1模具材料及热处理的研究与应用
- 格式:pdf
- 大小:72.56 KB
- 文档页数:1
模具材料及应用教案第一章:模具材料概述1.1 模具材料的定义1.2 模具材料的作用1.3 模具材料的分类1.4 模具材料的性能要求第二章:模具材料的选用原则2.1 模具设计及制造过程中的材料选择2.2 模具使用环境对材料的影响2.3 模具材料的性能指标2.4 模具材料的成本考虑第三章:常用模具材料的特点与应用3.1 冷作模具材料3.2 热作模具材料3.3 塑料模具材料3.4 粉末冶金模具材料3.5 陶瓷模具材料第四章:模具材料的制备与加工4.1 模具材料的制备方法4.2 模具材料的加工工艺4.3 模具材料的表面处理4.4 模具材料的质量控制第五章:模具材料的失效与预防5.1 模具材料的失效类型5.2 模具材料的失效原因5.3 模具材料的失效预防措施5.4 模具材料的维护与保养第六章:模具材料的标准与检测6.1 模具材料的国家标准和行业标准6.2 模具材料的标准制定流程6.3 模具材料的检测方法6.4 模具材料的质量认证第七章:模具材料的可持续发展与环保7.1 模具材料对环境的影响7.2 环保型模具材料的研究与发展7.3 模具材料的生产与使用过程中的节能减排7.4 模具材料的回收与再利用第八章:模具材料在汽车工业中的应用8.1 汽车模具的材料选择8.2 汽车覆盖件模具材料的应用8.3 汽车冲压模具材料的应用8.4 汽车塑料模具材料的应用第九章:模具材料在电子行业的应用9.1 电子产品的特点与模具材料的选择9.2 电子模具材料的应用实例9.3 电子模具材料的性能要求9.4 电子模具材料的趋势与发展第十章:模具材料的未来发展趋势10.1 新型模具材料的研究方向10.2 模具材料的高性能化10.3 模具材料的智能化10.4 模具材料的绿色化重点和难点解析重点一:模具材料的性能要求及选用原则性能要求:重点掌握模具在不同工作环境下的性能需求,如硬度、韧性、耐磨性、耐蚀性等。
选用原则:理解模具设计及制造过程中材料选择的影响因素,包括工作环境、模具类型、成本预算等。
材料的热处理对力学性能的影响研究材料的热处理是通过加热和冷却来改变材料的结构和性能的过程。
在现代工程中,热处理是一种常见的处理方法,被广泛应用于各种材料的生产和加工过程中。
本文将探讨材料的热处理对力学性能的影响,并分析其中的原理和应用。
一、热处理的基本原理热处理是通过控制加热和冷却的速率,使材料发生相变或晶体结构改变,从而达到改善力学性能的目的。
常见的热处理方式包括退火、正火、淬火和回火等。
1. 退火处理:退火是将材料加热到一定温度,然后缓慢冷却的过程。
退火处理可以消除材料中的应力和组织缺陷,提高其延展性和塑性。
退火后的材料通常具有良好的可加工性和韧性。
2. 正火处理:正火是将材料加热到适当温度并保持一段时间,然后以适当速度冷却的过程。
正火处理可以增加材料的硬度和强度,但保持一定的韧性。
正火后的材料通常用于制造工具和机械零件。
3. 淬火处理:淬火是将材料迅速冷却到室温的过程。
淬火能够使材料形成马氏体,从而提高硬度和强度。
淬火后的材料通常用于制作刀具和齿轮等需要高强度和耐磨性的零件。
4. 回火处理:回火是将材料加热到适当温度并保持一段时间,然后缓慢冷却的过程。
回火处理可以减轻淬火的脆性和内应力,提高材料的韧性和韧性。
回火后的材料通常用于制造弹簧和弹簧等需要较高韧性和强度的零件。
二、热处理对力学性能的影响热处理可以显著改变材料的力学性能,其具体影响如下:1. 硬度:热处理可以显著影响材料的硬度,使其具有更高的抗压强度和硬度。
通过淬火处理,材料中的马氏体相会增加,从而提高硬度。
而通过退火和回火处理,材料的硬度会减少,使其更易加工和变形。
2. 强度:热处理可以使材料的强度得到显著提高。
正火和淬火处理能够改善材料的晶体结构和相变,从而增加其强度。
此外,热处理还能使材料中的晶界、晶粒得到细化,提高材料的强度和韧性。
3. 韧性:热处理对材料的韧性也有显著影响。
退火和回火处理可以减少材料中的内应力和组织缺陷,提高其韧性和延展性。
模具材料的特点及应用领域模具材料是制造模具的基础材料,它直接影响到模具的质量和使用寿命。
模具材料应具有一定的机械性能、耐磨损性和耐腐蚀性,以及良好的加工性能和热处理性能。
下面将介绍几种常见的模具材料的特点及应用领域。
1.低碳合金钢低碳合金钢具有优良的可塑性、韧性和焊接性能,是制造模具常用的材料之一。
低碳合金钢主要有45#、50#、55#等级别。
它们的主要特点是加工性好,易于切削加工,并且热处理性能稳定。
但是由于低碳合金钢强度较低,无法满足一些特殊模具的要求。
低碳合金钢的应用领域主要包括小型冲压模、塑料模和模具零部件的制造。
由于低碳合金钢的成本较低,适用于制造小型模具和量产模具。
2.工具钢工具钢是一类含有较高碳、硅、锰、钼、钢铁元素的合金钢,具有优良的耐磨损性和切削性能。
常用的工具钢有12Cr、D2、S45C、S50C等。
这些工具钢经过热处理后,可以获得较高的硬度和耐磨性。
工具钢主要用于制造大型冲压模、塑料模和高性能模具零部件。
由于工具钢具有较高的强度和硬度,可以满足复杂模具对材料性能的要求。
3.硬质合金硬质合金是一种金属材料,主要由钨钴硬质颗粒和金属结合相组成。
硬质合金具有高硬度、抗磨损性和抗腐蚀性能。
常用的硬质合金有WC-Co、WC-TaC-Co 等。
硬质合金具有优良的耐磨性和切削性能,可以用于制造模具的耐磨零件。
硬质合金主要应用于冲模的切削刃、塑料模具的喷嘴和模腔等耐磨部件。
由于硬质合金具有优异的耐磨性能,可以延长模具的使用寿命。
4.不锈钢不锈钢是一类耐腐蚀性能较好的钢。
不锈钢具有优良的耐腐蚀性和耐高温性能,不易生锈。
常用的不锈钢有SUS304、SUS316等。
不锈钢具有良好的加工性能,可以满足一些特殊模具对材料的要求。
不锈钢主要用于制造模具的耐腐蚀零件和高温模具。
由于不锈钢具有较好的耐腐蚀性能和耐高温性能,可以满足特殊模具的要求。
5.铝合金铝合金具有良好的机械性能、切削性能和导热性能,是一种重要的模具材料。
我国模具材料的选择及热处理工艺的发展摘要:近年来,我国模具工业的发展很快,模具水平也在不断提高。
本文介绍了当前我国模具材料的先进选择方法及热处理工艺的发展状况,并预测未来模具的发展方向。
关键词:模具;材料选择;热处理;方向0 引言模具是工业生产的基础工艺装备,被称为”工业之母”。
75%的粗加工工业产品零件、50%的精加工零件由模具成型,绝大部分塑料制品也由模具成型。
作为国民经济的基础工业,模具涉及机械、汽车、轻工、电子、化工、冶金、建材等各个行业,应用范围十分广泛[1]。
中国的模具工业正步入了高速发展时期,模具材料的选择及热处理工艺作为模具工业两个关键环节,在模具工业中起着越来越重要的作用。
1 模具材料选用原则模具的选材过程是一个系统工程,它的影响因素很多。
一般来说,在选材过程中,模具材料应能达到使用性能足够、工艺性能良好、经济性合理的要求[2]。
1.1 满足使用性能要求模具材料的使用性能包括耐磨性、强韧性、疲劳断裂性能、高温性能、耐冷热疲劳性能、耐蚀性等性能。
在选材过程中首先要考虑的便是材料的使用性能要求,它模具材料的选用原则中是最基本的,也是最重要的。
1.2 满足工艺性能要求模具材料的工艺性能包括可锻性、退火工艺性、切削加工性、氧化脱碳敏感性、淬硬性、淬透性、淬火变形开裂倾向以及可磨削性能等。
材料的工艺性能决定了材料在加工过程的难易程度以及热处理性质等。
对模具材料的选择具有重要的决定作用,同时也是模具材料的选用原则中是最基本的要求。
1.3 满足经济性要求在给模具选材时,必须考虑经济性这一原则,尽可能地降低制造成本。
因此,在满足使用性能和工艺性能的前提下,首先选用价格较低的,能用碳钢就不用合金钢,能用国产材料就不用进口材料。
2 模具材料选用方法在以往的模具设计过程中,设计者往往根据自己的经验判断。
对模具设计者而言,要想获得最佳的选材方案,则应该对材料性能有综合的把握能力并具有丰富的选材经验。
即便如此,在实际操作中仍有可能出现偏差。
热加工模具的材料选择及热处理随着社会的发展,科学的发展,热加工用模也有了很迅速的发展。
本毕业设计从理论与实践的角度对热加工模模具进行阐述,针对热加工模用料及热处理进行分析,从以下几方面进行论述:热加工类模具用钢的材料分析热加工模是工业产品生产中不可缺少的工艺方法之一。
它主要用于制造业和加工业。
它是和冲压、锻造、铸造成型机械,同时和塑料、橡胶、陶瓷等非金属材料制品成型加工用的成形机械相配套,作为成形工具来使用的。
热加工模具属于精密机械产品,因为它主要由机械零件和机构组成,如成形工作零件(凸模、凹模),导向零件(导柱、导套等),支承零件(模座等),定位零件等;送料机构,抽芯机构,推料机构,检测与安全机构等。
为提高模具的质量,性能,精度和生产效率,缩短制造周期,其零、部件(又称模具组合),多由标准零、部件组成。
所以,模具应属于标准化程度较高的产品。
一副中小型冲模或塑料注射模,其构成的标准零、部件可达90%,其工时节约率可达25%~45%。
一、热加工用模模具的功能和作用现代产品生产中,热加工模具由于其加工效率高,互换性好,节约原材料,所以得到很广泛的应用。
现代工业产品的零件,广泛采用冲击、成型锻造、压铸成形、挤压成形、塑料注射或其他成形加工方法,和成形模具相配套,经单工序或多道成形工序,使材料或胚料成形加工成符合产品要求的零件,或成分精加工前的半成品件。
如汽车覆盖件,须采用多副模具,进行冲孔、拉深、翻边、弯曲、切边、修边、整形等多道工序,成形加工为合格零件;电视机外壳洗衣机内桶是采用塑料注射方法,经一次注射成型为合格零件的;发动机的曲轴连杆是采用锻造成形模具,经滚锻和模锻成形加工为精密机械加工前的半成品胚件的。
高精度、高效率、长寿命的冲模、塑料注射成形模具,可成形加工几十万,甚至几千万产品零件,如一副硬质合金模具,可冲压硅钢片零件(E型片、电机定转子片)上亿件,称这类模具为大批量生产用模具。
适用于多品种、少批量或产品试制的模具有:组合冲模、快换冲模、叠层冲模或成型冲模,低熔点合金成型模具等,在现代加工业中,具有重要的经济价值,称这类模具为通用、经济模具。
冲压模具常用材料种类及特性如何合理选取模具钢材?(1)模具的选材在设计模具时,合理选取材料是关系到模具寿命和成本的一项重要工作,模具的成形零件凸、凹模材料的选取尤应慎重,通常应考虑以下几点:①生产批量当冲压件的生产批量很大时,凸、凹模材料应选取质量高、耐磨性好的模具钢,对于模具的其他工艺零件的材料要求,也要相应地提高;在少量生产中,可采用成本低耐磨性较差的材料。
②被冲压材料性能、工序性质和凸、凹模工作条件当被冲材料较硬或变形抗力较大时,其凸、凹模应选取耐磨性好、强度高的材料;对于凸、凹模工作条件较差的冷挤模,应选取有足够硬度、强度、韧性、耐磨性等综合力学性能较好的模具钢,同时应具有一定的硬性和耐热、抗疲劳强度。
③加工规格一般来料都没有加工,这些材料叫坯料,但坯料加工首先要经过铣床、磨床来达到一定尺寸之后才能制造模具。
(2)模具寿命与模具材料的关系①模具凹模刃口高度的估算方法a) 规定模具寿命为2000000~3000000次时,刃口每次研磨量为ffice:smarttags" />0.2mm,每次研磨后的生产量为200000~300000次。
刃口直身高度为2.5~3mm。
b) 若要模具寿命为5000000次,则刃口高度应取4~5mm。
②模具寿命与模具材料的关系凸模凹模通常采用的材料为XW-10、XW-5、XW-41、XW-42、SKD11(Cr12MoV)、ASP23。
以上四种主要钢材特性见表注: 1.以上各种参数均以XW-41为标准的比较值。
2.当冲件材料为SECC、SPCC、SPTE、T3时,通常选凸凹模材料为XW-41。
3.当冲件材料为不锈钢时,通常选凸凹模材料为ASP23。
金属材料现场快速鉴别的方法有哪几种?(1) 火花鉴别火花鉴别是将钢铁材料轻轻压在砂轮上打磨,观察所迸射出的火花形状和颜色,以判断钢铁成分范围的方法、材料不同,其火花也不同。
①20钢流线多、带红色,火束长,芒线稍粗。
模具材料性能及用途1. 国产优质冷作模具钢Cr12MoV钢化学成分(GB/T 1299—2000)ω/%CSiMnCrMoPSV1.45~1.70 ≤0.40 ≤0.35 11.0~12.50 0.40~0.60 ≤0.030 ≤0.030 0.15~0.30性能:高碳、高铬类型莱氏体钢,具有良好的淬透性,截面尺寸在400mm以下可以完全淬透,且具有很高的耐磨性,淬火时体积变化小。
其碳含量比Crl2钢低很多,且加入了钼、钒,因此,钢的热加工性能、冲击韧性和碳化物分布都得到了明显改善。
用途:用于制造断面较大、形状复杂、耐磨性要求高、承受较大冲击负荷的冷作模具,如冷切剪刀、切边模、滚边模、量规、拉丝模、搓丝板、螺纹滚模、形状复杂的冲孔凹模、钢板深拉伸模,以及要求高耐磨的冷冲模和冲头等。
生产品种:热轧材、锻材、冷拉材、热轧钢板、冷拉钢丝。
信息条形码:9813662787561232. Cr12模具钢的化学成分、特性及用途合金工具钢简称合工钢,是在碳工钢的基础上加入合金元素而形成的钢种。
其中合工钢包括:量具刃具用钢、耐冲击工具用钢、冷作模具钢、热作模具钢、无磁模具钢、塑料模具钢。
Cr12是冷作模具钢。
执行标准GB/T1299—2000。
统一数字代号A21200;牌号Cr12;化学成分%:C2.00~2.30,Si小于等于0.040,Mn小于等于0.040,Cr11.50~13.00,p小于等于0.030,S小于等于0.030;交货状态:布氏硬度HBW10/3000(小于等于269~217),淬火温度:950~1000;冷却剂:油;洛氏硬度GRC大于等于60。
用途:具有较高的强度\硬度\耐磨性与淬透性,淬火变形小,但较脆、导热性差、高温塑性差。
用于制造耐磨性能高,不承受冲击的模具用加工材料不很硬的刀具,如车刀、铰刀、冷切剪刀、木工工具、冷冲模、螺纹滚模、拉丝模、铳头、量规等。
3. 国产优质模具钢D2(Cr12Mo1V1)Cr12Mo1V1钢的化学成分(GB/T 1299—2000)ω/%性能:高碳、高铬类型莱氏体钢,无特殊要求时钻不作为必加元素。
模具材料及热处理在模具教学中的应用摘要:模具是一种重要的加工工艺装备,是国民经济各工业部门发展的重要基础之一。
随着工业生产的发展,对工业产品的品种、形状、数量、质量等的要求越来越高。
为了使学生更加深刻的了解模具知识,本文就模具材料及热处理在模具教学中的应用做了简要的探究。
关键词:模具材料;热处理;模具教学;应用abstract: die is a kind of important processing technology and equipment, is the national economy each industrial sector development the important basis of the one. along with the development of the industrial production of industrial products, shape, quantity, quality and demand more and more. in order to make students more profound understanding of mould knowledge, this paper will die material and heat treatment in the mold the teaching application provides a brief explored.key words: advanced materials; heat treatment; mould teaching; application中图分类号:tg76文献标识码:a文章编号:1.模具材料与热处理教学现状分析《模具材料与热处理》是职业院校模具设计与制造专业的一门主干专业课程,同时也是一门专业的基础课程。
通过该课程的学习,可以使学生学得有关模具、工程结构以及机械零件等常用的金属材料的理论基础知识和热处理的基础知识,使学生具备基础的根据模具零件的加工条件与失效方式等进行材料的合理选择与使用,并且可以独立的完成模具零件的冷、热加工工艺线路的制定。
模具材料及热处理在模具教学中的应用作者:王珂来源:《职业·中旬》2012年第01期目前,用人单位对模具专业的学生要求是“一专多能”,特别是在用人机制灵活的国内小企业、小加工厂,在快速制造生产、尽快提高生产效益、减员增效、节约成本理念的驱动下,“什么活都会干”的多能型人才,最受欢迎。
职业院校培养的学生,具有较完整系统的理论知识、较强的动手实践能力,备受企业的重视和青睐。
笔者所在学校为了加强学生的就业适应性和综合技能水平,特意在模具教学中,增加了模具钢材及热处理的课题。
作为职业学校的模具教学,主要涉及冷冲模和注塑模的设计、加工、调试。
下面笔者主要针对市场模具钢的品种、性能和热处理进行分析。
一、常用模具材料当前,我国常用的冷作模具钢主要是CrWMn(低合金工具钢)和高碳高铬工具钢Cr12及Cr12MoV等传统钢号。
CrWMn钢有适当的淬透性和耐磨性,热处理变形小,但CrWMn钢锻后需较严格地控制冷速,并采用适当的热处理,使碳化物呈均匀细小的粒状,否则,易形成网状碳化物,导致模具在使用中崩刃和开裂。
高碳高铬工具钢有较高的耐磨性,但其碳化物偏析较严重,导致变形的方向性和强韧性的降低。
随着对模具质量的不断提高,又开发了一些新的模具钢材,如GD(6CrMnNiMoVSi)、7CrSiMnMoV(简称CH)、DS钢等。
GD钢用于制作易崩刃、断裂的冷冲模,具有较高的使用寿命。
CH钢的成分与日本的SX105V钢相同,是一种火焰淬火钢,常用于制作汽车等生产线上用的模具零件,火焰淬火时加热模具刃口切料面,硬化层下又有一个高韧性的基体做衬垫,从而使模具获得较高的使用寿命。
DS钢是一种冲击冷作模具钢,其冲击韧性显著优于常用的高韧性刀片用工具钢6CrW2Si。
该类钢的主要特点是工艺性好,淬火温度低,热处理变形小,强韧性好,并具有适当的耐磨性。
塑料成形工艺的应用,在模具工业总产值中占首位。
以前,我国还没有具体的塑料模具用钢。
新型高导热高热强热作模具钢的开发与应用随着工业化的发展和工业产品的需求量逐年增加,新型高导热高热强热作模具钢的开发与应用成为了当前研究的热点。
本文将对这一领域进行详细探讨,包括新型高导热高热强热作模具钢的特性、开发技术以及在工业生产中的广泛应用。
新型高导热高热强热作模具钢具有以下几个独特的特性。
首先,它具有良好的导热性能,能够迅速传导加工热量,提高生产效率。
其次,它具有出色的热强度,能够承受高温环境下的工作条件,延长模具的使用寿命。
此外,新型高导热高热强热作模具钢还具有优异的耐磨性、耐蚀性和耐热疲劳性能,能够在复杂的加工环境下保持稳定的性能。
针对新型高导热高热强热作模具钢的开发,目前已经涌现出一些先进的技术。
首先是合金设计技术,通过调整钢材中的合金元素含量和比例,可以改变其微观结构和力学性能,从而提高导热性能和热强度。
其次是热处理技术,通过精确控制材料的加热、保温和冷却过程,可以获得优异的综合性能。
此外,近年来的研究还注重于材料的微观结构调控和表面改性,进一步提高了新型高导热高热强热作模具钢的性能。
在工业生产中,新型高导热高热强热作模具钢得到了广泛应用。
作为一种具有高性能的材料,它可以用于汽车零部件、塑料制品、电子产品和航空航天等领域。
例如,在汽车制造中,利用新型高导热高热强热作模具钢制作引擎缸体、曲轴和齿轮等关键部件,可以提高汽车的动力性能和燃烧效率。
在塑料制品生产中,采用新型高导热高热强热作模具钢模具,可以提高产品的成型质量和生产效率。
此外,在电子产品和航空航天领域,新型高导热高热强热作模具钢的导热性能和稳定性能可以保证产品在高温环境下的正常工作。
尽管新型高导热高热强热作模具钢在开发和应用方面取得了一些进展,但仍然存在一些挑战。
首先是材料的成本问题,目前新型高导热高热强热作模具钢的生产成本较高,限制了其在一些领域的推广应用。
其次是制造工艺的复杂性,需要精密的加工设备和技术,增加了生产成本和周期。
高导热高热强热作模具钢的热性能研究引言热作模具钢是一种在工业生产中广泛使用的材料,其在高温和高压环境下能够保持较高的强度和稳定性。
然而,随着工业生产对产品质量和效率的不断提升,对于热作模具钢的热性能也提出了更高的要求。
本文将对高导热高热强热作模具钢的热性能进行深入研究,以探索其在工业生产中的应用潜力。
导热性能在热作模具的使用过程中,导热性能是一个重要的性能指标。
高导热性能可以提高热传导效率,从而提升模具的加工效率和产品质量。
为了研究导热性能,我们可以通过测量材料的热导率来评估其导热能力。
高导热能力的热作模具钢通常具有较高的热导率,这意味着它能够迅速传递热能,提高加工效率。
劣化温度高热强度是热作模具钢的重要性能之一。
在高温和高压环境下,模具钢材料可能会失去强度并发生劣化。
为了研究高热强度,可以通过测量其热膨胀系数和热震稳定性来评估它在高温环境下的表现。
高导热高热强度的热作模具钢通常表现出较低的热膨胀系数和良好的热震稳定性,从而保证其在高温环境下的稳定性和耐用性。
热疲劳性能在热作模具的使用过程中,由于频繁的热循环作用,材料会发生热疲劳现象。
热疲劳是指在高温环境下由于周期性的热循环引起的材料变形和破裂。
为了研究热疲劳性能,可以进行热疲劳实验来模拟实际使用条件下的热循环。
高导热高热强度的热作模具钢通常具有较低的热膨胀系数和较好的热疲劳性能,从而能够在频繁的热循环作用下保持稳定的形态和性能。
材料设计与改性为了提高高导热高热强热作模具钢的热性能,材料设计和改性是一种常见的方法。
通过选择合适的合金元素和处理工艺,可以改善材料的热导率和热强度。
例如,添加导热性能较好的合金元素,如铜和铝,可以显著提高材料的导热性能。
同时,通过合适的热处理工艺,例如热处理和表面涂层等,也可以改善材料的热性能。
结论高导热高热强热作模具钢的热性能是其在工业生产中应用的关键因素之一。
通过对导热性能、热强度和热疲劳性能的研究,可以评估材料在高温和高压环境下的表现。
模具材料的性能对模具寿命有决定性的影响,根据模具的结构和使用情况,合理选用制模材料是模具工程师的重要任务之一。
模具热处理及表面强化是模具制造中的关键工艺,是保证模具质量和使用寿命的重要环节,实际使用证明,在模具失效中由于热处理不当引起的占很大比例。
模具用途广泛,工作条件差别大,制造模具的材料范围很广。
目前,冲压模、塑料模、压铸模、粉末冶金模的材料以钢为主,有些模具还可采用低熔点合金和非金属材料等。
模具材料的性能要求及选用原则模具用钢主要性能要求如下:1,硬度和耐磨性(最重要的模具失效形式,决定模具寿命)2,可加工性能(模具零件形状复杂,要求热处理变形小)3,强度和韧性(足够的强度承受高压,冲击载荷等要求高韧性)4,淬透性、抛光性、耐腐蚀性(塑料及添加剂的腐蚀作用)。
模具用钢按用途可分为三大类:1,冷作模具钢:制作金属在冷态下变形的模具,包括:冷冲模、冷挤压模、冷镦模、粉末压制模。
要求高硬度、高耐磨性及足够强度和韧性。
2,热作模具钢:制造经过加热的固态或液态金属在压力下成型的模具,包括:热锻模、压铸模。
要求高温下足够的强度、韧性和耐磨性及高热疲劳抗力和导热性3,塑料模具钢:制造各种塑料模具。
塑料品种多,要求差别大,其模具材料范围广。
主要要求工艺性能高(热处理变形小、抛光性好、耐腐蚀)选用一般原则:满足使用性能要求、良好的工艺性能、适当考虑经济性。
模具常用热处理工艺模具热处理包括模具材料热处理和模具零件热处理。
模具材料热处理:在钢厂内完成,保证钢材质量,如基本力学性能,金相组织要符合国家标准或行业标准。
特点是大型工业炉中大批量生产。
模具零件热处理:在模具制造厂完成,或专业热处理厂完成。
特点是小批量或单件生产,工艺复杂多样,设备精良。
热处理工艺方法,分预备热处理和最终热处理。
常用方法有:正火、退火、淬火、调质、渗碳及氮化等,见表。
冷作模具钢及其热处理冷作模具主要用于金属或非金属材料的冲裁、拉伸、弯曲等工序。
常见模具材料及热处理模具是制造工业中常用的工具,用于制造各种产品的零件、组件和部件。
模具的性能和质量直接影响着制造产品的质量和效率。
模具材料的选择和热处理对于模具的寿命、刚度、耐磨性等性能有着重要的影响。
一、常见模具材料常见的模具材料包括金属材料和非金属材料两大类。
1.金属材料金属材料是常见的模具材料,常用的金属材料有:-钢:一般选择优质碳钢或合金工具钢作为模具材料,这些钢材具有较高的强度、硬度、韧性和耐磨性。
常用的有45#钢、40Cr钢、3Cr13等。
-铝:铝合金具有较好的导热性能和杰出的加工性能,适用于制造大件和结构复杂的模具。
常用的有铝硅合金、铝镁合金等。
2.非金属材料非金属材料是模具的重要组成部分,常见的非金属材料有:-塑料:制造塑料模具时常使用工程塑料,如尼龙、聚酰亚胺和聚四氟乙烯等。
-石膏、水泥和陶瓷:这些材料通常用于制造快速成型模具,如铸造模具、压铸模具和注塑模具等。
二、常见的热处理方法热处理是通过对模具材料进行热处理来提高其性能和寿命。
常见的热处理方法有:1.硬化处理:通过加热和冷却的方式,使模具表面形成较高硬度的硬化层,以提高模具的耐磨性和耐疲劳性能。
2.淬火处理:淬火是将已加热至临界温度的模具材料迅速冷却,以提高材料的硬度和脆性,常用于制造高硬度的切削工具模具。
3.回火处理:通过加热和冷却的方式,使淬火后的模具材料的硬度和脆性适中,同时提高其韧性和抗震性能。
4.化学热处理:如氮化、碳氮共渗等热处理方法,可以在模具表面形成硬度很高、耐磨性和耐蚀性好的层,提高模具的使用寿命。
5.低温处理:通过将模具材料置于低温环境下进行处理,改变其晶体结构和性能,以提高模具的使用寿命和加工精度。
总结:常见的模具材料包括金属材料和非金属材料,金属材料主要选择优质碳钢或合金工具钢,非金属材料常用的有塑料、石膏、水泥和陶瓷等。
常见的热处理方法包括硬化处理、淬火处理、回火处理、化学热处理和低温处理等。
热处理可以显著提高模具的硬度、耐磨性、耐蚀性和寿命,从而提高制造产品的质量和效率。
第9章模具的热处理及表面强化技术模具热处理及表面强化是模具制造中的关键工艺之一,直接关系到模具的制造精度、力学性能(如强度等)、使用寿命以及制造成本,是保证模具质量和使用寿命的重要环节。
模具在实际生产使用中表明,在模具的全部失效中,由于热处理不当所引起的失效居于首位。
在模具设计制造过程中,若能正确选用钢材,选择合理的热处理及表面强化技术工艺,对充分发挥材料的潜在性能、减少能耗、降低成本、提高模具的质量和使用寿命都将起到重大的作用。
当前模具热处理技术发展较快的领域是真空热处理技术和模具的表面强化技术。
9.1模具的热处理9.1.l模具钢的热处理模具钢的热处理工艺是指模具钢在加热、冷却过程中,根据组织转变规律制定的具体热处理加热、保温和冷却的工艺参数。
根据加热、冷却方式及获得组织和性能的不同,热处理工艺可分为常规热处理、表面热处理(表面淬火和化学热处理等)等。
根据热处理在零件生产工艺流程中的位置和作用,热处理又可分为预备热处理和最终热处理。
模具钢的常规热处理主要包括退火、正火、淬火和回火。
由于真空热处理技术具有防止加热氧化、不脱碳、真空除气、变形小及硬度均匀等特点,近年来得到广泛的推广应用。
1.退火工艺退火一般是指将模具钢加热到临界温度以上,保温一定时间,然后使其缓冷至室温,获得接近于平衡状态组织的热处理工艺。
其组织为铁素体基体上分布着碳化物。
目的是消除钢中的应力,降低模具材料的硬度,使材料成分均匀,改善组织,为后续工序(机加工、冷加工成形、最终热处理等)做准备。
退火工艺根据加热温度不同可分为:1)完全退火将模具钢加热到临界温度A c3以上20~30℃,保温足够的时间,使其组织完全奥氏体化,然后缓慢冷却,以获得接近平衡状态组织的热处理工艺。
其目的是为了降低硬度、均匀组织、消除内应力和热加工缺陷、改善切削加工性能和冷塑性变形性能,为后续热处理或冷加工做准备。
2)不完全退火将钢加热到A c1~A c3(亚共析钢)或A c1~A ccm(过共析钢)之间,保温一定时间后缓慢冷却,以获得接近于平衡组织的热处理工艺。
模具材料及热处理1.金属组织金属具有不透明、金属光泽良好的导热和导电性同时其导电能力随温度的增高而减小,富有延性和展性等特性的物质。
金属内部原子具有规律性排列的固体〔即晶体〕。
合金由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。
相:合金中成份、结构、性能相同的组成局部。
固溶体是一个〔或几个〕组元的原子〔化合物〕溶进另一个组元的晶格中,而仍维持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。
固溶强化由于溶质原子进进溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象喊固溶强化现象。
化合物合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。
机械混合物由两种晶体结构而组成的合金组成物,尽管是两面种晶体,却是一种组成成分,具有独立的机械性能。
2.金属硬度硬度金属的硬度,是指金属外表局部体积内反抗外物压进而引起的塑性变形的抗力,硬度越高讲明金属反抗塑性变形的能力越强,金属产生塑性变形越困难。
硬度试验方法简单易行,又无损于零件。
实际常使用的硬度试验方法有:布氏硬度、洛氏硬度和维氏硬度三种。
三种硬度试验值有大致的换算关系,见表一。
布氏硬度HB:布氏硬度是用载荷为P的力把直截了当D的钢球压进金属外表,并维持一定的时刻,测量金属外表上的压痕直径d,据此计算出的压痕面积AB,求出每单位面积所受力,用作金属的硬度值,喊布氏硬度,记作HB。
布氏硬度的使用上限是HB450,适用于测定退火、正火、调质钢、铸铁及有色金属的硬度。
洛氏硬度HRA、HRC:洛氏硬度是工业生产中最常用的硬度测量的方法,因为操作简便、迅速,能够直截了当读出硬度值,不损伤工件外表,可测量的硬度范围较宽。
但洛氏硬度也有一些缺点,如因压痕小,对材料有偏析及组织不均匀的情况,测量结果不离度大,再现性较差。
洛氏硬度(HR)也是用压痕的方式试验硬度。
它是用测量凹陷深度来表示硬度值。
洛氏硬度试验用的压头分硬质和软质两种。
模具材料及热处理的研究与应用
【摘要】当前模具制造的成本费用比较高,尤其是一些比较精密复杂的冷冲模和塑料模以及压铸模等等各种模具。
在采用一定热处理技术之后可以提高模具的应用质量与使用性能,同时也可以大幅度的提高模具寿命,对比而言,有着特别显著的商业利益与经济效益,中国模具技术分析研究工作者也相当重视模具热处理技术的快速发展。
本文通过对一些热处理技术分析研究对模具材料的一些应用,希望对我国在模具材料及热处理的分析研究领域能有所帮助。
【关键词】模具制造热处理技术
前言:由于模具制造水平的不断提高,模具行业的先进技术也随之不断进步,模具国家产业化也取得了非常好的成绩,这些年来,我国机械制造技术不断进步,在模具行业的发展增长的势头也有所控制,模具技术的机械工业产品出口也在稳定增长,在这样一个大环境下,我国如何在模具制造技术方面打开一个新局面变得尤其重要,模具水平象征着一个国家的生产力,模具制造技术的发展也在影响着国家的经济的发展,有着十分重要的作用。
热处理技术与模具材料的组合也成为了人们眼中比较重要的问题之一,如何处理好这些方面的困境将是我们现在重要的课题之一。
一、真空热处理
模具钢经过真空热处理之后有比较良好的表面形态,变形比较小。
同大气下的淬火相比较而言,真空油淬之后模具表面硬化还算比较均匀,并且稍微高一些,最为主要原因是因为真空加热的时候,模具钢表面表现的活性状态,而且不脱碳,不能产生阻碍模具钢冷却的一层氧化膜。
而在真空之下加热,钢的表面有着一种脱气效果,因而拥有比较高的力学方面性能,加热炉内真空度越高,钢抗弯强度也就越高。
真空淬火之后,钢的断裂韧性也有所增高,模具寿命比常规工艺普遍提高百分之四十以上,甚至更高。
这种冷作模具真空淬火技术早已得到比较广泛的应用。
二、深冷处理
这些年来的分析研究工作表明,我们可以了解到,模具钢经深冷处理,可以提高其力学性能,一些模具经深冷处理后显著提高了使用寿命。
模具钢的深冷可以在淬火和回火工序之间进行,也可以在淬火与回火之后再进行一下深冷处理。
如果在淬火或者回火之后钢中仍然保留有一些残余的奥氏体,然而在深层次冷处理之后仍然需要再来进行一次回火。
深冷处理能提高钢的耐磨性和抗回火稳定性。
深冷处理不仅用于冷作模具,也可用于热作模具和硬质合金。
深冷处理技术已越来越受到模具热处理工作者的关注,早已开发研究出一种专门用于深冷处理的设备。
不同钢种在深冷过程当中的组织上变化及其在微观机制及其对物质力学性能方面的影响,尚需进一步分析与研究。