的关键是正确理解二元一次方程的解的概念,本题属于基础题型.13.已知方程236x y -=,用含y 的代数式表示x 为__________.[答案]263x - [分析]将x 看做已知数求出y 即可.[详解]解:2x -3y=6,得到y=263x -, 故答案为:263x -. [点睛]此题考查了解二元一次方程,解题的关键是将x 看作已知数求出y .14.计划在一块长为10米,宽为7米的长方形草坪上,修建一条宽为2米的人行道,则剩余草坪的面积为_____平方米.[答案]56[分析]利用平移把草坪变为一个长为8米,宽为7米的矩形,然后根据矩形的面积计算即可.解:剩余草坪的面积=(10-2)×7=56(平方米).故答案为:56.[点睛]本题考查生活中的平移现象:利用平移的性质,把几个图形合为一个图形.15.已知108=x ,1016=y ,则210x y +=__________.[答案]1024[分析]根据10x =8,10y =16,应用幂的乘方的运算方法,以及同底数的幂的乘法法则,求出102x+y 的值是多少即可.[详解]解:∠10x =8,10y =16,∠102x =(10x )2=64,∠102x+y =102x ×10y =64×16=1024.故答案为:1024.[点睛]此题主要考查了同底数幂的乘法法则和幂的乘方,解题的关键是灵活运用运算法则.16.已知22118x x+=,且1x >,则代数式2285x x -+=________. [答案]7[分析] 根据22118x x +=得到14x x -=,可变形241x x -=,再将2285x x -+适当变形,最后代入计算.解:∠22118x x +=, ∠2212182x x+-=-, 即2116x x ⎛⎫-= ⎪⎝⎭, ∠14x x-=±, 又∠x >1, ∠14x x-=, ∠214x x -=,即2410x x --=,∠241x x -=,∠2285x x -+=()2245x x -+=215⨯+=7,故答案为7.[点睛]本题考查了代数式求值,完全平方公式的应用,解题的关键是根据22118x x+=得到241x x -=.17.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________[答案]20[解析]试题分析:过B作BE∠m,则根据平行公理及推论可知l∠BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分) 18.化简:(1)(x-y)(x+y)-(x-2y)(2x+y).(2)-x(3x+2)+(2x-1)2.(3)(3x+5)2-(3x-5)(3x+5).(4)(a+b)2-(a-b)2+a(1-4b).[答案](1)-x2+3xy+y2;(2)x2-6x+1;(3)30x+50;(4)a.[解析][分析](1)利用平方差公式和多项式乘以多项式的法则计算,然后再合并同类项;(2)利用单项式乘以多项式的法则和完全平方公式计算,然后再合并同类项;(3)利用完全平方公式和平方差公式计算,然后再合并同类项;(4))利用完全平方公式和单项式乘以多项式的法则计算,然后再合并同类项即可得到结果.[详解](1)原式=x2-y2-(2x2+xy-4xy-2y2)=x2-y2-2x2+3xy+2y2=-x2+3xy+y2;(2)原式=-3x2-2x+4x2-4x+1=x2-6x+1;(3)原式=9x2+30x+25-(9x2-25)=9x2+30x+25-9x2+25=30x+50;(4)原式=a2+2ab+b2-(a2-2ab+b2)+a-4ab=a2+2ab+b2-a2+2ab-b2+a-4ab=a.故答案为:(1)-x2+3xy+y2;(2)x2-6x+1;(3)30x+50;(4)a.[点睛]本题考查整式的混合运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,单项式乘以多项式的法则,以及多项式乘以多项式的法则,熟练掌握公式及法则是解本题的关键.19.解方程组:(1)3221 x yx y=⎧⎨+=-⎩(2)1 323222 x yx y⎧-=⎪⎨⎪+=⎩[答案](1)93xy=-⎧⎨=-⎩;(2)62xy=⎧⎨=⎩[分析](1)直接利用代入消元法解;(2)先整理方程组,再利用加减消元法解.[详解](1)3...... 221...... x yx y=⎧⎨+=-⎩①②把∠代入∠中得:6y+y=-21,解得y=-3,把y=-3代入∠中得:x=-9,所以方程组的解为:93 xy=-⎧⎨=-⎩;(2)1 323222 x yx y⎧-=⎪⎨⎪+=⎩整理方程组得:23 6...... 3222...... x yx y-=⎧⎨+=⎩①②由∠×2得:4x-6y=12……∠由∠×3得:9x+6y=66……∠由∠+∠得:13x=78,解得x=6,把x=6代入∠中得:2y=4,解得y=2,所以方程组的解为:62 xy=⎧⎨=⎩.[点睛]考查了解二元一次方程组,解题关键是利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.先化简,再求值:(1)2(1)(2)(2)a a a +----,其中2a =的值.(2)22(2)(3)(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中12x =-,1y =. [答案](1)25a +,9;(2)42x y -+,4[分析](1)先将括号展开,再合并同类项,最后将a 的值代入计算进而得出答案;(2)直接利用乘法公式以及多项式除以单项式运算法则化简,再将x 和y 值代入计算得出答案.[详解]解:(1)2(1)(2)(2)a a a +----=22124a a a +++-=25a +将a=2代入,原式=2×2+5=9;(2)22(2)(3)(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦=()2222244952x y xy x y y x ++-+-÷=()2842x xy x -+÷ =42x y -+ 将12x =-,1y =代入, 原式=14212⎛⎫-⨯-+⨯ ⎪⎝⎭=4. [点睛]此题主要考查了整式的混合运算,正确运用乘法公式是解题关键.21.如图已知12B C ∠=∠∠=∠,,求证://AB CD .证明:①12∠=∠(已知),且14∠=∠(__________),①24∠∠=(__________).①//BF _____(__________).①∠____3=∠(__________).又①B C ∠=∠(已知),①_____________(等量代换).①//AB CD (__________).[答案]见解析[分析]根据平行线的判定和性质解答.[详解]解:证明:∠∠1=∠2(已知),且∠1=∠4(对顶角相等),∠∠2=∠4(等量代换),∠BF∠EC(同位角相等,两直线平行),∠∠C=∠3(两直线平行,同位角相等).又∠∠B=∠C(已知),∠∠3=∠B(等量代换),∠AB∠CD(内错角相等,两直线平行).[点睛]本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.22.如图,在三角形ABC中, D,E,F三点分别在AB,AC,BC上,过点D的直线与线段EF 的交点为点M,已知2①1-①2=150°,2① 2-①1=30°.(1)求证:DM①AC;(2)若DE①BC,①C =50°,求①3的度数.[答案](1)证明见解析(2)50°[解析]试题分析:(1) 已知2∠1-∠2=150°,2∠2-∠1=30°,可得∠1+∠2=180°,再由∠1+∠DME=180°,可得∠2=∠DME,根据内错角相等,两直线平行即可得DM∠AC;(2) 由(1)得DM∠AC,根据两直线平行,内错角相等可得∠3=∠AED ,再由DE∠BC ,可得∠AED=∠C ,所以∠3=∠C 50°.试题解析:(1)∠ 2∠1-∠2=150°,2∠2-∠1=30°,∠ ∠1+∠2=180°.∠ ∠1+∠DME=180°,∠ ∠2=∠DME .∠ DM∠AC .(2)∠ DM∠AC,∠ ∠3=∠AED .∠ DE∠BC ,∠ ∠AED=∠C .∠ ∠3=∠C .∠ ∠C=50°,∠ ∠3=50°.23.用如图1所示的,A B两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A纸板70张,B型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A型纸板较为充足,B型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B型纸板用完)(3)经测量发现B型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽a a a),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,高分别为2,,2可以各做多少个(假设没有边角消耗,没有余料)?[答案](1)制作甲24个,乙22个.(2)最多可以制作甲,乙纸盒24个.(3)制作甲6个,乙4个.[分析](1)设制作甲x个,乙y个,则需要A,B型号的纸板如下表:从而可得答案,(2)设制作甲m 个,乙k 个,则需要A,B 型号的纸板如下表:由方程组的正整数解可得答案,(3)由1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,通过列方程求方程的正整数解得到答案.[详解]解:(1)设制作甲x 个,乙y 个,则34160270x y x y +=⎧⎨+=⎩,解得:2422x y =⎧⎨=⎩ , 即制作甲24个,乙22个.(2)设制作甲m 个,乙k 个,则23430m k n m k +=⎧⎨+=⎩, 消去k 得,465m n =-, 因为:,m n 为正整数,所以:10152, 6.63n n m m k k ==⎧⎧⎪⎪==⎨⎨⎪⎪==⎩⎩综上,最多可以制作甲,乙纸盒24个.(3)因为1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,设制作甲c 个,乙d 个,则4 4.542c d +=,因为,c d 为正整数,所以6,4c d ==,即可以制作甲6个,乙4个.[点睛]此题考查了二元一次方程组的应用.二元一次方程(组)的正整数解,解题关键是弄清题意,找出题目蕴含的等量关系,列出方程或方程组解决问题.。
2016-2017学年七年级(上)期中数学试卷一、选择题1.﹣3的相反数是()A. B.3 C.± D.﹣32.图中不是正方体的展开图的是()A.B.C. D.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个 B.2个 C.3个 D.4个5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是() A.6 B.7 C.11 D.126.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A .15B .16C .21D .17 二、填空题7.计算:(﹣1)2015+(﹣1)2016= . 8.若3a 2bc m 为七次单项式,则m 的值为 .9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n 个三角形,则需要 根火柴棍.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为 米.. 11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 .12.如果3x 2n ﹣1y m 与﹣5x m y 3是同类项,则m= ,n= .13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= .14.如果(x+1)2=a 0x 4+a 1x 3+a 2x 2+a 3x+a 4(a 0,a 1,a 2,a 3,a 4都是有理数)那么a 04+a 13+a 22+a 3+a 4;a 04﹣a 13+a 22﹣a 3+a 4;a 04+a 22+a 4的值分别是 ; ; .三、解答题15.(5分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16.(5分)由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.17.(12分)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].18.(8分)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.20.(8分)若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].21.(9分)我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是;(3)请说明(2)中猜想的结论是正确的.22.(9分)小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.23.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A 县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?24.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.B.3 C.± D.﹣3【考点】相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:﹣3的相反数是3.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.图中不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题:正方体的每一个面都有对面,可得答案.【解答】解:由正方体的表面展开图的特点可知,只有A,C,D这三个图形,经过折叠后能围成正方体.故选B.【点评】本题考查了几何体的展开图,只要有“田”字格的展开图都不是正方体的表面展开图.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式【考点】单项式.【分析】根据单项式及单项式的次数的定义即可解答.【解答】解:A、根据单项式的定义可知,x是单项式,故本选项不符合题意;B、根据单项式的定义可知,0是单项式,故本选项不符合题意;C、根据单项式的系数的定义可知,﹣x的系数是﹣1,故本选项符合题意;D、根据单项式的定义可知,不是单项式,故本选项不符合题意.故选C.【点评】本题考查了单项式及单项式的次数的定义,比较简单.单项式的系数的定义:单项式中的数字因数叫做单项式的系数.4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据小于或等于零的数是非正数,可得答案.【解答】解:﹣(﹣2)=2>0,﹣|﹣7|=﹣7<0,﹣12001×0=0,﹣(﹣1)3=1>0,=﹣<0,﹣24=﹣16<0,故选:D.【点评】本题考查了有理数,小于或等于零的数是非正数,化简各数是解题关键.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17【考点】专题:正方体相对两个面上的文字.【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题7.计算:(﹣1)2015+(﹣1)2016= 0 .【考点】有理数的乘方.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.8.若3a2bc m为七次单项式,则m的值为 4 .【考点】多项式.【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【解答】解:依题意,得2+1+m=7,解得m=4.故答案为:4.【点评】单项式的次数是指各字母的指数和,字母指数为1时,省去不写.9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要2n+1 根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:因为第一个三角形需要三根火柴棍,再每增加一个三角形就增加2根火柴棒,所以有n个三角形,则需要2n+1根火柴棍.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.【点评】本题考查了有理数的乘方,正确理解问题中的数量关系,总结问题中隐含的规律是解题的关键.11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 4.23×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 230 000=4.23×106,故答案为:4.23×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如果3x2n﹣1y m与﹣5x m y3是同类项,则m= 3 ,n= 2 .【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可列出关于m 、n 的方程组,求出m 、n 的值.【解答】解:由题意,得,解得.故答案分别为:3、2.【点评】此题考查的知识点是同类项, 关键要明确同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= ﹣1 .【考点】规律型:数字的变化类.【分析】依次求出a 2,a 3,a 4,判断出每3个数为一个循环组依次循环,用2016除以3,根据商和余数的情况解答即可.【解答】解:a 1=,a 2===2,a 3===﹣1,a 4===,…,依此类推,每3个数为一个循环组依次循环, ∵2016÷3=672,∴a 2016为第672循环组的第三个数, ∴a 2016=a 3=﹣1. 故答案为:﹣1.【点评】本题是对数字变化规律的考查,读懂题目信息,求出各数并判断出每3个数为一个循环组依次循环是解题的关键.14.如果(x+1)2=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4都是有理数)那么a04+a13+a22+a3+a4;a04﹣a13+a22﹣a3+a4;a04+a22+a4的值分别是 4 ;0 ; 2 .【考点】代数式求值.【分析】由原式可得x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,可得a0=a1=0,a2=1,a3=2,a4=1,再分别代入所求代数式即可.【解答】解:∵(x+1)2=a0x4+a1x3+a2x2+a3x+a4,∴x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,∴a0=a1=0,a2=1,a3=2,a4=1,则a04+a13+a22+a3+a4=1+2+1=4,a04﹣a13+a22﹣a3+a4=1﹣2+1=0,a04+a22+a4=1+1=2,故答案为:4; 0; 2.【点评】本题主要考查代数式的求值,根据已知等式得出a0=a1=0,a2=1,a3=2,a4=1是解题的关键.三、解答题15.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】作图-三视图.【分析】通过仔细观察和想象,再画它的三视图即可.【解答】解:几何体的三视图如图所示,【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.16.由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(2)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(1)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(2)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.【点评】本题主要考查了数轴上点表示的数的确定方法,以及数轴上的数的关系,右边的数总是大于左边的数.17.(12分)(2016秋•崇仁县校级期中)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先算乘除,再算加法即可;(3)先求原式的倒数,再求解即可;(4)先算乘方,再算乘除,最后算加减.有括号,要先做括号内的运算.【解答】(1)解:原式=﹣7﹣5﹣4+10=﹣6;(2)解:原式=﹣1+5×(﹣4)×(﹣4)=﹣1+80=79;(3)解:因为(﹣+﹣)÷=(﹣+﹣)×64=﹣16+8﹣4=﹣12,所以÷(﹣+﹣)=﹣;(4)解:原式=9﹣×(﹣)×(4+16)=9+×20=9+16=25.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.【考点】正数和负数.【分析】(1)由表格可以求得该厂星期一生产工艺品的数量;(2)由表格可以求得本周产量中最多的一天比最少的一天多生产多少个工艺品;(3)由表格可以求得该工艺厂在本周实际生产工艺品的数量.【解答】解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.20.若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].【考点】有理数的混合运算.【分析】原式各项利用题中的新定义计算即可得到结果.【解答】解:(1)﹣3△5=﹣3×5﹣[(﹣3)+5]=﹣15﹣2=﹣17;(2)(﹣4)△(﹣5)=﹣4×(﹣5)﹣[(﹣4)+(﹣5)]=20+9=29,则2△[(﹣4)△(﹣5)]=2×29﹣(2+29)=58﹣31=27.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.21.我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是4×=4﹣;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是n×=n﹣;(3)请说明(2)中猜想的结论是正确的.【考点】规律型:数字的变化类.【分析】观察已知算式可以发现:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;由此可以解决(1)和(2);(3)根据(2)中算式左侧和右侧进行分式运算比较即可.【解答】解:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;(1)第4个等式:4×=4﹣,(2)第n个等式:n×=n﹣,(3)证明:n×=,n﹣==,∴n×=n﹣,∴(2)中猜想的结论是正确的.【点评】此题主要考察运算规律的探索应用与证明,观察已知算式找出规律是解题的关键.22.小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.【考点】整式的加减.【分析】(1)因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B.(2)根据(1)的结论,把x=3代入求值即可.【解答】解:(1)A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=x2;(2)当x=3时,A+B=x2=32=9.【点评】本题解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23.(10分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x 辆,乙仓库调往A县农用车10﹣x 辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【考点】列代数式;代数式求值.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.24.(12分)(2015秋•常熟市期中)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;两点间的距离.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由 3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
2016-2017学年度第二学期期末调研考试七年级数学试题友情提示:亲爱的同学们,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩。
一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.)1.点P (5,3)所在的象限是………………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.4的平方根是 ………………………………………………………………………( ) A .2 B .±2C .16D .±163.若a b >,则下列不等式正确的是 ………………………………………………( ) A .33a b < B .ma mb > C .11a b -->-- D .1122a b+>+ 4.下列调查中,调查方式选择合理的是……………………………………………( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查; B .为了了解神州飞船的设备零件的质量情况,选择抽样调查; C .为了了解某公园全年的游客流量,选择抽样调查; D .为了了解一批袋装食品是否含有防腐剂,选择全面调查.5.如右图,数轴上点P 表示的数可能是……………………………………………( ) A B C D.6.如图,能判定AB ∥CD 的条件是…………………………………………………( )A .∠1=∠2B .∠3=∠4C .∠1=∠3D .∠2=∠47.下列说法正确的是…………………………………………………………………( ) A .)8(--的立方根是2- B .立方根等于本身数有1,0,1-3421BCADC .64-的立方根为4-D .一个数的立方根不是正数就是负数 8.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若 ∠1=124°,∠2=88°,则∠3的度数为…( ) A .26° B .36° C .46° D .56°9.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 …………( )A .3B .2C .1D .-110.在如图的方格纸上,若用(-1,1)表示A 点,(0,3)表示B 点,那么C 点的位置可表示 为……………………………………( ) A .(1,2) B .(2,3) C .(3,2) D .(2,1)11.若不等式组⎩⎨⎧≤>-a x x 312的整数解共有三个,则a 的取值范围是……………( )A .65<≤aB .65≤<aC .65<<aD .65≤≤a12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是………………………( )A .x≥11B .11≤x <23C .11<x≤23D .x≤23二、填空题(本大题共8个小题;每小题3分,共24分.请把答案写在答题卡上) 13.不等式23x -≤1的解集是 ; 14.若⎩⎨⎧==b y ax 是方程02=+y x 的一个解,则=-+236b a ; 15.已知线段MN 平行于x 轴,且MN 的长度为5,1DCBA1l3l4l2l231若M 的坐标为(2,-2),那么点N 的坐标是 ; 16.如图,若∠1=∠D=39°,∠C=51°,则∠B= °; 17.已知5x-2的立方根是-3,则x+69的算术平方根是 ;18.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P (2+m ,121-m )在第四象限,则m 的值为 ; 19.已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,则原方程组的解为 ;20.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ;三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤) 21.计算(本题满分10分) (1)32238)1(327+---- (2)2321---22.计算(本题满分12分)(1)解方程组:⎩⎨⎧-==-7613y x y x (2)解不等式组: 23.(本题满分8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:各选项人数的扇形统计图 各选项人数的条形统计图a 515 42x y x by +=⎧⎨-=-⎩① ②⎪⎩⎪⎨⎧-≤--<-121231)1(395x x x x请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a =________%,b =________%,“常常”对应扇形的圆心角的度数为__________; (2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的 学生有多少名? 24.(本题满分8分)如图,在平面直角坐标系中,已知长方形ABCD 的两个顶点坐标为A (2,-1),C (6,2),点M 为y 轴上一点,△MAB 的面积为6,且MD <MA ;请解答下列问题:(1)顶点B 的坐标为 ; (2)求点M 的坐标;(3)在△MAB 中任意一点P (0x ,0y )经平移 后对应点为1P (0x -5,0y -1),将△MAB 作同样的平 移得到△111B A M ,则点1M 的坐标为 。
浙教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分)1. 下列二次根式中的最简二次根式是( )A.√30B.√12C.√8D.√122. 一元二次方程x2−8x−1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x−4)2=17D.(x−4)2=153. 随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A.20、20B.30、20C.30、30D.20、304. 若代数式√x+1有意义,则实数x的取值范围是( )(x−3)2A.x≥−1B.x≥−1且x≠3C.x>−1D.x>−1且x≠35. 在△ABC中,AB=6,AC=8,则BC边上中线AD的取值范围为( )(提示:可以构造平行四边形)A.2<AD<14B.1<AD<7C.6<AD<8D.12<AD<166. 某经济技术开发区今年一月份工业产值达50亿元,且一月份、二月份、三月份的产值为175亿元,若设平均每月的增长率为x,根据题意可列方程( )A.50(1+x)2=175B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=1757. 一个多边形截去一个角后,形成另一个多边形的内角和为720∘,那么原多边形的边数为()A.5B.5或6C.5或7D.5或6或78. 如果平行四边形ABCD被一条对角线分成两个等腰三角形,则称该平行四边形为“等腰平行四边形”,如果等腰平行四边形ABCD的一组邻边长分别为4和6,则它的面积是( )A.16√2或6√7B.8√5或6√7C.16√2D.8√59. 把代数式(a−1)√1中的a−1移到根号内,那么这个代数式等于( )1−aA.−√1−aB.√a−1C.√1−aD.−√a−110. 如下图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≅△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF;⑤S△ABE=S△CDE.其中正确的是()A.①②③B.①②④C.①②⑤D.①③④二、填空题(每小题3分,共24分)11. 标本−1,−2,0,1,2,方差是________.12. 若x=−2是关于x的方程x2−2ax+8=0的一个根,则a=________.=0有两个实数根,则k的取值范围是________.13. 方程(k−1)x2−√1−kx+1414. 在平面直角坐标系中,已知平行四边形的三个顶点坐标分别是O(0, 0),A(−3, 0),B(0, 2),则平行四边形第四个顶点C的坐标________.15. 在证明命题“一个三角形中至少有一个内角不大于60∘”成立时,我们利用反证法,先假设________,则可推出三个内角之和大于180∘,这与三角形内角和定理相矛盾.16. 如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m 2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m .17. 如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90∘,若AB =5,BC =8,则EF 的长为________.18. 任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[√3]=1,现对72进行如下操作:72→第一次 [√72]=8→第二次 [√8]=2→第三次 [√2]=1,这样对72只需进行3次操作即可变为1,类似地,对81只需进行________次操作后即可变为1;(2)只需进行3次操作后变为2的所有正整数中,最大的是________.三、解答题(共6小题,共46分)19. 计算:(1)(−√5)2−√16+√(−2)2; (2)(√18−√3)×√12.20. 用适当方法解下列方程:(1)14(x +1)2=25; (2)x 2+2x −1=0.21. 关于x 的一元二次方程(a +c)x 2+2bx +(a −c)=0,其中a,b,c 分别为△ABC 三边的长.(1)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(2)如果△ABC 是等边三角形,试求这个一元二次方程的根.22. 如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF // CE.23. 为了解甲、乙两名运动员的体能训练情况,对他们进行了跟踪测试,并把连续十周的测试成绩绘制成如图所示的折线统计图.教练组规定:体能体能测试成绩70分以上(包括70分)为合适.(1)请根据图中所提供的信息填写下表:(2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙,谁的体能测试成绩较好?②依据平均数与中位数比较甲和乙,谁的体能测试成绩较好?(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.平均数中位数体能测试成绩合格次数甲________ 65________24. 某租赁公司拥有汽车100辆.据统计,当每辆车的月租金为3000元时,可全部租出.每辆车的月租金每增加50元时,未租出的车将会增加1辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306600元?答案与解析二、选择题(每题3分,共30分)1. 下列二次根式中的最简二次根式是( )A.√30B.√12C.√8D.√12[答案]A[解析]判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.2. 一元二次方程x2−8x−1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x−4)2=17D.(x−4)2=15[答案]C[解析]常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.3. 随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A.20、20B.30、20C.30、30D.20、30[答案]C[解析]根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.4. 若代数式√x+1有意义,则实数x的取值范围是( )(x−3)2A.x≥−1B.x≥−1且x≠3C.x>−1D.x>−1且x≠3[答案]B[解析]根据被开方数大于等于0,分母不等于0列式计算即可得解.5. 在△ABC中,AB=6,AC=8,则BC边上中线AD的取值范围为( )(提示:可以构造平行四边形)A.2<AD<14B.1<AD<7C.6<AD<8D.12<AD<16[答案]B[解析]作辅助线(延长AD至点E,使AD=ED)构建平行四边形6. 某经济技术开发区今年一月份工业产值达50亿元,且一月份、二月份、三月份的产值为175亿元,若设平均每月的增长率为x,根据题意可列方程( )A.50(1+x)2=175B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=175[答案]D[解析]增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可先用x表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.7. 一个多边形截去一个角后,形成另一个多边形的内角和为720∘,那么原多边形的边数为()A.5B.5或6C.5或7D.5或6或7[答案]D[解析]首先求得内角和为720∘的多边形的边数,即可确定原多边形的边数.8. 如果平行四边形ABCD被一条对角线分成两个等腰三角形,则称该平行四边形为“等腰平行四边形”,如果等腰平行四边形ABCD的一组邻边长分别为4和6,则它的面积是( )A.16√2或6√7B.8√5或6√7C.16√2D.8√5[答案]A[解析]分AC=AB=4和AC=BC=6两种情况求得△ABC的面积后即可求得平行四边形ABCD的面积.[解答]解:如图:当AC=AB=4时,此时S△ABC=3√7,故等腰平行四边形的面积为2S△ABC=6√7;当AC=BC=6时,此时S△ABC=8√2,故等腰平行四边形的面积为2S△ABC=16√2.9. 把代数式(a−1)√1中的a−1移到根号内,那么这个代数式等于( )1−aA.−√1−aB.√a−1C.√1−aD.−√a−1[答案]A[解析] (a−1)√1(1−a)=−(1−a)√11−a=−√1−a.10. 如下图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≅△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF;⑤S△ABE=S△CDE.其中正确的是()A.①②③B.①②④C.①②⑤D.①③④[答案]B[解析]∵四边形ABCD是平行四边形,∴AD // BC,AD=BC.∴∠EAD=∠AEB.又∵AE平分∠BAD,∴∠BAE=∠DAE.∴∠BAE=∠BEA.∴AB=BE.∵AB=AE,∴△ABE是等边三角形;②正确.∴∠ABE=∠EAD=60∘.∵AB=AE,BC=AD,∴△ABC≅△EAD(SAS);①正确.∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC.又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC.∴S△ABE=S△CEF;④正确,⑤错误.若AD与AF相等,即∠AFD=∠ADF=∠DEC,即EC=CD=BE即BC=2CD,题中未限定这一条件,∴③不一定正确.二、填空题(每小题3分,共24分)11. 标本−1,−2,0,1,2,方差是________.[答案]2[解析]先计算出平均数,再根据方差的公式计算.12. 若x=−2是关于x的方程x2−2ax+8=0的一个根,则a=________.[答案]−3[解析]把x=−2代入方程得出一个关于a的方程,求出方程的解即可.=0有两个实数根,则k的取值范围是________.13. 方程(k−1)x2−√1−kx+14[答案]k<1[解析]方程有两个不相等实数根,则根的判别式△≥0,建立关于k的不等式,求得k的取值范围,且二次项系数不为零和被开方数1−k≥0.14. 在平面直角坐标系中,已知平行四边形的三个顶点坐标分别是O(0, 0),A(−3, 0),B(0, 2),则平行四边形第四个顶点C的坐标________.[答案](3, 2)或(−3, 2)或(−3, −2)[解析]先由点的坐标求出求出线段OA,OB的长度,再分情况进行求解,即可解得C点的坐标为(3, 2)或(−3, 2)或(−3, −2).15. 在证明命题“一个三角形中至少有一个内角不大于60∘”成立时,我们利用反证法,先假设________,则可推出三个内角之和大于180∘,这与三角形内角和定理相矛盾.[答案]三角形的三个内角都大于60∘[解析]根据反证法的步骤,先假设结论不成立,即否定命题即可.16. 如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m .[答案]2 [解析]设人行通道的宽度为x 米,将两块矩形绿地合在一起长为(30−3x)m ,宽为(24−2x)m ,根据矩形绿地的面积为480m 2,即可列出关于x 的一元二次方程,解方程即可得出x 的值,经检验后得出x =20不符合题意,此题得解.17. 如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90∘,若AB =5,BC =8,则EF 的长为________.[答案]1.5[解析]利用直角三角形斜边上的中线等于斜边的一半,可求出DF 的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE 的长,进而求出EF 的长18. 任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[√3]=1,现对72进行如下操作:72→第一次 [√72]=8→第二次 [√8]=2→第三次 [√2]=1,这样对72只需进行3次操作即可变为1,类似地,对81只需进行________次操作后即可变为1;(2)只需进行3次操作后变为2的所有正整数中,最大的是________.[答案]3,6560[解析](1)根据运算过程得出[√81]=9,[√9]=3,[√3]=1,即可得出答案.(2)最大的正整数是6560,根据操作过程分别求出6560和6561进行几次操作,即可得出答案.[解答]解:(1)∵ [√81]=9,[√9]=3,[√3]=1,∴ 对81只需进行3次操作后变为1,(2)最大的正整数是255,理由是:∵ [√6560]=80,[√80]=8,[√8]=2,∴ 对6560只需进行3次操作后变为2,∵ [√6561]=81,[√81]=9,[√9]=3,∴ 只需进行3次操作后变为2的所有正整数中,最大的是6560.三、解答题(共6小题,共46分)19. 计算:(1)(−√5)2−√16+√(−2)2;(2)(√18−√3)×√12.解:(1)原式=5−4+2=3;(3)原式=3√2×2√3−√3×2√3=6√6−6.20. 用适当方法解下列方程:(x+1)2=25;(2)x2+2x−1=0.(1)14解:(1)∵(x+1)2=100,∴x+1=10或x+1=−10,解得:x=9或x=−11;(2)∵x2+2x=1,∴x2+2x+1=1+1,即(x+1)2=2,则x+1=±√2,∴x=−1±√221. 关于x的一元二次方程(a+c)x2+2bx+(a−c)=0,其中a,b,c分别为△ABC三边的长.(1)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.解:(1)∵方程有两个相等的实数根,∴(2b)2−4(a+c)(a−c)=0,∴4b2−4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形.(2)∵当△ABC是等边三角形,∴a=b=c,∵(a+c)x2+2bx+(a−c)=0,∴2ax2+2ax=0,∴x1=0,x2=−1.22. 如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF // CE.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB // CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,{∠AEB=∠4∠3=∠5 AB=CD,∴△ABE≅△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≅△CDF,∴AE=CF,∵∠1=∠2,∴AE // CF,∴四边形AECF是平行四边形,∴AF // CE.23. 为了解甲、乙两名运动员的体能训练情况,对他们进行了跟踪测试,并把连续十周的测试成绩绘制成如图所示的折线统计图.教练组规定:体能体能测试成绩70分以上(包括70分)为合适.(1)请根据图中所提供的信息填写下表:(2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙,谁的体能测试成绩较好?②依据平均数与中位数比较甲和乙,谁的体能测试成绩较好?(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.解:(1)(2)①依据平均数与成绩合格的次数比较甲和乙,乙的体能测试成绩较好;②依据平均数与中位数比较甲和乙,甲的体能测试成绩较好.③从折线图上看,两名运动员体能测试成绩都呈上升趋势,但是,乙的增长速度比甲快,并且后一阶段乙的成绩合格次数比甲多,所以乙训练的效果较好.24. 某租赁公司拥有汽车100辆.据统计,当每辆车的月租金为3000元时,可全部租出.每辆车的月租金每增加50元时,未租出的车将会增加1辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306600元?解:(1)根据题意得:100−3600−300050=88(辆),则当每辆车的月租金定为3600元时,能租出88辆车;(2)设每辆车的月租金为(3000+x)元,根据题意得:(100−x 50)[(3000+x)−150]−x 50×50=306600,解得:x 1=900,x 2=1200,∴ 3000+900=3900(元),3000+1200=4200(元),则当每辆车的月租金为3900元或4200元时,月收益达到306600元.。
2016-2017学年度第二学期期中考试七年级语文模拟试题(一)姓名:班别:学号:成绩:一、基础(22分)1.根据课文默写古诗文。
(10分)(1)深林人不知,口口口口口。
(王维《竹里馆》)(1分)(2)口口口口口口口,散入春风满洛城。
(李白《春夜洛城闻笛》)(1分)(3)阿爷无大儿,木兰无长兄,□□□□□,□□□□□.(《木兰诗》)(2分)□□□(4)刘禹锡的“陋室”环境之雅,雅在“□□□□□,□□。
”(2分)(5)默写岑参《逢入京使》。
(4分)□□□□□□□,□□□□□□□. □□□□□□□,□□□□□□□。
2.根据拼音写出相应的词语。
(4分)(1)bān lán()的山雕,奔驰的鹿群,带着松香气味的煤块,带着赤色的足金. (2)开门看见老王直僵僵地xiāng qiàn()在门框里。
(3)我认识奥本海默时他已四十多岁了,已经是fù rú jiē zhī()的人物了。
(4)鲁迅先生是shēn wùtòng jué( )之的.3.下列句中加点词语使用不正确...的一项是()(3分)A. 学习讲究循序渐进和从实际出发,切忌制定那种高不可攀....的目标。
B. 萧红把何静的鼻子打出血了,刚进初中就发生这种事情,真是骇人听闻....啊!C。
我很不喜欢有的老师上课把窗帘拉得严严实实....的,教室内光线很暗,感觉很压抑.D. 爱慕虚荣....是个很不好的习惯,它会造成我们宝贵时间、精力和财物的浪费。
4.下列对病句的修改不正确的一项是( )A。
随地吐痰,是衡量一个市民素质高低的重要标准。
(在“随地吐痰”之前加上“不”) B。
通过开展“每月少开一天车”的活动,可以使城市的空气更加清新。
(删去“通过") C.网购之所以让那么多网友着迷的重要原因,是因为他们在下单后输入账号密码时根本没有感觉到是在花钱。
(删去“的重要原因")D。
定安县2016—2017学年度第二学期期中考试七年级数学科考试试卷(考试时间:100分钟 满分:120分)一、选择题:(每小题3分,共42分)下列各题都有A 、B 、C 、D 四个答案供选择,其中只有一个答案是正确的,请把认为正确的答案前面的字母编号写在相应的题号下。
题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案1. 方程11x -=的解是 A .1x =-B .0x =C .1x =D .2x =2. 若a b >,且c 为任意有理数,则下列不等式正确的是A .ac bc >B .ac bc <C .22ac bc > D .a c b c +>+ 3. 若3-=b a ,则a b -的值是A .3B .3-C .0D .64.不等式组10420x >x -⎧⎨-≥⎩①②的解集在数轴上表示正确的是5.方程()x x =+-253去括号正确的是A .x x =+-23B .x x =--1053C .x x =+-1053D .x x =--23 6.方程732=-y x 用含x 的代数式表示y 为A .327x y -=B .372-=x yC .237y x +=D .237yx -=7.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是 A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形8.已知二元一次方程组23,23m n m n -=⎧⎨-=⎩m n -的值是 A .1B .1-C .2D .2-9.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以 精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几 天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是A.14016615x y x y +=⎧⎨+=⎩ B.14061615x y x y +=⎧⎨+=⎩ C.15166140x y x y +=⎧⎨+=⎩ D.15616140x y x y +=⎧⎨+=⎩10.如果(1)1a x a +<+的解集是1x >,那么a 的取值范围是A .0a <B .1a <-C .1a >-D .a 是任意有理数 11.不等式11252x x -<-的负整数解有 A. 1个 B. 2个 C. 3个 D. 4个12.若3x =-是方程2()6x m -=的解,则m 的值为A .6B .12C .-6D .-1213.由方程组63x m y m+=⎧⎨-=⎩可得出x 与y 的关系式是A .9x y += B .3x y += C .3x y +=- D .9x y +=-14.某种导火线的燃烧速度是0.82厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使 爆破员跑到150米以外的安全地区,导火线的长至少为A. 22厘米B. 23厘米C. 24厘米D. 25厘米二、填空题:(每小题4分,共16分)15.写出一个以23x y =⎧⎨=-⎩为解的二元一次方程组 . 16.如右图,P 为ABC △中BC 边的延长线上一点,50A =∠°,70B =∠°,则ACP =∠__________°.17.当x = 时,代数式45x -与39x -的值互为相反数18.一件服装标价200元,以6折销售,可获利20%,这件服装的进价是 元.AB C P学校: 班别: 姓名: 座号:………………………………………装………………订……………………线………………………………………………三、解答题:(共62分)19.(每小题4分,共8分) 解下列方程: (1)5(5)24x x -+=- (2)163282=+-+y y20.(每小题5分,共10分)解下列方程组:(1) (2)⎩⎨⎧=+-=-7)(3532y x x y x21.(10分)解不等式组523(1)5x x x x +⎧>⎪⎨⎪--≤⎩,并在数轴上表示出它的解集.22.(10分)海南环岛高速公路(含东线和西线)全长约600千米,一辆小汽车和一辆客车同 时从海口出发,小汽车沿东线高速环岛,客车沿西线高速环岛,经过3小时后两车相遇, 若小汽车比客车每小时多行驶40千米,求两车的速度。
2016-2017学年第二学期七年级期末数学模拟试卷二本次考试范围:苏科版七下全部内容,八年级数学上册《全等三角形》;考试题型:选择、填空、解答三大类;考试时间:120分钟;考试分值:130分。
一、选择题(每小题3分,共30分)1.下列运算中,正确的是 ( ) A .a 2+a 2=2a 4 B .a 2•a 3=a 6 C .(-3x )2÷3x =3x D .(-ab 2)2=-a 2b 42.现有4根小木棒的长度分别为2cm ,3cm ,4cm 和5cm .用其中3根搭三角形,可以搭出不同三角形的个数是 ( ) A .1个 B .2个 C .3个 D .4个 3.如下图,下列判断正确的是 ( )A .若∠1=∠2,则AD ∥BCB .若∠1=∠2.则AB ∥CDC .若∠A =∠3,则 AD ∥BC D .若∠A +∠ADC =180°,则AD ∥BC4.如果a > b ,那么下列不等式的变形中,正确的是 ( ) A .a -1<b -1 B .2a <2b C .a -b <0 D .-a +2<-b +2 5.若5x 3m-2n-2y n -m +11=0是二元一次方程,则 ( )A .m =3,n =4B .m =2,n =1C .m =-1,n =2D .m =1,n =26.已知方程组⎩⎨⎧3x +5y = k +8,3x +y =-2k .的解满足x + y = 2 ,则k 的值为 ( )A .-4B .4C .-2D .27.若不等式组⎩⎨⎧3x +a <0,2x + 7>4x -1.的解集为x <4,则a 的取值范围为 ( )A .a <-12B .a ≤-12C .a >-12D .a ≥-12 8.四个同学对问题“若方程组 111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组 111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是 ( ) A⎩⎨⎧==84y x ; B ⎩⎨⎧==129y x ; C ⎩⎨⎧==2015y x ; D ⎩⎨⎧==105y x9. 如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90° 10. 如图,在△ABC 中,∠CAB =65°.将△ABC 在平面内绕点A 旋转到△AB C ''的位置,使得CC '∥AB ,则旋转角的度数为( ) A .35° ; B .40° ; C .50° ; D .65° 二、填空题(每空3分,共24分) 11.计算:3x 3·(-2x 2y ) = . 12.分解因式:4m 2-n 2 = .第3题图第9题图ABCB ′C ′第10题图13.已知一粒米的质量是0.000021千克,0.000021用科学记数法表示为 __ .14.若⎩⎨⎧x = 2,y = 1.是方程组⎩⎨⎧2ax +y = 5,x + 2y = b .的解,则ab = .15.二元一次方程3x +2y =15共有_______组正整数解....16.关于x 的不等式(a +1)x>(a +1)的解集为x <1,则a 的范围为 .17.如图,已知Rt △ABC 中∠A =90°,AB =3,AC =4.将其沿边AB 向右平移2个单位得到△FGE ,则四边形ACEG 的面积为 .18.某数学兴趣小组开展了一次活动,过程如下:设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线A B 、AC 之间,并使小棒两端分别落在两射线上,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1. (1)如图1,若已经向右摆放了3根小棒,且恰好有∠A 4A 3A =90°,则θ= . (2)如图2,若只能..摆放5根小棒,则θ的范围是 . 三、解答题(共11题,计76分)19.(本题满分6分)计算:(1)(-m )2·(m 2)2÷m 3; (2)(x -3)2-(x +2)(x -2).20.(本题满分6分)分解因式:(1)x 3-4xy 2; (2) 2m 2-12m +18.21.(本题满分6分)(1)解不等式621123x x ++-<; (2)解不等式组()523215122x x x x⎧-<-⎪⎨-<-⎪⎩22.(本题满分6分)已知长方形的长为a ,宽为b ,周长为16,两边的平方和为14.①求此长方形的面积; ②求ab 3+2a 2b 2+a 3b 的值.23.(本题满分6分)在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13. (1)求a 、b 的值;θA 4A 3A 2AA 1BCθA 6A 5A 4A 3A 2AA 1BC图1图2A B CEF G第16题图第18题图(2)当-1<x <2,求y 的取值范围.24. (本题满分6分)如图2,∠A =50°,∠BDC =70°,DE ∥BC ,交AB 于点E , BD 是△ABC 的角平分线.求∠DEB 的度数.25. (本题满分6分)已知,如图,AC 和BD 相交于点O ,OA=OC ,OB=OD ,求证:AB ∥CD .26.(本题8分) 某公司准备把240吨白砂糖运往A 、B 两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:载重量 运往A 地的费用 运往B 地的费用 大车 15吨/辆 630元/辆 750元/辆 小车10吨/辆420元/辆550元/辆(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A 地,其中大车有m 辆,其余货车前往B 地,且运往A 地的白砂糖不少于115吨.①求m 的取值范围;②请设计出总运费最少的货车调配方案,并求最少总运费.27.(8分)(1)如图①,在凹四边形ABCD 中,∠BDC =135°,∠B =∠C =30°,则∠A = °;(2)如图②,在凹四边形ABCD 中,∠ABD 与∠ACD 的角平分线交于点E ,∠A =60°,∠BDC =140°,则∠E = °;(3)如图③,∠ABD ,∠BAC 的平分线交于点E ,∠C =40°,∠BDC =150°,求∠AEB 的度数;(4)如图④,∠BAC ,∠DBC 的角平分线交于点E ,则∠B ,∠C 与∠E 之间有怎样的数量关系 。
2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。
温州市八校2016-2017学年第二学期期中联考七年级语文试卷温馨提示1.全卷满分100分(含书写分3分)。
考试时间100分钟。
2.请用钢笔或圆珠笔在答题卷上填上班级、姓名、考号。
请勿遗漏。
3.全卷由试题卷和答题卷两部分组成。
答题时,请用黑色或蓝色的钢笔或圆珠笔将答案写在答题卷相应的位置上,写在试题纸上无效。
我们期待你思维的火花,点滴的进步。
愿你冷静答题,体验每一题的成功!一、卷面书写(3分)二、语文知识积累与运用(23分)1.读下面这段文字,根据拼音写出汉字。
(4分)经过半个学期的语文旅行,我们获得了许多的感悟和体验。
在光未然的《黄河颂》里,感受到黄河勇敢坚强的英雄气p ò( ▲ ),读端木蕻良的《土地的誓言》;我们感受到作者ch ì( ▲ )痛的爱国情怀;读臧克家的《闻一多先生的说和做》,我们感受到了闻一多先生qi è( ▲ )而不舍的钻研精神;读杨振宁的《邓稼先》,感受到邓稼先xi ǎn ( ▲ )为人知的为国献身的情怀。
2.依次填入下面横线处的词语,恰当的一组是( ▲ ) (2分)树木失去了根就会 ▲ ,江河失去了源头就会 ▲ ,灵魂失去了家园就会 ▲ 。
世界无限广阔,我们渴望到广阔的天地去闯荡,但请记住,一定不要迷失了回家的路。
拥有精神家园,才能获得心灵的宁静。
A.枯黄 干涸 堕落B.枯萎 干涸 堕落C.枯萎 干旱 陨落D.枯黄 干旱 陨落3.名句填空。
(9分)(1)此夜曲中闻折柳, ▲ 。
(李白《春夜洛城闻笛》)(2) ▲ ,惟解漫天作雪飞。
(韩愈《晚春》)(3)高台多悲风, ▲ 。
(曹植《杂诗七首》其一)()((《孙权劝学》) ((岑参的《逢入京使》)(7)深林人不知, ▲ 。
(王维的《竹里馆》) (8)《木兰诗》诗中通过环境描写,渲染军旅生活悲壮严酷气氛,烘托木兰勇敢、坚强性格的名句是 ▲ , ▲ 。
4.解释下列句中的加点字。
(4分)(1)及.鲁肃过寻阳 ▲ (2)双兔傍地走.▲ (4)惟手熟尔. ▲ (3)赏赐百千强. ▲5.读下面文段,完成以下题目(4分)街上的柳树,像病了似的,叶子挂着层灰土在枝上打着卷……处处干燥,处处烫手,处处憋闷,整个的老城像烧透的砖窑,使人喘不出气。
学浙江省杭州市萧山区朝晖初级中学七年级学习检测数学试卷带解析 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】2016-2017学年浙江省杭州市萧山区朝晖初级中学七年级3月学习检测数学试卷(带解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题 如下图,下列说法错误的是( )A. ∠C 与∠1是内错角B. ∠2与∠A 是内错角C. ∠A 与∠B 是同旁内角D. ∠A 与∠3是同位角2.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么这两次拐弯的角度是( )A. 第一次向右拐40o, 第二次向左拐140oB. 第一次向左拐40o, 第二次向右拐40oC. 第一次向左拐40o, 第二次向左拐140oD. 第一次向右拐40o, 第二次向右拐40°3.已知{x =1x =?1是方程2x ?xx =3的一个解,那么x 的值是 ( )A. 1B. 3C. -3D. -14.将方程3x ?4x =5变形为用含x 的代数式表示x 为 ( )A. x =3x ?54B. x =3x +54C. x =?3x +54D. x =?3x ?545.(x 2)3等于( )A. x 5B. x 6C. x 8D. x 9 6.若(9m+1)2=316,则正整数m 的值为( )A. 2B. 3C. 4D. 57.若2x x +5x 3x 与−4x 2x x 2−4x 是同类项,则x 2−x 2的值等于:( ) A. -2 B. 9 C. -3 D. 48.将一条两边沿互相平行的纸带按如图折叠.设∠1=x x ,则∠α的度数为: ( )A. 90x ?xB. xC. 180x ?2xD. 90x ?12x9.甲、乙两根绳共长17米,如果甲绳减去它的,乙绳增加1米,两根绳长相等,若设甲绳长x 米,乙绳长y 米,则方程组是( )A. {x +x =17x ?15x =x +1 B. {x +x =17x +15=x ?1 C. {x +x =17x ?15=x +1 D. {x +x =17x ?15x =x ?110.若x 2+x ?1=0,则x 3+2x 2+2017的值为( ) A. 2016 B. 2017 C. 2018 D. 2019第II 卷(非选择题)二、填空题 计算:=___________.12.如图,已知直线AB ∥CD ,∠GEB 的平分线EF 交CD 于点F ,∠1=42°,则∠2=_______.13.方程组{x =x +5①2x ?x =7?②的解满足方程x+y+a=0,那么 a 的值是________.14.如果两条直线互相平行,那么一对同旁内角的角平分线的位置关系是__________。
人教版七年级下学期期中考试数学试题一.选择题1. 能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A. 一条高B. 一条中线C. 一条角平分线D. 一边上的中垂线2. 如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A. 25︒B. 65︒C. 90︒D. 115︒3. 一元一次不等式312x -->的解集在数轴上表示为( ) A.B. C.D.4. 在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A. 钝角三角形B. 直角三角形C. 锐角三角形D. 无法确定5. 已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A. (﹣1,﹣1).B. (﹣1,1)C. (1,1)D. (1,﹣1)6. 已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( )A .m =1,n =-1B. m =-1,n =1C. 14m ,n 33==- D. 14,33m n =-=7. 已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( )A. 13B. 9C. 9-D. 13-8. 点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 的坐标是( ) A. (2,﹣5)B. (﹣2,5)C. (5,﹣2)D. (﹣5,2)9. 某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x 和男生y ,则列方程组为( )A.500(14%)(13%)500(1 3.4)x yx y+=⎧⎨+++=⨯+⎩B.5003%4% 3.4%x yx y+=⎧⎨+=⎩C.500(13%)(14%)500(1 3.4%)x yx y+=⎧⎨+++=⨯+⎩D.5004%3%500 3.4%x yx y+=⎧⎨+=⨯⎩10. 若关于x的不等式组2034xx a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x的方程21236x a a x+++=+的解为非负整数解,则所有满足条件的整数a的值之和是()A. 1B. 3C. 4D. 6二、填空题11. 已知点m(3a-9,1-a),将m点向左平移3个单位长度后落在y轴上,则a= __________ .12. 如图,AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.13. 已知:如图,△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ACD周长为16cm,则AC的长为__________cm.14. 甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.15. 小马在解关于x的一元一次方程3232a xx-=时,误将- 2x看成了+2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=_____.16. 一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.17. 已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.18. 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.三.解答题19. 解方程或不等式(组)(1)24231x y x y +=⎧⎨-=⎩(2)2151132x x -+-≥ (3)312(2)15233x x x x +<+⎧⎪⎨-≤+⎪⎩ 20. 如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE 平分∠ACB ,求∠BEC 的度数.21. 如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC 的三个顶点均在格点上.(1)将三角形ABC 先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A 1B 1C 1,画出平移后的三角形A 1B 1C 1;(2)建立适当的平面直角坐标系,使得点A 的坐标为(-4,3),并直接写出点A 1的坐标; (3)求三角形ABC 的面积.22. 阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组2534115x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法: 解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③.把方程①代入③得:2×3+y =5,∴y =﹣1①得x =4,所以,方程组的解为41x y =⎧⎨=-⎩.请你解决以下问题:(1)模仿小铭的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩.(2)已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩,求x 2+4y 2﹣xy 的值. 23. 探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题: (1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =50°,则∠ABX+∠ACX = °;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =50°,∠DBE =130°,求∠DCE 的度数; ③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =140°,∠BG 1C =77°,求∠A 的度数.24. 水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元. (1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a 箱,苹果b 箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元? ②若老徐希望获得总利润为1000元,则a b +=?25. 当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y q x y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值. 26.如图(1),在平面直角坐标系中,点A 在x 轴负半轴上,直线 l x⊥轴于B ,点C 在直线l 上,点C 在x 轴上方.(1)(),0A a ,(),2C b ,且,a b 满足2()|4|0a b a b ++-+= ,如图(2),过点C 作MN ∥AB ,点Q是直线MN 上的点,在x 轴上是否存在点P ,使得ABC ∆ 的面积是BPQ 的面积的23?若存在,求出P 点坐标;若不存在,请说明理由.(2)如图(3),直线l 在 y 轴右侧,点E 是直线l 上动点,且点E 在x 轴下方,过点E 作DE ∥AC 交y 轴于D ,且AF 、DF 分别平分CAB ∠、ODE ∠,则A F D ∠的度数是否发生变化?若不变,求出AFD ∠的度数;若变化,请说明理由.答案与解析一.选择题1. 能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A. 一条高 B. 一条中线C. 一条角平分线D. 一边上的中垂线【答案】B 【解析】 【分析】根据三角形中线的性质作答即可.【详解】解:能把一个三角形的面积分成相等的两部分的线是这个三角形的一条中线. 故选:B .【点睛】本题考查了三角形中线的性质,属于应知应会题型,熟知三角形的一条中线将三角形分成面积相等的两部分是解题的关键.2. 如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A. 25︒B. 65︒C. 90︒D. 115︒【答案】C 【解析】 【分析】先根据平行线的性质求出∠EFB 的度数,再利用三角形的外角性质解答即可. 【详解】解:∵AB ∥CD ,115C ∠=︒, ∴115EFB C ∠=∠=︒, ∵EFB A E ∠=∠+∠,25A ∠=︒ ∴1152590E ∠=︒-︒=︒. 故选:C .【点睛】本题考查了平行线的性质和三角形的外角性质,属于基础题型,熟练掌握上述基本知识是解题关键.3. 一元一次不等式312x -->的解集在数轴上表示为( ) A.B. C.D.【答案】B 【解析】 【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可. 【详解】-3x-1>2, -3x >2+1, -3x >3, x <-1, 在数轴上表示为:,故选B .【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.4. 在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A. 钝角三角形 B. 直角三角形 C. 锐角三角形 D. 无法确定【答案】A 【解析】 【分析】根据三角形的内角和是180︒列方程即可; 【详解】∵1135A B C ∠=∠=∠, ∴3B A ∠=∠,5C A ∠=∠, ∵180A B C ∠+∠+∠=︒, ∴35180A A A ∠+∠+∠=︒, ∴30A ∠=︒, ∴100C ∠=︒, ∴△ABC 是钝角三角形.故答案选A.【点睛】本题主要考查了三角形内角和定理的应用,在准确进行分析列式是解题的关键.5. 已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为()A. (﹣1,﹣1).B. (﹣1,1)C. (1,1)D. (1,﹣1)【答案】C【解析】【分析】直接利用角平分线上点的坐标特点得出2x﹣3=3﹣x,进而得出答案.【详解】解:∵点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,∴2x﹣3=3﹣x,解得:x=2,故2x﹣3=1,3﹣x=1,则M点的坐标为:(1,1).故选:C.【点睛】此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.6. 已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A. m=1,n=-1B. m=-1,n=1C.14m,n33==- D.14,33m n=-=【答案】A【解析】【分析】根据二元一次方程的概念列出关于m、n的方程组,解之即可.【详解】∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴22111m nm n--=⎧⎨++=⎩即23m nm n-=⎧⎨+=⎩,解得:11mn=⎧⎨=-⎩,故选:A.【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.7. 已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( ) A. 13 B. 9C. 9-D. 13-【答案】A 【解析】 【分析】 先解方程组425x y x y +=⎧⎨-=⎩求出该方程组的解,然后把这个解分别代入7ax y +=与32x by +=-即可求出a 、b 的值,进一步即可求出答案.【详解】解:解方程组425x y x y +=⎧⎨-=⎩,得31x y =⎧⎨=⎩,把31x y =⎧⎨=⎩代入7ax y +=,得317a +=,解得:a =2, 把31x y =⎧⎨=⎩代入32x by +=-,得92b +=-,解得:b =﹣11, ∴a -b =2-(﹣11)=13. 故选:A .【点睛】本题考查了同解方程组的知识,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键. 8. 点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 的坐标是( ) A. (2,﹣5) B. (﹣2,5)C. (5,﹣2)D. (﹣5,2)【答案】A 【解析】 【分析】先根据到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】∵M 到x 轴距离为5,到y 轴的距离为2,∴M 纵坐标可能为±5,横坐标可能为±2. ∵点M 在第四象限,∴M 坐标为(2,﹣5). 故选:A .【点睛】本题考查点的坐标的确定;用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.9. 某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x 和男生y ,则列方程组为( )A. 500(14%)(13%)500(1 3.4)x y x y +=⎧⎨+++=⨯+⎩B. 5003%4% 3.4%x y x y +=⎧⎨+=⎩ C. 500(13%)(14%)500(1 3.4%)x y x y +=⎧⎨+++=⨯+⎩D. 5004%3%500 3.4%x y x y +=⎧⎨+=⨯⎩【答案】C【解析】【分析】 本题有两个相等关系:现有女生人数x +现有男生人数y =现有学生500;一年后女生在校生增加3%后的人数+男生在校生增加4%后的人数=现在校学生增加3.4%后的人数;据此即可列出方程组.【详解】解:设该校现有女生人数x 和男生y ,则列方程组为()()()50013%14%5001 3.4%x y x y +=⎧⎨+++=⨯+⎩. 故选:C .【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题关键. 10. 若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( )A. 1B. 3C. 4D. 6 【答案】C【解析】分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x -<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0,∴0≤a<4;解方程21 236x a a x+++=+得:x=52a -,∵方程的解为非负整数,∴52a-≥0,∴a≤5,又∵0≤a<4,∴a=1,3,∴1+3=4,∴所有满足条件的整数a的值之和为4.故选:C.【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.二、填空题11. 已知点m(3a-9,1-a),将m点向左平移3个单位长度后落在y轴上,则a= __________.【答案】4【解析】【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y轴上的点的坐标特征.12. 如图,AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.【答案】5︒;【解析】【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.13. 已知:如图,△ABC 的周长为21cm ,AB =6cm ,BC 边上中线AD =5cm ,△ACD 周长为16cm ,则AC 的长为__________cm .【答案】7【解析】先根据△ABD 周长为15cm ,AB=6cm ,AD=5cm ,由周长的定义可求BC 的长,再根据中线的定义可求BC 的长,由△ABC 的周长为21cm ,即可求出AC 长.解:∵AB=6cm,AD=5cm ,△ABD 周长为15cm ,∴BD=15-6-5=4cm ,∵AD 是BC 边上的中线,∴BC=8cm,∵△ABC 的周长为21cm ,∴AC=21-6-8=7cm .故AC 长为7cm .“点睛”此题考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC 的长,题目难度中等.14. 甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.【答案】7【解析】【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x)场,由题意得,3x+(10-x)≥24,解得:x≥7,即甲队至少胜了7场.故答案是:7.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.15. 小马在解关于x的一元一次方程3232a xx-=时,误将- 2x看成了+2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=_____.【答案】3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.16. 一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.【答案】84【解析】【分析】设原两位数个位上的数字为x,则十位上的数字为2x,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x,则十位上的数字为2x,由题意,得10×2x+x-(10x+2x )=36,解得:x=4,则十位数字为:2×4=8, 则原两位数为84.故答案:84.【点睛】本题考查了一元一次方程的应用-数字问题,考查了百位数字×100+十位上的数字×10+个位数字的运用,解答时根据数位问题的数量关系建立方程式是关键.17. 已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________. 【答案】72【解析】【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=,解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键. 18. 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.【答案】()45,5【解析】【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,按照此方法计算即可;【详解】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,∵245=2025,∴第2025个点在x轴上的坐标为()45,0,则第2020个点在()45,5.故答案为()45,5.【点睛】本题主要考查了规律题型点的坐标,准确判断是解题的关键.三.解答题19. 解方程或不等式(组)(1)24 231 x yx y+=⎧⎨-=⎩(2)2151132 x x-+-≥(3)312(2)15233x xx x+<+⎧⎪⎨-≤+⎪⎩【答案】(1)21x y =⎧⎨=⎩;(2)1x ≤-;(3)13x -≤< 【解析】【分析】(1)根据加减消元法解答;(2)根据解一元一次不等式的方法解答即可;(3)先分别解两个不等式,再取其解集的公共部分即得结果.【详解】解:(1)对24231x y x y +=⎧⎨-=⎩①②, ①×2,得248x y +=③, ③-②,得7y =7,解得:y =1,把y =1代入①,得x +2=4,解得:x =2,∴原方程组的解为:21x y =⎧⎨=⎩; (2)不等式两边同乘以6,得()()2216351x x --≥+,去括号,得426153x x --≥+,移项、合并同类项,得1111x -≥,不等式两边同除以﹣1,得1x ≤-;(3)对()312215233x x x x ⎧+<+⎪⎨-≤+⎪⎩①②, 解不等式①,得x <3,解不等式②,得1x ≥-,∴原不等式组的解集为13x -≤<.【点睛】本题考查了二元一次方程组、一元一次不等式和一元一次不等式组的解法,属于基本题型,熟练掌握解二元一次方程组和一元一次不等式的方法是关键.20. 如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE 平分∠ACB ,求∠BEC 的度数.【答案】131°【解析】【分析】先根据∠A=65°,∠ACB=72°得出∠ABC的度数,再由∠ABD=30°得出∠CBD的度数,根据CE平分∠ACB 得出∠BCE的度数,根据∠BEC=180°-∠BCE-∠CBD即可得出结论【详解】在△ABC中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC﹣∠ABD=13°∵CE平分∠ACB∴∠BCE=∠ACB=36°∴在△BCE中,∠BEC=180°﹣13°﹣36°=131°.【点睛】本题考察了三角形内角和定理,在两个三角形中,三个角之间的关系是解决此题的关键21. 如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC的三个顶点均在格点上.(1)将三角形ABC先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A1B1C1,画出平移后的三角形A1B1C1;(2)建立适当的平面直角坐标系,使得点A 的坐标为(-4,3),并直接写出点A 1的坐标;(3)求三角形ABC 的面积.【答案】(1)见解析;(2)(2,6);(3)192【解析】【分析】(1)利用网格特点和平移的性质画出A 、B 、C 的对应点A 1、B 1、C 1,从而得到△A 1B 1C 1;(2)利用A 点坐标画出直角坐标系,再写出A 1坐标即可;(3)利用分割法求出坐标即可.【详解】解:(1)画出平移后的△A 1B 1C 1如下图; ; (2)如上图建立平面直角坐标系,使得点A 的坐标为(-4,3),由图可知:点A 1的坐标为(2,6); (3)由(2)中的图可知:A (-4,3),B (5,-1),C (0,0),∴S △ABC =11119(45)434512222+⨯-⨯⨯-⨯⨯=. 【点睛】本题考查了作图——平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.22. 阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组2534115x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法: 解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③.把方程①代入③得:2×3+y =5,∴y =﹣1①得x =4,所以,方程组的解为41x y =⎧⎨=-⎩. 请你解决以下问题:(1)模仿小铭的“整体代换”法解方程组325 9419 x yx y-=⎧⎨-=⎩.(2)已知x,y满足方程组22223212472836x xy yx xy y⎧-+=⎨++=⎩,求x2+4y2﹣xy的值.【答案】(1)32xy=⎧⎨=⎩;(2)15【解析】【分析】(1)把9x﹣4y=19变形为3x+2(3x﹣2y)=19,再用整体代换的方法解题;(2)将原方程组变形为22223(4)2472(4)36x y xyx y xy⎧+-=⎨++=⎩①②这样的形式,再利用整体代换的方法解决.【详解】解:(1)解方程组325 9419 x yx y-=⎧⎨-=⎩①②把②变形为3x+2(3x﹣2y)=19,∵3x﹣2y=5,∴3x+10=19,∴x=3,把x=3代入3x﹣2y=5得y=2,即方程组的解为32 xy=⎧⎨=⎩;(2)原方程组变形为22223(4)247 2(4)36x y xyx y xy⎧+-=⎨++=⎩①②①+②×2得,7(x2+4y2)=119,∴x2+4y2=17,把x2+4y2=17代入②得xy=2∴x2+4y2﹣xy=17﹣2=15答:x2+4y2﹣xy的值是15.【点睛】本题考查了二元一次方程组的解法,属延伸拓展题,正确掌握整体代换的求解方法是解题的关键.23. 探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A =50°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.【答案】(1)∠BDC=∠A+∠B+∠C,理由见解析;(2)①40°;②90°;③70°.【解析】【分析】(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=12(∠ADB+∠AEB)+∠A,易得答案.③由②方法,进而可得答案.【详解】解:(1)连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC +∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∴∠DCE=12(ADB+∠AEB)+A=40°+50°=90°;③由②知,∠BG1C=110(ABD+∠ACD)+A,∵∠BG1C=77°,∴设∠A为x°,∵∠ABD+∠ACD=140°﹣x°,∴110(40﹣x)x=77,∴14﹣110x+x=77,∴x=70,∴∠A为70°.【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.24. 水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a箱,苹果b箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元?②若老徐希望获得总利润为1000元,则a b+=?【答案】(1)草莓35箱,苹果25箱;(2)①340元,②53或52【解析】【分析】(1)抓住题中关键的已知条件,老徐购得草莓和苹果共60箱,刚好花费3100元,设未知数列方程组,求解方程即可;(2)①由题意列二元一次方程,可得到34120a b +=,列式求出他在乙店获利;②根据老徐希望获得总利润为1000元,建立关于a 、b 的二元一次方程,整理可得18034a b -=,再根据a 、b 的取值范围及a 一定是4的整数倍,即可求出结果;【详解】(1)解:设草莓购买了x 箱,苹果购买了y 箱,根据题意得: 6060403100x y x y ⎧+=⎨+=⎩, 解得3525x y ⎧=⎨=⎩. 答:草莓购买了35箱,苹果购买了25箱;(2)解:①若老徐在甲店获利600元,则1520600a b +=,整理得:34120a b +=,他在乙店的获利为:()()12351625a b -+-, =()820434a b -+,=820-4120⨯,=340元;②根据题意得:()()1520123516251000a b a b ++-+-=, 整理得:34180a b +=, 得到18034a b -=, ∵a、b 均为正整数,∴a 一定是4的倍数,∴a 可能是0,4,8…,∵035a ≤≤,025b ≤≤,∴当且仅当a=32,b=21或a=25,b=24时34180a b +=成立,∴322153a b +=+=或28+24=52.故答案为340元;53或52.【点睛】本题主要考查了二元一次方程组的应用,根据题意列式是解题的关键.25. 当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由; (3)已知P 、Q 为有理数,且关于x 、y的方程组3x y q x y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值. 【答案】(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23-【解析】【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可; (2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A (5,3)是“爱心点”;当B (4,8)时,m ﹣1=4,22n +=8, 解得:m =5,n =14,显然2m ≠8+n ,所以B 点不是“爱心点”;(2)A 、B 两点的中点C 在第四象限,理由如下:∵点A (a ,﹣4)是“爱心点”,∴m﹣1=a,22n+=﹣4,解得:m=a+1,n=﹣10.代入2m=8+n,得2(a+1)=8﹣10,解得:a=﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得p﹣6q=4.∵p,q为有理数,若使﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.26.如图(1),在平面直角坐标系中,点A在x轴负半轴上,直线l x⊥轴于B,点C在直线l上,点C在x轴上方.(1)(),0A a ,(),2C b ,且,a b 满足2()|4|0a b a b ++-+= ,如图(2),过点C 作MN ∥AB ,点Q 是直线MN 上的点,在x 轴上是否存在点P ,使得ABC ∆ 的面积是BPQ 的面积的23 ?若存在,求出P 点坐标;若不存在,请说明理由.(2)如图(3),直线l 在 y 轴右侧,点E 是直线l 上动点,且点E 在 x 轴下方,过点E 作DE ∥AC 交y 轴于D ,且AF 、DF 分别平分CAB ∠、ODE ∠,则A F D ∠的度数是否发生变化?若不变,求出AFD ∠的度数;若变化,请说明理由. 【答案】(1)存在,P 点为()8,0或()4,0-;(2)AFD ∠的度数不变,AFD ∠=45︒【解析】【分析】(1)由非负数的性质可得a 、b 的方程组,解方程组即可求出a 、b 的值,于是可得点A 、C 坐标,进而可得S △ABC ,若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ ,可得关于m 的方程,解方程即可求出m 的值,从而可得点P 坐标; (2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,根据平行公理的推论可得AC ∥FH ∥DE ,然后根据平行线的性质和角的和差可得∠AFD =∠GAF +∠1,由角平分线的性质和三角形的内角和定理可得2∠GAF +2∠1=90°,于是可得∠AFD =45°,从而可得结论.【详解】解:(1)∵,a b 满足2()|4|0a b a b ++-+=,∴040a b a b +=⎧⎨-+=⎩,解得:22a b =-⎧⎨=⎩, ∴()2,0A -,()2,2C ,∴S △ABC =14242⨯⨯=, ∵点Q 是直线MN 上的点,∴2Q y =,若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ , 则2122432m ⨯⋅-⨯=,解得:m =8或﹣4, 所以存在点P 满足S △ABC =23S △BPQ ,且P 点坐标为()8,0或()4,0-; (2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,∵DE ∥AC ,∴AC ∥FH ∥DE ,∴∠GAF =∠AFH ,∠HFD =∠1,∠AGO =∠GDE ,∴∠AFD =∠AFH +∠HFD =∠GAF +∠1,∵AF 、DF 分别平分CAB ∠、ODE ∠,∴∠CAB =2∠GAF ,∠ODE =2∠1=∠AGO ,∵∠CAB +∠AGO =90°,∴2∠GAF +2∠1=90°,∴∠GAF +∠1=45°,即∠AFD =45°;∴AFD ∠的度数不会发生变化,且∠AFD =45°.【点睛】本题考查了非负数的性质、二元一次方程组的解法、坐标系中三角形的面积、平行线的性质、角平分线的定义以及三角形的内角和定理等知识,综合性强、但难度不大,正确添加辅助线、熟练掌握上述是解题的关键.。
2016-2017学年第二学期期中测试试卷初 一 数 学一、选择题(本大题共8小题,每小题2分,共16分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上.) 1.下列运算正确的是A .x 3·x 3=2x 6B .(-2x 2)2=-4x 4C .(x 3)2=x 6D .x 5÷x =x 52.如图,AB ∥CD ,则根据图中标注的角,下列关系中成立的是 A .∠1=∠3 B .∠2+∠3=180° C .∠2+∠4<180° D .∠3+∠5=180° 3.下列各式能用平方差公式计算的是A .(2a +b )(2b -a )B .11(1)(1)22x x -+--C .(a +b )(a -2b )D .(2x -1)(-2x +1) 4.下列各组线段能组成一个三角形的是A .4cm ,6cm ,11cmB .4cm ,5cm ,1cmC .3cm ,4cm ,5cmD .2cm ,3cm ,6cm 5.若a =-(0.2)-2,b =-2,c =(-2)2,则a 、b 、c 大小为A .a<b<cB .a<c<bC .b<c<aD .c<b<a 6.(3a +2)(4a 2-a -1)的结果中二次项系数是A .-3B .8C .5D .-5 7.轮船在B 处测得小岛A 在其北偏东32°方向,从小岛A 观测B 处的方向为 A .北偏东32°B .南偏西32°C .南偏东32°D .南偏西58°8.如图,宽为50 cm 的长方形图案由10个一样的小长方形拼成, 其中一个小长方形的面积为 A .400 cm 2B .500 cm 2C .600 cm 2D .4000 cm 2二、填空题 (本大题共10小题,每小题2分,共20分,把答案填在答题卡相应横线上.) 9.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,用科学记数法表示是 ▲ 克.10.如图,AB ∥CD ,EG ⊥AB 于G ,∠1=50°,则∠E = ▲ . 11.若二次三项式x 2-kx +25是完全平方式,则k 的值为 ▲ . 12.已知方程组2425x y x y +=⎧⎨+=⎩,则x+y= ▲ .13.如图所示,把一个三角形纸片ABC 顶角向内折叠3次之后,3个顶点不重合,那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是 ▲ .14.若a x =2,a y =3,则a 3x-y = ▲ .15.己知ABC ∆中,B ∠是A ∠的2倍,C ∠比A ∠大20°,则A ∠等于 ▲ °. 16.若一个多边形的每一个内角都是144°,则这个多边形的是边数为 ▲ . 17.己知s + t =4,则s 2-t 2+8t 的值为 ▲ .18.如图, ,,,ABC ACB AD BD CD ∠=∠分别平分ABC ∆的外角EAC ∠、内角ABC ∠、外角ACF ∠.以下结论: ①//AD BC ;②2ACB ADB ∠=∠;③BD 平分ADC ∠;④90ADC ABD ∠=︒-∠;⑤12BDC BAC ∠=∠其中正确的结论是 ▲ .三、解答题(本大题共10题,共64分,请写出必要的计算过程或推演步骤) 19.(共3分)计算:-12-(-3)3÷(3.14-π)0-(120)-1.20.(每小题3分,共6分)计算(1) (2a 3b -4ab 3)·(-0. 5ab )2.(2)已知x 2+4x -1=0,求代数式(x +2)2-(x +2)(x -2)+x 2的值.21.分解因式 (每小题3分,共9分) (1) 4a 2-36 (2) x 3-6x 2+9x (3) ( x 2 + y 2 )2-4x 2y 222.(本题6分)解方程组(1) ⎩⎨⎧x +2y =15,4x +3y -30=0.. (2)26293418x y z x y z x y z +-=⎧⎪++=⎨⎪++=⎩23.(本题满分4分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC 经过一次平移后得到△A′B′C′,图中标出了点B 的对应点B′. (1)在给定方格纸中画出平移后的△A′B′C′; 利用网格点和三角板画图或计算: (2)画出AB 边上的中线CD ; (3)画出BC 边上的高线AE ; (4)△A′B′C′的面积为______.24.(本题5分)已知,如图,∠1=∠ACB ,∠2=∠3,求证:∠BDC +∠DHF =180°证明:∵∠1=∠ACB (已知)∴DE ∥BC ( ▲ ) ∴∠2=∠DCF ( ▲ ) ∵∠2=∠3(已知) ∴∠3=∠DCF ( ▲ ) ∴CD ∥FH ( ▲ )∴∠BDC +∠DHF =180° ( ▲ )25.(本题7分) 已知:如图,AB ∥CD ,∠A =∠D .求证:AF ∥ED .26.(本题7分)已知:∠MON=40°,OE 平分∠MON ,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .设∠OAC=x °.(1)如图1,若AB//ON ,则①∠ABO 的度数是______;②当∠BAD=∠ABD 时,x =______;③当∠BAD=∠BDA 时,x =______.(2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.27.(本题8分) 记M(1)=-2,M(2)=(-2)×(-2),M(3)=(-2)×(-2)×(-2),……(1) 计算:M(5)+M(6);(2) 求2M(2015)+M(2016)的值:(3) 说明2M(n)与M(n+1)互为相反数.28.(本题9分)如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC= ▲;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.。
2016-2017学年北师大版七年级数学下册期末试题及答案2016-2017学年度第二学期期末测试题七年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分。
本试题共8页,满分为120分。
考试时间为120分钟。
答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置。
考试结束后,将本试卷和答题卡一并交回。
本考试不允许使用计算器。
第Ⅰ卷(选择题共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列各式计算正确的是()A.x+x=2xB.xy^4/48=x^3yC.x^2=x^5D.(-x)^5=(-x)^82.下列各式中,不能用平方差公式计算的是( )A.(4x-3y)(-3y-4x)B.(2x-y)(2x+y)C.(a+b-c)(-c-b+a)D.(-x+y)(x-y)3.PM2.5是大气压中直径小于或等于0.xxxxxxxm的颗粒物,将0.xxxxxxx用科学记数法表示为()A.0.25×10^-5B.0.25×10^-6C.2.5×10^-5D.2.5×10^-64.如图,∠1与∠2互补,∠3=135°,则∠4的度数是()A、45°B、55°C、65°D、75°5.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间t(时)变化的图象(全程)如图所示。
有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y与时间t的关系式为y=10t;④第1.5小时,甲跑了12千米。
浙江省2016-2017学年七年级下学期期中考试数学试题一、选择题(每小题3分,共30分)1.2)5(-化简后的结果是( )A .5B .5C . 5±D .-52.数据2,1,1,5,1,4,3的众数和中位数分别是( )A . 1,2B . 2,1C . 1,4D . 1,5 3、方程x x 42=的根是( )A .4B .-4C .4或-4D .4或04.在五边形ABCDE 中,已知∠A 与∠C 互补,∠B+∠D=2700,则∠E 的度数为( ) A .800 B .900 C .1000 D .1100 5、若2)2(2+=+x x 则下列x 的取值范围正确的是( )A .2-<xB . x ≤2-C . x >2-D . x ≥2- 6.把方程0362=+-x x 化成()2x m n -=的形式,则m 、n 的值是( )A .3,12B .-3, 12C .3,6D .-3,67.在直角三角形中,已知有两边长分别为3,4则该直角三形的斜边长为( ) A . 5 B . 4 C .7 D .5或48. 如图, 平行四边形ABCD 中,P 是边AD 上间任意一点(除点A ,D 外),ABP ∆,BCP ∆,CDP ∆,的面积分别为1S ,2S ,3S 则一定成立的是 ( )A .231S S S <+B .231S S S >+C . 231S S S =+D . 321S S S =+9.某市2013年投入教育经费2亿元,为了发展教育事业,该市每年教育经费的年增长率均为x ,从2013年到2015年共投入教育经费9.5亿元,则下列方程正确的是( )A.5.922=x B .5.9)1(2=+xC .5.9)1(22=+x D .5.9)1(2)1(222=++++x x10.如图,在△ABC 中, AB=AC ,点D 在边BC 上,过点D 作DF ∥AC 交AB 于点F ,过点C 作CE ∥AB 交FD 的延长线于点E 。
则下列结论正确的是( )CBDAP第8题FCAA . DC+DF=AB B . BD+DC=DFC . CE+DF=ABD . CE+DC=BD二、填空题(每小题3分,共24分) 11. 化简1227-=12.已知平行四边形ABCD 的周长是18cm ,边AD=5cm ,则边AB 的长是 cm . 13.下表是某所学校一个学习小组一次数学测验的成绩统计表,已知该小组本次数学测验的平均分是86分,那么表中的x 的值是分数 70 80 90100 人数13x114.若3<m <7,那么22)3()7(-+-m m 化简的结果是15. 某种商品原售价400元,由于产品换代,现连续两次降价处理,按324元的售价销售。
已知两次降价的百分率均为x ,则x=16. 已知032=-+a a ,那么a a --24的值是17.已知21,x x 是方程0262=-+x x 的两个根,则=+2112x x x x 18. 如图,在□ABCD 中,点E 在BC 上, AE 平分∠BAD ,且AB=AE ,连接DE 并 延长与AB 的延长线交于点F ,连接CF , 若AB=2cm ,则与△CEF 面积是 cm三、解答题(共46分)19.(本题8分,每小题4分)化简(1)64)7()3(22--+- (2)2)32()31)(31(+--+20. (本题8分,每小题4分)解下列一元二次方程: (1)162=-x x (2)2x 2+5x-5=0第18题FBACDE21. (本题6分)如图,在□ABCD 中,E 是AD 边上的中点,连接BE 并延长与CD 的延长线交于点F.证明:AB=DF22. (本题6分)为了了解业余射击队队员的射击成绩,对某次射击比赛中每一名队员的平均成绩(单位:环,环数为整数)进行了统计.分别绘制了如下统计表和成绩分布直方图,请你根据统计表和成绩分布直方图回答下列问题:平均成绩 1 2 3 4 5 6 7 8 9 10 人数1a33b4c61(1) 求出a ,b ,c 的值(2)写出这次射击比赛成绩的众数与中位数23. (本题8分)如图,在长方形ABCD 中, AB= 5cm , AD =3cm .点E 从点A 出发,以每秒2cm 的速度沿折线...ABC ...方向..运动,点F 从点C 出发,以每秒1cm 的速度沿线段CD 方向向点D 运动.已知动点E 、F 同时发,当点E 运动到点C 时,E 、F 停止运动,设运动时间为t . (1)当E 运动到B 点时,求出t 的值F EC BD A(2)在点E 、点F 的运动过程中,是否存在某一时刻,使得EF=3cm .若存在,请求出t 的值;若不存在,请说明理由.24.(本题10分)某校八年级(1)(2)班准备集体购买T 恤衫,了解到某商店有促销活动,当购买10件时每件140元,购买数量每增加1件单价减少1元。
当购买数量为60件(含60件)以上时,一律每件80元。
(1)若购买x 件(10<x<60),每件的单价为y 元,请写出y 关于x 的函数关系式。
(2)若八(1)(2)班共购买100件,由于某种原因需分两批购买T 恤衫,且第一批购买数量多于30件且少于70件。
已知购买两批T 恤衫一共花了9200元。
求第一批T 恤衫购买数量。
数学答题卷(参考答案)题次一二1718192021222324总分B A DC E F得分一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BADBDCDCDC二、填空题(每小题3分,共24分) 11.3 . 12.4 .13. 5 . 14. 4 . 15. 10% . 16. 1 . 17. 20- . 18. 3 .三、解答题(本题有6小题,共46分) 19.(本题8分,每小题4分)化简(1)64)7()3(22--+- (2)2)32()31)(31(+--+=3+7-8 (3分) =)3344(31++--(2分) =2 (1分) =334431----(1分) =349--(1分) 20. (本题8分,每小题4分)解下列一元二次方程:(1)162=-x x (2)2x 2+5x-5=010)3(2=-x (2分) 5,5,2-===c b a 103±=-x 4542=-ac b 4455±-=x (2分)103,10321-=+=x x (2分) 5,2521-==x x (2分) 21. (本题6分)如图,在□ABCD 中,E 是AD 边上的中点,连接BE 并延长与CD 的延长线交于点F.证明:AB=DF∠AEB=∠DEF AE=DE∠A=∠ADFF ECBD A(每一小点1分)∆ABE≅DEF(2分)AB=DF(1分)22. (本题6分)为了了解业余射击队队员的射击成绩,对某次射击比赛中每一名队员的平均成绩(单位:环,环数为整数)进行了统计.分别绘制了如下统计表和成绩分布直方图,请你根据统计表和成绩分布直方图回答下列问题:平均成绩 1 2 3 4 5 6 7 8 9 10 人数 1 a 3 3 b 4 c 6 1 0(1)求出a,b,c的值(2)写出这次射击比赛成绩的众数与中位数(1) a=3 b=3 c=9众数为7 (每一点为1分)中位数为6 (2分)23. (本题8分)如图,在长方形ABCD中, AB= 5cm, AD =3cm.点E从点A出发,以每秒2cm的速度沿折线..运动,点F从点C出发,以每秒1cm的速度沿线段CD方向向...ABC...方向点D运动.已知动点E、F同时发,当点E运动到点C时,E、F停止运动,设运动时间为t.(1)当E运动到B点时,求出t的值(2)在点E、点F的运动过程中,是否存在某一时刻,使得EF=3cm.若存在,请求出t的值;若不存在,请说明理由.(1)52=t5.2=t (2分)(2) 时当5.20≤<t 22233)53(=+-t35=t (3分) 时当45.2≤<t 2223)28(=+-t t无解 (3分)24.(本题10分)某校八年级(1)(2)班准备集体购买T 恤衫,了解到某商店有促销活动,当购买10件时每件140元,购买数量每增加1件单价减少1元。
当购买数量为60件(含60件)以上时,一律每件80元。
(1)若购买x 件(10<x<60),每件的单价为y 元,请写出y 关于x 的函数关系式。
(2)若八(1)(2)班共购买100件,由于某种原因需分两批购买T 恤衫,且第一批购买数量多于30件且少于70件。
已知购买两批T 恤衫一共花了9200元。
求第一批T 恤衫购买数量。
(1)x y -=150 (2分)(2)设第一批购买x 件,则第二批购买x -100件100100604030<-≤≤<x ,x 则时当 9200)100(80)150(=-+-x x x 解得40)(3021==,xx 舍去 (3分)60100406040<-<<<x ,x 时当,9200)150(100=-x解得x =58 (2分)当40100307060≤-<<≤x ,x 时 []9200)100(150)100(80=---+x x x 解得)(70,6021舍去==x x (3分) 答:第一批购买数量为40件或58件或60件。
BADCEF。