链斗式连续卸船机-讲义
- 格式:doc
- 大小:7.55 MB
- 文档页数:62
1.序言由上海振华港口机械(集团)股份有限公司制造的三台四卷筒差动补偿绳索牵引桥式抓斗卸船机,具有先进的操作和保护系统,作为原煤码头前沿的重大设备,卸船机的所有操作人员和管理人员必须熟悉有关规程及说明。
本操作说明是对卸船机操作规程重要部分的摘要,阐述卸船机机械设备原理和操作步骤,此外,下面几点必须注意:1)卸船机司机应由身体健康,并经严格考试,考核合格的人员担任,严禁其他人员操作,无关人员不准接近卸船机。
2)只有正确操作和维护才能使卸船机工作安全,延长使用寿命。
3)严禁超负荷运行,卸船机司机头脑必须十分清醒,万一发生危险,应知道在该机何处切断电源,立即停机,以免事故出现或扩大。
4)本使用手册只用作操作指南,以便让卸船机司机熟知正确的操作和维护方法,该说明不能取代各单位制定的事故防止规程及安全生产的细则,以杜绝或防止因操作不当引起的损失。
2.概述卸船机总图,图号为UL190000本卸船机为四卷筒差动补偿牵引小车桥式抓斗卸船机,可沿码头轨道作工作或非工作性运行,有效工作运行距离为±170米,本机用于卸原煤(原煤容重为0.85~1.0t/m3),卸煤能力为1500t/h,最大卸煤能力为1800t/h。
原煤经3.5~5万吨级运输船运至码头,由抓斗将原煤卸进料斗,卸船机最大外伸距为30米,(海侧轨道中心至小车在海侧末端尽头的距离)。
然后,原煤由供料皮带机从料斗排出,再经由可切换的分叉漏斗有选择地送到安装在码头上的两条地面皮带机中的其中一条上,再将原煤输送到转运楼。
本机自设的缓冲托辊组,可降低物料对地面皮带机系统的冲击。
通过料斗四周的防尘挡板以及喷水系统来防止粉尘的飞扬,在料斗上方装有供水管道及喷嘴,管道的水由本机自带的水箱及水泵输出,由水缆卷筒从码头各供水点处将水输送到水箱中。
卸船机还装有安全锚定装置及防风可调节的刚性拉杆,以在非工作状态时防台抗风。
本机海侧主梁可仰起80°,不妨碍船的靠岸,离港等作业。
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201910387658.5(22)申请日 2019.05.10(71)申请人 大连华锐重工集团股份有限公司地址 116000 辽宁省大连市西岗区八一路169号(72)发明人 姜鑫 刘永生 顾民 汤明清 郭东 吴庆贺 (74)专利代理机构 大连东方专利代理有限责任公司 21212代理人 姜玉蓉 李洪福(51)Int.Cl.B65G 67/60(2006.01)(54)发明名称一种无人化链斗式连续卸船机自动取料方法(57)摘要本发明提供一种无人化链斗式连续卸船机自动取料方法,包括以下步骤:获取料堆表面点云坐标数据;获取舱口边界实时位置数据。
形成料堆点云坐标模型;对料堆点云坐标模型分层处理得到平面取料区域;对比标准料堆区域特征确定取料工艺动作并执行本区域自动取料任务;在完成本区域取料任务后,反馈完成状态并申请下一次取料作业区域给扫描系统;扫描系统再将下一步取料作业区域发送至连续卸船机控制系统。
本发明通过同时对船舱口及舱内料堆的扫描监控,解决船体浮动对舱内料堆扫描造成的偏差,得到准确的料堆点云坐标模型;根据作业区域边界尺寸生成最优的取料工艺,进而完成连续卸船机全自动取料控制,避免单一机构运行完成取料作业,降低运行维护成本。
权利要求书2页 说明书6页 附图9页CN 110182622 A 2019.08.30C N 110182622A权 利 要 求 书1/2页CN 110182622 A1.一种无人化链斗式连续卸船机自动取料方法,其特征在于,包括以下步骤:S1:通过所述取料头上方的提升筒体两侧的激光扫描仪对舱内料堆进行扫描,获取料堆表面点云坐标数据;S2:通过所述顶部结构下方的提升筒体四周设置的激光扫描仪对舱口进行扫描并提取舱口边界实时位置数据;S3:由于舱口边界特征相比于舱内物料易于捕捉,且舱内物料随船舱一起浮动,舱口边界位置的变化即能反应出舱内物料位置的变化,顶部结构下方O11位置的扫描仪可扫描并获取船舱口A点位置坐标,取料头上方O12位置的扫描仪可扫描并获取物料表面B点位置坐标;当船体因浪涌产生浮动或倾斜后,顶部结构下方O11位置的扫描仪捕捉船舱口A点位置偏移至A’点,计算获取B’点位置为:设A点坐标(Xa,Ya,Za),A’点坐标(Xa’,Ya’,Za’),B点坐标(Xb,Yb,Zb),则B’点坐标(Xb’,Yb’,Zb’)=(Xb,Yb,Zb)+(Xa’,Ya’,Za’)-(Xa,Ya,Za);通过舱口实时位置数据对所述料堆表面点云坐标数据修正,对扫描结果补偿,得到准确的料堆表面点云坐标数据;通过最小二乘法去除重叠点云,再通过贪婪投影三角化算法对点云数据三角化并重建物体表面三角网格曲面模型,即可获取料堆表面点云坐标模型;S4:计算料堆表面平均高度,确定基准平舱料面高度,根据连续卸船机链斗高度及取料特点进行分层处理,划分出料堆顶层若干取料作业区域;S5:通过GPS定位或各机构编码器检测计算获取取料头位置坐标,将所述取料头与料堆距离最短的作业区域边界坐标,分层后的平面取料区域(固定层高料堆俯视图)发送给连续卸船机控制系统;S6:连续卸船机控制系统根据料堆边界尺寸,对比区域大小和后边七个图的特征料堆区域特征,获取最优的取料动作工艺;S7:连续卸船机控制系统按照当前的取料动作工艺控制连续卸船机执行取料作业任务;S8:在完成本区域取料任务后,连续卸船机控制系统反馈完成状态并申请下一次取料作业区域给扫描系统;S9:扫描系统再根据取料头当前位置,将下一步取料作业区域发送至连续卸船机控制系统;重复步骤S3-步骤S9,直至完成舱内料堆包括平舱在内的逐层全自动取料作业控制。
在国民经济发展过程中,需要对一些散料进行装卸。
如热力发电厂需要把储料场的燃料——煤取走,进行磨碎、喷烧;大型港口需要把运送来的某些散料,如矿石、煤炭等装船、卸船;斗轮挖掘机等采挖的矿物和废弃物要运到储存场或排到排土场等。
如果采用“装载机-自卸汽车”系统作业,装载机在铲入—举升—旋转—行走—卸载—空转—空行程等一个作业循环中,既要完成取料任务,又要完成输送任务,辅助作业时间几乎占用2/3还多。
自卸汽车载重量受到限制,往返路程多,工作效率很低,满足不了电厂发电的用煤需求。
连续装卸机械的采用,大大缩短了装卸时间,提高了工作效率,减轻了工人劳动强度。
在功率相同的情况下,斗轮堆取料机的生产率约为单斗装载机的1.5~2.5倍。
连续装卸机械形成了搬运机械的一大类别,斗轮堆取料机是散货料场专用堆取设备。
斗轮堆取料机主要用于散料的堆存、挖取和均料。
它既可以通过旋转的斗轮在储料场进行取料运走,又可以将来料经斗臂架带式输送机反向运行而将物料堆存到料场,属于连续高效的堆取合一的装卸设备。
堆取料机广泛用于大型散货港口、火力发电厂的储煤场、大型土方工程工地、大型钢铁公司的矿石煤炭原料场、大型焦化厂、大型水泥厂、轻工化工等部门的储料场,进行挖取堆放煤炭、矿石、砂石、焦炭、食盐等物料。
1.1 散料连续装卸机械的特点散料连续装卸机械与间歇式的起重机械和装载机相比,有以下特点。
①生产效率高。
装料和卸料都采用带式输送机作为基础构成,有专门的工作机构,堆料(或取料)与输送是同时进行的,而且又是连续作业,所以生产率很高。
从装载地点到卸料地点,连续而高速的物流使设备获得高效率。
如秦皇岛港口二期、三期、四期工程就采用了多台堆料机和斗轮取料机,配合翻车机、多台带式输送机和装船机形成了高效连续装船系统。
堆料机和斗轮取料机的带速达6m/h,带宽近2m,生产率是3600m3/h。
在元宝山露天煤矿连续开采系统中使用的排土机生产率达5000m3/h。
②散料连续装卸机械一般都沿着整条运输线路布置。
20XX年一级建造师港口与航道工程疏浚吹填知识点汇总第六章、疏浚与吹填工程施工技术1、疏浚工程定义:采用水力或机械的方法为拓宽加深水域而进行的水下土石方开挖工程。
2、疏浚工程分类:基建性、维护性3、基建性疏浚定义:为新辟航道、港口等或为增加他们的尺度、改善航运条件,具有新建、改建、扩建性质的疏浚。
4、维护性疏浚定义:为维护或恢复某一指定水域原定的尺度而清除水底淤积物的疏浚。
第一节、耙吸式挖泥船一、基本原理耙吸式挖泥船是水力式挖泥船中自航、自载式挖船,除了具备通常航行船舶的机具设备和各种设施外,还有一整套用于耙吸挖泥的疏浚机具和装载泥浆的泥仓,以及舱底排放泥浆的设备等。
耙吸式挖泥船装备有耙头挖掘机具和水力吸泥装置。
在它的舷旁安装有耙臂(吸泥管),在耙臂的后端装有用于挖掘水下土层的耙头,其前端用弯管与船上的泥泵吸入管相连接。
耙臂可凭上下升降运动,其后端能放入水下一定深度,使耙头与水下土层的泥沙进行耙松和挖掘。
泥泵的抽吸作用从耙头的吸口吸入挖掘的泥沙与水流的混合体(泥浆)经吸泥管道进入泥泵,最后经泥泵排出端装入挖泥船自身设置的泥舱中。
当泥舱装满疏浚漏水泥沙后,停止挖泥作业,提升耙臂和耙头出水,再航行至指定的抛泥区,通过泥舱底部所设置的泥门,自行将舱内泥沙卸空;或通过泥舱所设置的吸泥管,用船上的泥泵将其泥浆吸出,经甲板上的排泥管系与输泥、浮管可岸管,将泥浆卸至指定区域或吹泥上岸。
然后,驶返原挖泥作业区,继续进行下一次挖泥作业。
二、技术性能●耙吸船主要技术参数舱容、挖深、航速、装机功率●耙吸船最大特点各道工序都由挖泥船本身单独完成●耙吸船优越性1、具有良好的航海性能,在比较恶劣的海况下,仍然可以进行施工作业。
2、具有自航、自挖、自载和自卸的性能,在施工作业中不需要拖轮、泥驳等船舶。
另外,因船舶可以自航,调遣十分方便,自身能迅速转移至其他施工作业区。
3、在进行挖泥作业中,不需要锚索具、绞车等船舶移位、定位等机具设备,而且在挖泥作业中处于船舶航行状态,不需要占用大量水域或封锁航道,施工中对在航道中的其他船舶航行影响很少。
目录◆封面 (1)◆目录 (2)◆产品概述 (3)◆设计标准及环境参数 (4)◆门座起重机技术特性 (4)◆起升机构 (5)◆变幅机构 (7)◆旋转机构 (8)◆行走机构 (9)◆金属结构 (11)◆锚定和防风固定装置 (13)◆电气部分 (13)◆操作 (23)◆安全注意事项 (25)◆维护和保养 (26)◆润滑 (31)第二章设计使用标准和环境参数一.设计使用标准:本机严格按照如下国际通用标准和规范设计制造。
结构:《欧洲搬运工程协会》 FEM机构:《欧洲搬运工程协会》 FEM电气:《国际电工委员会》IEC涂装:《瑞典工业标准》 SIS计量单位:国际单位制 ISO(主要设备)《起重机设计规范》 GB3811-83《起重机械安全规程》 GB6067-85《起重机试验规范与规程》 GB5905-86《电气装置工程施工及验收规范》 GB232-85《港口门座起重机基本系数规范》 GB81-94《港口起重机风载荷规范》 GB90-94《港口门座起重机技术条件》 GB17495-98《港口门座起重机试验方法》 GB99-94《港口装卸机械司机室》 GB5020-86《美国焊接协会标准》 GB6067-85《美国齿轮制造协会》 AGMA《电能质量公用电网谐波》GB/T 14549-93二.设计环境参数工作状态下最大设计风速:20m/s非工作状态下最大设计风速:55m/s接。
门架支承着门机的旋转部分重量和所有外载荷,并通过与之相连的行走机构,将所有的外载荷传递给轨道。
门架上设有上、下通行的梯子平台。
二、上转柱上转柱由两片板梁结构组成,重量轻,受力好,迎风面积小。
其上面端部布置有起升滑轮组、平衡梁支座及大拉杆支座,中间布置有变幅机构、下端直接焊接在转盘平面上。
三、转盘与机器房转盘为Q235B钢板焊成工字形主梁的框架结构,前右侧伸出操作室支承梁,后部箱体为固定配重。
机器房的总体布置和结构便于维修和检查,机器房出绳口考虑防雨水渗漏。
链斗式挖泥船施工技术一、开工展布链斗式挖泥船开工展布与抓斗船有相似之处。
(1)进点定位。
链斗式挖泥船进点定位有逆流进位、顺流进位两种方式。
如采用逆流进位,当挖泥船被拖到或自航到挖槽起始点位置附近时,可先下放斗桥至河底临时固定船位,再依次抛首锚、尾锚和边锚。
如采用顺流进位,当挖泥船被拖到或自航到挖槽起始点位置附近时,可先在距挖槽起点200m 左右处抛设尾锚,然后通过收绞或放松锚缆将船首调整到起点位置,下放斗桥将船体固定后,再抛设边锚和首锚。
抛锚结束后再逐步将挖泥船调整到位。
(2)锚缆布置。
链斗式挖泥船施工一般需布设6只锚,即首锚1只,尾锚1只,左、右边锚各2只。
1)主锚宜抛设在挖槽中心线上。
泥层厚薄不均匀时,宜偏于泥层较厚的一侧;水流方向不正时,宜偏于主流一边。
主锚抛设长度一般为400~900m。
2)顺流施工时,应加强尾锚,并增加尾锚缆抛设长度。
逆流施工时,尾锚可就近抛设或不抛设,抛设长度宜为100~200m。
3)逆流施工时,前边锚宜超前20°左右抛设,后边锚可不超前;当不设尾锚时,后边锚可抛设成“八”字形。
顺流施工时,后边锚滞后15°反“八”字形抛设。
链斗式挖泥船六锚施工法见图3-29。
图3-29 链斗式挖泥船六锚施工法示意图二、施工方法(1)常用施工方法。
在水域及水文条件较好,挖泥船不受挖槽宽度和边缘水深限制,以及开挖质量较高的工程上,多采用斜向横挖法施工。
该法要求挖泥船纵向中心线与挖槽中心线呈一较小角度横移挖掘,优点是阻力小、充泥量足,挖边缘时易达到质量要求,斗链不易脱缆出轨;缺点是操作较复杂(见图3-30)。
图3-30 斜向横挖法示意图1~4—作业过程中挖泥船的船位变动情况(2)特殊工况条件下施工方法。
在某些特殊工况条件下,如流速大的区域、狭窄的施工区域,斜向横挖法就受到了限制,在这种情况下就需采用一些对应的施工技术。
表3-7列出了链斗式挖泥船平行横挖法、扇形横挖法和十字形横挖法等几种特殊施工方法的方法要点、各自优缺点以及适用范围。
两种卸船机的特点及布置方案对比杜涛祖【摘要】两种常用散货卸船机的性能特点很不相同,设备选型和布置必须保证合理性,以免造成港口码头卸船效率降低和资源浪费.【期刊名称】《港口装卸》【年(卷),期】2011(000)003【总页数】3页(P11-13)【关键词】连续卸船机;桥式抓斗卸船机;特点;布置方案【作者】杜涛祖【作者单位】广东国华粤电台山发电有限公司【正文语种】中文近年来,随着中国经济的飞速发展,沿海地区煤炭、铁矿石及谷物类散货的运输需求量不断增大,港口散货码头建设也呈快速发展的趋势。
为提高船舶卸货效率,加快港口码头靠泊船舶的周转速度,必须保证港口码头设计和卸船设备选型及布置的合理性。
目前,国内外散货卸船机主要有两种类型,即桥式抓斗卸船机和连续卸船机。
两种机型有着截然不同的特点和性能。
用户在设计、选型及采购时可能存在不合理的情况,这会给港口运营带来困难,造成卸船效率的降低和资源的浪费。
1 连续卸船机的特点20世纪80年代连续卸船机就开始在国内港口码头上使用,90年代得到进一步发展,国内多个港口和电厂采用了连续卸船机。
目前使用连续卸船机的电厂和港口码头主要有上海港、漳州后石电厂、华能南通电厂、汕尾电厂、惠来电厂、湛江电厂等。
连续卸船机有如下特点:(1)卸船效率比较高,但波动比较大。
这主要与所卸货物的特性有关。
以煤为例,不同的煤质对连续卸船机的卸船效率影响很大。
大块或杂物多的煤,卸船机螺旋溜槽格栅板容易堵,链斗及轨道容易损坏,清理和维修需要耗费大量人力、物力;粘度大的煤,经常造成螺旋溜槽粘煤、堵煤;质量较好的煤种,故障率一般比较低,效率会高一些,如神华煤大块及杂物比较少,也不是很粘,所以卸货效率相对较高。
连续卸船机适合接卸谷物类散货。
(2)环保性能优越。
连续卸船机悬臂皮带一般为封闭式,链斗从船舱卸料进入圆筒,再从圆筒到悬臂皮带,整个卸料过程都是在封闭环境下输送。
同时,有些电厂地面皮带也进行了封闭,如漳州后石电厂。
第六章煤炭和矿石装卸工艺第一节煤炭和矿石装卸运输概述一、概述1 、以煤炭和矿石为主的散货是国民经济发展的重要原材料。
2 、长期大批量的运输需求,促进了煤炭、矿石的专业化装卸运输的发展3 、在专业化码头装卸工艺中,煤炭、矿石是港口装卸的具体对象,所以煤炭、矿石的特性及对装卸运输的要求,对装卸工艺的选定有着极为重要的影响。
二、煤炭、矿石特性及对装卸保管的要求(一)物料容重,自然坡度角,块度及物料与承受面之间的摩擦系数1. 容重2. 自然坡度角(自然堆积角,即货堆自然形成的角度)。
3. 块度。
4. 物料与承受面之间的摩擦系数(二)冻结性(三)发热和自燃性(四)脆弱性,扬尘性三、煤炭、矿石运辅工具和装卸工艺的特点与件货港口装卸工艺相似,煤炭、矿石的港口装卸工艺,也是由装卸船舶作业、水平运输和堆场作业三个作业环节组成。
所不同的是:运达港口的煤炭、矿石批量大,流向单一。
因此我们可以按物料的进出港口的流向,将煤炭和矿石装卸工艺系统分为:陆运进港、水运出港的煤炭、矿石出口装卸工艺和水运进港、陆运出港的煤炭、矿石进口装卸工艺,如图6-1 所示。
第二节煤炭、矿石出口装卸工艺系统一、卸火车工艺在港口卸火车(下简称卸车)作业是指将火车运抵港口的煤炭、矿石从车上卸下的作业环节。
根据煤炭、矿石车型不同,散货卸车工艺主要有:翻车机卸车工艺、螺旋卸车机卸车工艺、链斗卸车机卸车工艺和底开门自卸车卸车工艺等几种。
(一)翻车机卸车工艺翻车机是一种翻卸敞车效率最高的专用卸车机械。
1. 翻车机形式翻车机形式有两种:转子式和侧倾式。
2. 翻车形式翻车机翻车形式也分为两种:单翻式和串翻式。
3. 卸车线的布置形式及卸车线上的辅助机械翻车机卸车工艺中的卸车线布置形式有两种:折返式和贯通式。
1) 折返式(1) 有牵车平台的卸车线布置形式:(2) 没有牵车平台(驼峰)卸车线布置形式:2) 贯通式4. 使用翻车机卸车的特点(1) 系统的机械化程度高,卸车效率高,卸车后车内余量少;(2)对货种及物料块度的适应性强;(3) 系统的机械设备多,投资费用高,所以翻车机系统需另设置辅助卸车机械,用作不能使用翻车机的车辆卸货;(4) 对车辆的适应性差,对车辆的损害大,所以翻车机不适用于平车,低帮车或结构不好的车辆的卸车作业。
链斗式连续卸船机
操动机构是链斗式连续卸船机的重要组成部分,它由储能单元、控制单元、和力传递单元组成。
高压SF6断路器的操动机构有多种型式,如弹簧操动机构、气动机构、液压机构、液压弹簧机构等。
根据灭弧室承受的电压等级和开断电流的差异,SF6产品选用弹簧机构、气动机构或液压机构。
弹簧机构、气动机构、液压机构各自的特点比较见表1。
表1
一.弹簧操动机构
弹簧操动机构是一种以弹簧作为储能元件的机械式操动机构。
弹簧的储能借助电动机通过减速装置来完成,并经过锁扣系统保持在储能状态。
开断时,锁扣借助磁力脱扣,弹簧释放能量,经过机械传递单元使触头运动。
弹簧操动机构结构简单,可靠性高,分合闸操作采用两个螺旋压缩弹簧实现。
储能电机给合闸弹簧储能,合闸时合闸弹簧的能量一部分用来合闸,另一部分用来给分闸弹簧储能。
合闸弹簧一释放,储能电机立刻给其储能,储能时间不超过15s(储能电机采用交直流两用电机)。
运行时分合闸弹簧均处于压缩状态,而分闸弹簧的释放有一独立的系统,与合闸弹簧没有关系。
这样设计的弹簧操动机构具有高度的可靠性和稳定性,既可满足O-0.3 sec -CO-180 sec -CO操作循环,又可满足CO-15sec-CO操作循环,机械稳定性试验达10000次。
1.1 CT20弹簧操动机构动作原理
CT20型弹簧操动机构(图1、图2、图3)利用电动机给合闸弹簧储能,断路器在合闸弹簧的作用下合闸,同时使分闸弹簧储能。
储存在分闸弹簧的能量使断路器分闸。
1.1.1分闸动作过程
图1所示状态为开关处于合闸位置,合闸弹簧已储能(同时分闸弹簧也已储能完毕)。
此时储能的分闸弹簧使主拐臂受到偏向分闸位置的力,但在分闸触发器和分闸保持掣子的作用下将其锁住,开关保持在合闸位置。