定积分问题的数值求解及Matlab实现_张长耀
- 格式:pdf
- 大小:180.02 KB
- 文档页数:3
matlab积分运算Matlab是一种功能强大的数值计算软件,其中包含了丰富的积分运算函数。
积分运算在数学中是一种常见的数值计算方法,它可以用来求解函数的面积、曲线的弧长、物体的质量等问题。
在Matlab 中,我们可以使用不同的积分函数来进行数值积分运算,下面我将详细介绍一些常用的积分运算函数及其用法。
我们来介绍一下Matlab中最基本的积分函数——int。
int函数的基本语法为int(fun,xmin,xmax),其中fun是被积函数,xmin和xmax分别是积分区间的下限和上限。
int函数将根据被积函数在积分区间的取值情况,自动选择适当的积分算法进行计算。
下面是一个简单的例子,演示了如何使用int函数计算函数y=x^2在区间[0,1]上的积分:```fun = @(x) x.^2;xmin = 0;xmax = 1;result = int(fun,xmin,xmax);disp(result);```上述代码中,我们首先定义了一个匿名函数fun,它表示被积函数y=x^2。
然后,我们指定了积分区间的下限xmin和上限xmax。
最后,调用int函数进行积分运算,并将结果保存在result变量中。
通过disp函数,我们可以将计算得到的积分结果输出到命令窗口中。
除了int函数,Matlab还提供了其他一些常用的积分函数,如quad、quadl、quadgk等。
这些函数在计算积分时采用了不同的算法和策略,适用于不同类型的积分问题。
例如,quad函数适用于计算一般的积分问题,quadl函数适用于计算具有奇点的积分问题,quadgk函数适用于计算具有高度非线性函数的积分问题。
下面是一个使用quad函数计算函数y=sin(x)在区间[0,pi]上的积分的例子:```fun = @(x) sin(x);xmin = 0;xmax = pi;result = quad(fun,xmin,xmax);disp(result);```在上述代码中,我们定义了一个匿名函数fun,它表示被积函数y=sin(x)。
文章标题:探索matlab中的蒙特卡洛法求定积分在数学和计算科学中,求解定积分是一个常见的问题。
传统的数值积分方法中,蒙特卡洛法是一种非常有趣和强大的方法,能够对一些特殊的不易求解的定积分问题提供解决方案。
而在matlab这一强大的数学计算软件中,蒙特卡洛法同样有着广泛的应用。
1. 什么是蒙特卡洛法?蒙特卡洛法是一种基于随机采样的数值积分方法,其核心思想是利用随机抽样的方法逼近定积分的值。
具体来说,对于给定的函数$f(x)$以及区间$[a, b]$,蒙特卡洛法通过对函数在该区间上进行随机采样,并利用采样点的平均值来逼近定积分的值。
2. 在matlab中应用蒙特卡洛法在matlab中,可以利用蒙特卡洛法求解定积分问题。
通过生成服从均匀分布的随机数,并代入原函数,然后求解采样点的平均值,可以得到定积分的近似值。
matlab内置了丰富的数学计算和随机数生成函数,能够方便地实现蒙特卡洛法的计算。
3. 实例分析:使用matlab进行蒙特卡洛法求解定积分假设我们要求解函数$f(x)=x^2$在区间$[0, 1]$上的定积分,即$$\int_{0}^{1} x^2 \, dx$$我们可以在matlab中编写如下代码:```matlabN = 1000000; % 设定采样点的个数X = rand(1, N); % 生成均匀分布的随机数Y = X.^2; % 代入原函数integral_value = mean(Y); % 求解采样点的平均值```通过上述代码,我们得到了定积分的近似值integral_value。
在这个例子中,我们利用蒙特卡洛法求得了定积分的近似值。
4. 总结与展望通过本文的介绍,我们对matlab中蒙特卡洛法求解定积分的方法有了初步的了解。
蒙特卡洛法作为一种基于随机采样的数值积分方法,在matlab中有着广泛的应用。
在实际应用中,我们可以根据定积分的具体问题来灵活选择采样点的个数,并结合matlab强大的数学计算能力,在求解定积分问题中取得更加准确的结果。
一、符号积分符号积分由函数int来实现。
该函数的一般调用格式为:int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分;int(s,v,a,b):求定积分运算。
a,b分别表示定积分的下限和上限。
该函数求被积函数在区间[a,b]上的定积分。
a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。
当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。
当a,b中有一个是inf时,函数返回一个广义积分。
当a,b中有一个符号表达式时,函数返回一个符号函数。
例:求函数x^2+y^2+z^2的三重积分。
内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下:>>syms x y z %定义符号变量>>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式F2 =1610027357/6563700-6072064/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2 ^(3/4) %给出有理数解>>VF2=vpa(F2) %给出默认精度的数值解VF2 =224.92153573331143159790710032805二、数值积分1.数值积分基本原理求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)•法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。
它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。
一、符号积分符号积分由函数int来实现。
该函数的一般调用格式为:int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分;int(s,v,a,b):求定积分运算。
a,b分别表示定积分的下限和上限。
该函数求被积函数在区间[a,b]上的定积分。
a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。
当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。
当a,b中有一个是inf时,函数返回一个广义积分。
当a,b中有一个符号表达式时,函数返回一个符号函数。
例:求函数x^2+y^2+z^2的三重积分。
内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下:>>syms x y z %定义符号变量>>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式F2 =1610027357/6563700-6072064/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2 ^(3/4) %给出有理数解>>VF2=vpa(F2) %给出默认精度的数值解VF2 =224.92153573331143159790710032805二、数值积分1.数值积分基本原理求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)•法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。
它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。
Matlab数值实验定积分的近似计算教程一、问题背景与实验目的二、相关函数(命令)及简介三、实验内容1.矩形法2.梯形法3.抛物线法4.直接应用Matlab命令计算结果四、自己动手一、问题背景与实验目的利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分.本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用.二、相关函数(命令)及简介1.sum(a):求数组a的和.2.format long:长格式,即屏幕显示15位有效数字.(注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值.4.quad():抛物线法求数值积分.格式: quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即 .*、./、.^等.例:Q = quad('1./(x.^3-2*x-5)',0,2);5.trapz():梯形法求数值积分.格式:trapz(x,y)其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun)例:计算x=0:pi/100:pi;y=sin(x);trapz(x,y)6.dblquad():抛物线法求二重数值积分.格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline 定义,也可以通过某个函数文件的句柄传递.例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi)顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法.Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi) 例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi)这时必须存在一个函数文件integrnd.m:function z = integrnd(x, y)z = y*sin(x);7.fprintf(文件地址,格式,写入的变量):把数据写入指定文件.例:x = 0:.1:1;y = [x; exp(x)];fid = fopen('exp.txt','w'); %打开文件fprintf(fid,'%6.2f %12.8f\n',y); %写入fclose(fid) %关闭文件8.syms 变量1 变量2 …:定义变量为符号.9.sym('表达式'):将表达式定义为符号.解释:Matlab中的符号运算事实上是借用了Maple的软件包,所以当在Matlab中要对符号进行运算时,必须先把要用到的变量定义为符号.10.int(f,v,a,b):求f关于v积分,积分区间由a到b.11.subs(f,'x',a):将 a 的值赋给符号表达式 f 中的 x,并计算出值.若简单地使用subs(f),则将f的所有符号变量用可能的数值代入,并计算出值.三、实验内容1.矩形法根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度.针对不同的取法,计算结果会有不同,我们以为例(取),(1)左点法:对等分区间,在区间上取左端点,即取,0.78789399673078,理论值,此时计算的相对误差(2)右点法:同(1)中划分区间,在区间上取右端点,即取,0.78289399673078,理论值,此时计算的相对误差(3)中点法:同(1)中划分区间,在区间上取中点,即取,0.78540024673078,理论值,此时计算的相对误差如果在分割的每个小区间上采用一次或二次多项式来近似代替被积函数,那么可以期望得到比矩形法效果好得多的近似计算公式.下面介绍的梯形法和抛物线法就是这一指导思想的产物.2.梯形法等分区间,相应函数值为().曲线上相应的点为()将曲线的每一段弧用过点,的弦(线性函数)来代替,这使得每个上的曲边梯形成为真正的梯形,其面积为,.于是各个小梯形面积之和就是曲边梯形面积的近似值,,即,称此式为梯形公式.仍用的近似计算为例,取,0.78539399673078,理论值,此时计算的相对误差很显然,这个误差要比简单的矩形左点法和右点法的计算误差小得多.3.抛物线法由梯形法求近似值,当为凹曲线时,它就偏小;当为凸曲线时,它就偏大.若每段改用与它凸性相接近的抛物线来近似时,就可减少上述缺点,这就是抛物线法.将积分区间作等分,分点依次为,,对应函数值为(),曲线上相应点为().现把区间上的曲线段用通过三点,,的抛物线来近似代替,然后求函数从到的定积分:由于,代入上式整理后得同样也有……将这个积分相加即得原来所要计算的定积分的近似值:,即这就是抛物线法公式,也称为辛卜生(Simpson)公式.仍用的近似计算为例,取,=0.78539816339745,理论值,此时计算的相对误差4. 直接应用Matlab命令计算结果(1)数值计算方法1:int('1/(1+x^2)','x',0,1) (符号求积分)方法2:quad('1./(1+x.^2)',0,1) (抛物线法求数值积分)方法3:x=0:0.001:1;y=1./(1+x.^2);trapz(x,y) (梯形法求数值积分)(2)数值计算方法1:int(int('x+y^2','y',-1,1),'x',0,2) (符号求积分)方法2:dblquad(inline('x+y^2'),0,2,-1,1) (抛物线法二重数值积分)四、自己动手1.实现实验内容中的例子,即分别采用矩形法、梯形法、抛物线法计算,取,并比较三种方法的精确程度.2.分别用梯形法与抛物线法,计算,取.并尝试直接使用函数trapz()、quad()进行计算求解,比较结果的差异.3.试计算定积分.(注意:可以运用trapz()、quad()或附录程序求解吗?为什么?)4.将的近似计算结果与Matlab中各命令的计算结果相比较,试猜测Matlab中的数值积分命令最可能采用了哪一种近似计算方法?并找出其他例子支持你的观点.5.通过整个实验内容及练习,你能否作出一些理论上的小结,即针对什么类型的函数(具有某种单调特性或凹凸特性),用某种近似计算方法所得结果更接近于实际值?6.学习fulu2sum.m的程序设计方法,尝试用函数 sum 改写附录1和附录3的程序,避免for 循环.。
matlab 定积分函数一、函数简介matlab 定积分函数是一个非常重要的数学函数,它可以用来计算给定区间内的函数积分值。
在实际的数学应用中,定积分函数广泛应用于各种领域,例如物理、经济学、工程学等等。
二、函数语法matlab 定积分函数的语法如下所示:Q = integral(fun,a,b)其中,fun 是被积函数句柄;a 和 b 是积分区间的上下限;Q 是计算得到的积分值。
三、参数说明1. fun:被积函数句柄,即指向一个可以接受一个输入参数并返回单个输出值的 matlab 函数。
该函数必须定义在当前工作空间中。
2. a 和 b:定积分区间的上下限。
如果 a 大于 b,则计算得到的结果为负数。
3. Q:计算得到的定积分值。
四、使用示例以下是一个简单的使用示例:% 定义被积函数fun = @(x) x.^2;% 计算 [0,1] 区间内 fun 的定积分Q = integral(fun, 0, 1);disp(Q);运行以上代码,将会输出 0.3333,即 [0,1] 区间内 x^2 的定积分值为1/3。
五、注意事项1. 被积函数必须是连续的。
如果被积函数在定积分区间内不连续,那么计算得到的结果可能会不准确。
2. 如果被积函数有奇点,则需要进行适当的变量替换或数值调整,以避免计算得到的结果无穷大或无法收敛。
3. 在使用定积分函数时,需要对积分区间进行合理的选择,以保证计算得到的结果准确可信。
4. 定积分函数可以处理多重积分问题,只需依次指定多个被积函数即可。
六、总结matlab 定积分函数是一个非常强大和实用的数学工具。
通过使用该函数,我们可以轻松地计算出给定区间内各种复杂函数的积分值。
在实际应用中,我们需要注意被积函数是否连续、是否存在奇点等问题,并对积分区间进行合理选择。
东北大学秦皇岛分校数值计算课程设计报告数值积分及Matlab实现学院数学与统计学院专信息与计算科学业学5133117号姓楚文玉名指导教张建波姜玉山师成绩教师评语:指导教师签字:2015年07月14日1 绪论在科研计算中,经常会碰到一些很难用公式定理直接求出精确解的积分问题,对于这类问题,我们一般转化为数值积分问题,用计算机来实现求解问题.1.1 课题的背景对于定积分()ba f x dx ⎰在求某函数的定积分时,在一定条件下,虽然有牛顿-莱布里茨公式()()()baI f x dx F b F a ==-⎰可以计算定积分的值,但在很多情况下的原函数()f x 不易求出或非常复杂.被积函数的原函数很难用初等函数表达出来,例如2sin (),x x f x e x-=等;有的函数()f x 的原函数()F x 存在,但其表达式太复杂,计算量太大,有的甚至无法有解析表达式.因此能够借助牛顿-莱布尼兹公式计算定积分的情形是不多的.另外,许多实际问题中的被积函数()f x 往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解,只能设法求其近似值.因此,探讨近似计算的数值积分方法是有明显的实际意义的,即有必要研究定积分的数值计算方法,以解决定积分的近似计算.而数值积分就是解决此类问题的一种有效的方法,它的特点是利用被积函数在一些节点上的信息求出定积分的近似值.微积分的发明是人类科学史上一项伟大的成就,在科学技术中,积分是经常遇到的一个重要计算环节数值积分是数学上重要的课题之一,是数值分析中重要的内容之一.随着计算机的出现,近几十年来,对于数值积分问题的研究已经成为一个很活跃的研究领域.现在,数值积分在计算机图形学,积分方程,工程计算,金融数学等应用科学领域都有着相当重要的应用,所以研究数值积分问题有着很重要的意义.国内外众多学者在数值积分应用领域也提出了许多新方法.在很多实际应用中,只能知道积分函数在某些特定点的取值,比如天气测量中的气温、湿度、气压等,医学测量中的血压、浓度等等.通过这个课题的研究,我们将会更好地掌握运用数值积分算法求出特殊积分函数的定积分的一些基本方法、理论基础;并且通过Matlab 软件编程的实现,应用于实际生活中.1.2 课题的主要内容框架 1.2.1 数值积分各求积公式简介简介牛顿-柯特斯求积公式及其辛普森求积公式,龙贝格求积公式,高斯求积公式的基本理论基础和方法.1.2.2 求积公式的代码实现通过理解各种数值积分求积公式的原理方法,通过Matlab 软件编程,实现以上求积公式.1.2.3 应用举例通过简单举例,自建一个相对简单和复杂的函数,用上面编写的Matlab 源程序来解决实际问题,体会数值积分和Matlab 的优势.2 牛顿-柯特斯公式及Matlab 实现2.1 牛顿-柯特斯公式的基本原理方法 设将积分区间[a, b]划分为n 等分,步长为b ah n-=,选取等距节点k x a kh =+构造出的差值型求积公式()0()()nn n k k k I b a C f x ==-∑, (2.1)称为牛顿-柯特斯公式,式中()n k C 称为柯特斯系数.根据()bk a A l x dx =⎰, 0,1,2,,.k n = (2.2)引进变量代换x a th =+,则有()0000(1)()!()!n kn n n n n kj j j kj kh t j Cdt t j dt b a k j nk n k -==≠≠--==----∏∏⎰⎰ (2.3) 当n = 2时,此时柯特斯系数为(2)16C =,(2)146C =,(2)216C =,相应的求积公式就是辛普森求积公式:()4()()62b a a b S f a f f b -+⎡⎤=++⎢⎥⎣⎦(2.4) 2.2 牛顿-柯特斯公式的Matlab 实现function[C, g] = NCotes(a, b, n, m)% a,b分别为积分的上下限;% n是子区间的个数;% m是被调用第几个被积函数;% 当n=1时计算梯形公式;当n=2时计算辛普森公式,以此类推;I = n;h = (b - a) / i;z = 0;for j = 0 : ix(j + 1) = a + j * h;s = 1;if j == 0s = s;elsefor k=1 : js =s * k;endendr = 1;if i - j == 0r = r;elsefor k = 1 : (I - j)r = r * k;endendif mod((I - j), 2) == 1q = -(I * s * r);elseq = i * s * r; end y = 1;for k = 0 : i if k ~= jy = y * (sym('t') - k); end endl = int(y, 0 , i); C(j + 1)= l / q;z = z + C(j + 1)*f1(m, x(j + 1)); endg=(b - a)*z3 复合求积公式及Matlab 实现3.1 复合梯形公式的基本原理将区间[a , b ]划分成n 等分,分点k x a kh =+,,0,1,b ak n n-=,在每个子区间[1,k k x x +](0,1,1k n =-)上采用梯形公式得:11110()()[()()]()2k kn n b x k k n ax k k h I f x dx f x dx f x f x R f +--+=====++∑∑⎰⎰(3.1)记11100[()()][()2()()]22n n n k k k k k h hT f x f x f a f x f b --+===+=++∑∑ (3.2)称式(3.2)为复合梯形公式. 3.2 复合梯形公式的Matlab 实现 function s = trapr1(f, a, b, n)% f 表示被积函数; % a ,b 表示积分上下限;% n 是子区间的个数; h = (b - a) / n; s = 0;for k = 1 : (n - 1) x = a + h * k; s = s + feval('f', x); end format longs = h*(feval('f', a) + feval('f', b)) / 2 + h * s; 3.3 复合辛普森求积公式的基本原理将区间[a,b]分等分,在每一个子区间1,k k x x +]上采用辛普森公式,若记1/212k k x x h +=+,则得1111/210()()[()4()()]()6k kn n bx k k k n ax k k h f x dx f x dx f x f x f x R f +--++====+++∑∑⎰⎰(3.3)记1111/211/2001[()4()()][()4()2()()]66n n n n k k k k k k k k h hS f x f x f x f a f x f x f b ---+++====++=+++∑∑∑(3.4)称式(3.4)为复合辛普森求积公式. 3.4 复合辛普森求积公式的Matlab 实现 function s = simpr1(f, a, b, n)% f 表示被积函数; % a ,b 表示积分上下限; % n 是子区间的个数; h = (b - a) / (2 * n); s1 = 0; s2 = 0;for k = 1 : nx = a + h * (2*k - 1); s1 = s1 + feval('f', x); endfor k = 1 : (n - 1) x = a + h * 2 * k; s2 = s2 + feval('f', x); ends = h*(feval('f', a) + feval('f', b) + 4 * s1 + 2 * s2) / 3;4 龙贝格求积公式及Matlab 实现4.1 龙贝格算法的基本原理由梯形的递推法可以看出,将积分区间等分时,用复化梯形公式计算的结果2N T 作为积分I 的近似值,其误差近似值为21()3N N T T - (4.1) 可以设想,如果用这个误差作为2N T 的一种补偿,即将22241()341NN N N N T T T T T -+-=- (4.2) 作为积分的近似值,可望提高其精确度.直接根据复化求积公式,不难验证22241()341NN N N N N T T S T T T -=+-=- (4.3)这说明,将区间对分前后两次复化梯形公式的值,按式222211()()341N N N N N N I T T T T T T ≈+-=+-- (4.4)作线性组合恰好等于复合辛普森公式的值N S ,它比2NT 更接近于近似值. 同样,根据2222211(S )(S )1541N N N N N N I S S S S ≈+-=+--(4.5)用2N S 于N S 作线性组合会得到比2N S 更精确的值,且通过直接验证可得222224S 1(S )1541N N N NN N S C S S -=+-=- (4.6) 再由222211(C )(C )6341N N N N N I C C C ≈+-=-- (4.7) 用2N C 与N C 作线性组合,又可得到比2N C 更精确的值,通常记为R N ,即322234C 1R (C )6341N N N NN N C C C -≈+-=- (4.8)此式(4.8)就称为龙贝格求积公式.上述用若干积分近似值推算出更为精确的积分近似值得方法,称为外推法.我们将序列{T },{S },{C },{R }N N N N 分别称为梯形序列,辛普森序列,柯特斯序列和龙贝格序列.由龙贝格序列求积的算法称为龙贝格算法.具体步骤为:第一步:算出(a)f 和(b)f 的值,根据公式 1211(a (2j 1))(N 2,k 1,2,)222N k NN j b a b aT T f N N-=--=++-==∑ (4.9)求出1T ;第二步:将区间[a,b]分半,算出()2a bf +的值,并根据(4.3)和(4.9)式计算2T 和1S ; 第三步:再将区间分半,算出()4b a f a -+及(3)4b af a -+⨯的值,并根据(4.3)和(4.9)式计算4T 和2S ,再有公式(4.4)求出1C ;第四步:再将区间分半,计算8T ,4S , 2C ,并根据公式(4.5)计算1R . 第五步:再将区间分半,类似上述过程计算16T ,8S , 4C ,2R . 重复以上步骤即可得到1R ,2R ,一直到龙贝格序列中前后两项的绝对值差不超过给定的误差险为止.4.2 龙贝格算法的Matlab实现function [R, quad, err, h]=romber(f, a, b, n, delta)% f表示被积函数;% a,b表示积分上下限;% n是子区间的个数% delta是误差限M = 1;h = b - a;err = 1J = 0;R = zeros(4, 4);R(1, 1) = h * (feval('f', a) + feval('f', b)) / 2while ((err > delta) & (J < n) ) | (J < 4)J = J + 1;h = h / 2;s = 0;for p = 1 : Mx = a + h * (2*p - 1);s = s + feval('f', x);endR(J + 1, 1) = R(J, 1) / 2 + h*s;M = 2*M;for K = 1 : JR(J + 1,K + 1) = R(J + 1, K) + (R(J + 1,K) - R(J, K)) / (4^K - 1); enderr = abs(R(J, J) - R(J + 1,K + 1));endquad = R(J + 1, J + 1);5 高斯-勒让德求积公式及Matlab 实现5.1 高斯-勒让德求积公式的基本原理 在高斯求积公式()()()nbk k ak f x x dx A f x ρ=≈∑⎰(5.1)中,若取权函数()x ρ=1,区间[-1,1],则得公式1-1()()nk k k f x dx A f x =≈∑⎰(5.2)我们知道勒让德多项式是区间[-1,1]上的正交多项式,因此,勒让德多项式1()n P x +的零点就是求积公式(5.2)的高斯点,形如(5.1)式的高斯公式特别的称为高斯-勒让德求积公式.如下表5.1所示为高斯-勒让德求积公式的节点数和系数.5.2 高斯-勒让德求积公式的Matlab 实现 function quad = gauss8(f ,a, b, x, A) N = length(x); T = zeros(1, N);T = (a + b) / 2 + ((b - a) / 2) * x;quad = ((b - a) / 2) * sum(A. * feval('f', T));表5.1 高斯-勒让德求积公式的节点数和系数6 各个求积公式的应用举例与比较分析6.1 简单数值积分10sin xdx x⎰的解(精确值0.946083070367183)6.1.1 牛顿-柯特斯当n=1时的梯形算法和n=2时的辛普森算法的结果解:先用M文件定义一个f1.m的函数function f = f1(i, x)g(1) = sqrt(x);if x == 0g(2) = 1;elseg(2) = sin(x) / x;endf = g(i);输入>>Ncotes(0, 1, 1, 2)回车得到;ans =0.9270输入>>Ncotes(0, 1, 2, 2)回车得到:ans =0.94616.1.2 复合梯形公式和复合辛普森求积公式的计算结果解:建立一个M文件定义一个f.m函数function y = f(x)if x == 0y = 1;elsey = sin(x) / xend输入>>trapr1(‘f’, 0, 1, 10)回车得到:ans =0.9458输入>>simpr1(‘f’, 0, 1, 10)ans =0.946110 )6.1.3 龙贝格求积公式的计算结果(取误差不超过10解:建立一个M文件定义一个f.m函数function y = f(x)if x == 0y = 1;elsey = sin(x) / xend输入>>romber(‘f’, 0, 1, 10,0.5*10^(- 10))回车得到:quad =0.9461ans =0.9207 0 0 0 00.9398 0.9461 0 0 00.9445 0.9461 0.9461 0 00.9457 0.9461 0.9461 0.9461 00.9460 0.9461 0.9461 0.9461 0.9461 6.1.4 高斯-勒让德求积公式的计算结果(给定节点3) 解:建立一个M 文件定义一个f.m 函数 function y = f(x) ; y = sin(x) / x; 输入 >>gauss8(‘f ’,0,1,[-0.7745966692,0.7745966692,0],[0.5555555556,0.5555555556,0.8888888888])回车得到: ans = 0.89566.2 复杂数值积分2201(cos 1x dx x π--+⎰的解(精确值-1.8785) 6.2.1 牛顿-柯特斯当n = 1时的梯形算法和n = 2时的辛普森算法的结果 解:先用M 文件定义一个f1.m 的函数 function f = f1(i, x) g(1) = sqrt(x); if x == 0 g(2) = 1; elseg(2) = cos(x) – 1 / (1 + x.^2) – 1 / (4.*sqrt(4 + x.^2)); end f = g(i);输入>>Ncotes(0, 2*pi, 1, 2) 回车得到 ans =-1.8692输入>>Ncotes(0, 2*pi, 2, 2)回车得到ans =-1.87046.2.2 复合梯形公式和复合辛普森求积公式的计算结果解:先用M文件定义一个f1.m的函数function y = f(x)if x == 0y = 1;elsey = cos(x) – 1 / (1 + x.^2) – 1 / (4.*sqrt(4 + x.^2));end输入>>trapr1(‘f’, 0, 2*pi, 10)回车得到:ans =-1.8748输入>>simpr1(‘f’, 0, 2*pi, 10)ans =-1.869410 )6.2.3 龙贝格求积公式的计算结果(取误差不超过10解:先用M文件定义一个f1.m的函数function y = f(x)if x == 0y = 1;elsey = cos(x) – 1 / (1 + x.^2) – 1 / (4.*sqrt(4 + x.^2));end输入>>romber(‘f’, 0, 2*pi ,10,0.5*10^(-10))回车得到:quad =-1.87646.3 各个求积公式的比较分析(以10sin xdx x的各个积分结果为例)表6.1各个数值积分的比较牛顿-柯特斯方法是一种利用插值多项式来构造数值积分的常用方法,这其中梯形积分方法的误差最大,近似效果最差,辛普森方法的精度比梯形积分高了一个数量级,它的代数精度比梯形积分的代数精度高,能更好地近似积分值;牛顿-柯特斯积分方法的误差比辛普森积分精度高两个数量级.复合梯形积分方法比单独的梯形积分精度高,龙贝格方法收敛速度快、计算精度较高,但是计算量较大.高斯求积方法积分精度高、数值稳定、收敛速度较快,但是节点与系数的计算较麻烦,而且要求已知积分函数.结论本文主要讨论了数值积分的计算方法并通过MATLAB软件编程实现,通过前面的研究我们知道求数值积分近似值的计算方法很多,包括牛顿-柯特斯求积公式、复合求积公式、龙贝格求积公式、高斯求积公式等等.其中牛顿-柯特斯方法是一种利用插值多项式来构造数值积分的常用方法,这其中梯形积分方法的误差最大,近似效果最差,辛普森方法的精度比梯形积分高了一个数量级,它的代数精度比梯形积分的代数精度高,能更好地近似积分值;牛顿-柯特斯积分方法的误差比辛普森积分精度高两个数量级.因此,一般情况下,代数精度越高,积分公式计算精度也越高.但是高阶的牛顿-柯特斯方法的收敛性没有保证,因此,在实际计算中很少使用高阶的牛顿-柯特斯公式.复合梯形积分方法比单独的梯形积分精度高,它的积分精度和被积函数有关,还和复合积分时的步长有关.复合辛普森积分公式比单独的辛普森积分公式高近7个数量级,效果明显.龙贝格方法收敛速度快、计算精度较高,但是计算量较大.高斯求积方法积分精度高、数值稳定、收敛速度较快,但是节点与系数的计算较麻烦、而且要求已知积分函数.一般来说,牛顿-柯特斯方法的代数精度越高,数值积分的效果越好、越精确.当积分区间比较大的时候,可以采用复化积分方法可以得到更好的效果;变步长积分方法不仅可以很好地控制计算误差,并且可以寻找到适当的积分步长;龙贝格积分方法可以更好地利用变步长复合积分公式得到的积分序列从而得到更为精确的数值结果,是一个较好的数值积分方法.高斯求积方法精确度高,收敛性快也是一种很优秀的数值积分方法.参考文献[1]张德丰. Matlab数值分析与应用[M]. 北京: 国防工业出版社, 2007.1-1[2]胡良剑, 孙晓君.MATLAB数学实验[M]. 北京: 高等教育出版社,2006[3]李庆扬, 王能超, 易大义. 数值分析[M]. 北京: 清华大学出版社,2008。
在MATLAB中计算定积分的方法有多种,以下列举几种常见方法:
1.
利用符号函数求解定积分。
通过syms命令定义符号变量,再利用int命令求解定积分。
例如,假设需要求解函数f(x) = x^2在区间[0,1]上的定积分,可以使用以下代码:2.
matlab复制代码
syms x
f = x^2;
result = int(f, 0, 1);
1.
利用数值方法求解定积分。
例如,利用trapz命令求解离散函数的数值积分。
假设需要求解函数f(x) = sin(x)在区间[0, pi]上的定积分,可以使用以下代码:
2.
matlab复制代码
x = 0:0.01:pi; % 定义自变量
f = sin(x); % 定义函数
result = trapz(x, f); % 计算数值积分
1.
利用vpa命令将结果转化为数值形式。
如果使用符号函数求解定积分后,需要将结果转化为数值形式,可以使用vpa命令。
例如:
2.
matlab复制代码
result_symbolic = int(f, 0, 1); % 符号求解
result_numeric = vpa(result_symbolic); % 数值求解。
28.如何计算定积分∫f(x)dx ba的值? MATLAB 中求定积分的指令为 quad ,具体使用这一命令的格式为 quad(’函数名’, a, b)。
使用中,要用到被积函数的调用,也要注意给定积分上下限。
例如求定积分 I =∫sinxdx π0的值,在 MATLAB 环境下直接键入下面指令quad('sin',0,pi)计算机运行后,屏幕将显示ans = 2.0000这表明用指令 quad 直接计算出积分I =∫sinxdx π0=2在上面的计算中由于正弦函数是 MATLAB 的一个内部函数, 所以可以直接 调用,而对于任意一个连续函数的定积分计算,就必须先定义被积函数才能用 quad 指令求积分值。
例如求定积分1√2πe −x 22+∞−∞dx的值,必须先编辑被积函数的文件(函数文件名: ff3.m )如下: function y=ff3(x)y=exp(-x.^2/2)/sqrt(2*pi);将这一函数文件保存在当前工作目录下后,可以直接调用函数 ff3(x),在MATLAB 环境下用有穷积分来求该积分的近似值,选取积分限为-4 到+4 积分: quad('ff3',-4,4)MATLAB 计算出积分的近似值为 ans = 0.9999这实际上是用有限定积分1√2πe−x22+4−4dx代替原来的无穷区间上积分的值。
******************************************************************quad和int积分命令的区别:1.quad命令只能计算定积分,是数值积分,使用辛普森积分法逐段积分加起来,计算出定积分的数值;2.int命令可以用于定积分和不定积分,是符号积分,计算出函数积分的解析式,并将定积分上下限数值带入。
使用int命令进行积分√2πe−x22+4−4dx计算如下:使用double命令计算后结果同样为0.9999。
matlab定积分函数
在MATLAB中,可以使用`integral`函数来计算定积分。
`integral`函数的基本语法如下:
```matlab
Q = integral(fun,a,b)
```
其中,`fun`是被积函数的句柄,`a`和`b`是积分区间的下限和
上限。
`integral`函数将返回积分结果`Q`。
例如,计算函数 f(x) = x^2 在区间 [0,1] 上的定积分,可以按照以下方式使用`integral`函数:
```matlab
f = @(x) x^2;
a = 0;
b = 1;
Q = integral(f,a,b);
```
注意,被积函数`f`应当是一个标量函数或矢量函数,并且应当接受一个输入参数并返回一个输出值。
此外,`integral`函数还可以用于计算多重积分。
在这种情况下,`a`和`b`应当被定义为向量,分别表示每个维度上的积分区间
的下限和上限。
更多关于`integral`函数的详细信息可以通过在MATLAB命令窗口输入`help integral`命令来获取。
Matlab 定积分函数1. 引言定积分是高等数学中的重要概念,用于计算曲线下面的面积、求函数的平均值以及解决各种实际问题。
Matlab是一种广泛应用于数学、工程和科学计算的软件,提供了强大的定积分函数来计算数值积分。
本文将详细介绍Matlab的定积分函数以及其使用方法。
2. Matlab中的定积分函数Matlab提供了多个定积分函数,常用的有integral函数、quad函数和quadl函数。
这些函数可以用于计算一元函数和二元函数的定积分。
2.1 integral函数integral函数用于计算一元函数的定积分,语法为:Q = integral(fun,xmin,xmax)其中,fun为要计算积分的一元函数的句柄,xmin和xmax分别为积分的下限和上限。
函数返回值Q为计算得到的定积分值。
2.2 quad函数quad函数也用于计算一元函数的定积分,语法为:Q = quad(fun,xmin,xmax)与integral函数相比,quad函数可以处理一些integral函数无法处理的特殊情况。
但是,quad函数的计算速度较慢,对于一些复杂的函数可能需要更长的计算时间。
2.3 quadl函数quadl函数用于计算一元函数的定积分,语法为:Q = quadl(fun,xmin,xmax)quadl函数在处理某些特殊情况时比quad函数更加准确。
但是,与quad函数相比,quadl函数的计算速度更慢。
3. Matlab定积分函数的使用方法3.1 定义函数句柄在使用Matlab的定积分函数之前,我们首先需要定义要计算积分的函数句柄。
函数句柄是一种指向函数的指针,可以用于在Matlab中调用函数。
定义函数句柄的方法有两种:使用匿名函数和使用函数M文件。
3.1.1 使用匿名函数定义函数句柄使用匿名函数可以直接定义一个简单的函数句柄,例如:f = @(x) x.^2 + 2.*x + 1;上述代码定义了一个一元函数f(x) = x^2 + 2x + 1的函数句柄。
matlab梯形法求定积分Matlab是一种强大的数学计算软件,广泛应用于各个领域的科学研究和工程计算中。
其中,梯形法是一种常用的数值积分方法,用于近似计算定积分的值。
梯形法的基本思想是将被积函数在积分区间上的图像划分为若干个小梯形,然后计算这些梯形的面积之和。
通过增加小梯形的数量,可以提高计算结果的精度。
具体而言,梯形法的步骤如下:1. 将积分区间[a, b]均匀划分为n个子区间,其中n为任意正整数。
每个子区间的长度为h=(b-a)/n。
2. 在每个子区间上,选取两个端点对应的函数值,即f(a), f(b),作为梯形的两个底边。
3. 计算每个子区间上的梯形面积,即S=(f(a)+f(b))*h/2。
4. 将所有子区间上的梯形面积相加,得到整个积分区间上的近似积分值。
在Matlab中,可以通过编写函数来实现梯形法的计算。
下面是一个简单的示例代码:```matlabfunction result = trapezoidal(f, a, b, n)h = (b - a) / n;x = a:h:b;y = f(x);result = (sum(y) - (y(1) + y(end)) / 2) * h;end```在这个示例代码中,`f`表示被积函数,`a`和`b`表示积分区间的上下限,`n`表示子区间的数量。
函数首先计算出每个子区间的长度`h`,然后生成一个等差数列`x`,用于表示各个子区间的起始点。
接下来,通过调用被积函数`f`,计算出每个子区间上的函数值`y`。
最后,根据梯形法的公式,将所有子区间上的梯形面积相加,并乘以子区间长度`h`,得到近似积分值。
使用这个函数,我们可以计算任意函数在给定积分区间上的定积分。
例如,我们可以计算函数f(x) = x^2在区间[0, 1]上的定积分,代码如下:```matlabf = @(x) x.^2;a = 0;b = 1;n = 1000;result = trapezoidal(f, a, b, n);disp(result);```运行这段代码,我们可以得到近似积分值为1/3。
编号:审定成绩:毕业设计(论文)设计(论文)题目:数值积分算法与MATLAB实现学院名称:数理学院学生姓名:专业:数学与应用数学班级:学号:指导教师:答辩组负责人:填表时间:年月摘要在求一些函数的定积分时,由于原函数十分复杂难以求出或用初等函数表达,导致积分很难精确求出,只能设法求其近似值,因此能够直接借助牛顿-莱布尼兹公式计算定积分的情形是不多的。
数值积分就是解决此类问题的一种行之有效的方法。
积分的数值计算是数值分析的一个重要分支;因此,探讨近似计算的数值积分方法是有着明显的实际意义的。
本文从数值积分问题的产生出发,详细介绍了一些数值积分的重要方法。
本文较详细地介绍了牛顿-科特斯求积公式,以及为了提高积分计算精度的高精度数值积分公式,即龙贝格求积公式和高斯-勒让德求积公式。
除了研究这些数值积分算法的理论外,本文还将这些数值积分算法在计算机上通过MATLAB软件编程实现,并通过实例用各种求积公式进行运算,分析比较了各种求积公式的计算误差。
【关键词】数值积分牛顿-科特斯求积公式高精度求积公式 MATLAB软件ABSTRACTWhen the solution of the definite integral of some function values,because the original function is very complex and difficult to find the elementary function expression, the integral is difficult to accurately calculate, only managed to find the approximate value, and the case is small that allows to direct interface with the Newton - Leibniz formula to calculate the definite integral. Numerical integration is an effective method to solve such problems. The numerical integration is an important branch of numerical analysis; therefore, exploring the approximate calculation of the numerical integration method has obvious practical significance. This article departure from the numerical integration problem, described in detail some important numerical integration methods.This paper has introduced detail the Newton - Coates quadrature formula, and in order to improve the calculation accuracy of numerical integration formulas, More precise formulas have Romberg quadrature formulas and the Gauss - Legendre quadrature formula. In addition to the study of these numerical integration algorithm theory, the article also involve what these numerical integration algorithm be programmed by matlab software on the computer, and an example is calculated with a variety of quadrature formulas, finally analysis and comparison to various quadrature formulas calculation error.【Key words】Numerical integration Newton-Cotes quadrature formulaHigh-precisionquadrature formula Matlab software目录前言 (1)第一章牛顿-科特斯求积公式 (2)第一节数值求积公式的构造 (2)第二节复化求积公式 (9)第三节本章小结 (12)第二章高精度数值积分算法 (13)第一节梯形法的递推 (13)第二节龙贝格求积公式 (14)第三节高斯求积公式 (17)第四节高斯-勒让德求积公式 (19)第五节复化两点高斯-勒让德求积公式 (22)第六节本章小结 (23)第三章各种求积公式的MATLAB编程实现与应用 (24)第一节几个低次牛顿-科特斯求积公式的MATLAB实现 (24)第二节复化求积公式的MATLAB实现 (28)第三节龙贝格求积公式的MATLAB实现 (33)第三节高斯-勒让德求积公式的MATLAB实现 (34)第五节各种求积算法的分析比较 (36)第六节本章小结 (38)结论 (39)致谢 (40)参考文献 (41)附录 (43)一、英文原文 (43)二、英文翻译 (53)前 言对于定积分()ba f x dx ⎰,在求某函数的定积分时,在一定条件下,虽然有牛顿-莱布里茨公式()()()ba I f x dx Fb F a ==-⎰可以计算定积分的值,但在很多情况下()f x 的原函数不易求出或非常复杂。