离散数学试卷3
- 格式:doc
- 大小:144.00 KB
- 文档页数:3
离散数学期末考试卷一、选择题(每题2分,共20分)1. 在集合论中,下列哪个选项不是集合的基本运算?A. 并集B. 交集C. 差集D. 幂集2. 命题逻辑中,下列哪个命题不是合取命题?A. (p ∧ q)B. (p ∨ q)C. (p → q)D. (p ↔ q)3. 关系R在集合A上是自反的,这意味着:A. 对于所有a∈A,(a, a)∈RB. R是对称的C. R是传递的D. R是反对称的4. 在图论中,下列哪个不是图的基本概念?A. 顶点B. 边C. 路径D. 矩阵5. 布尔代数中,下列哪个操作不是基本操作?A. 与(AND)B. 或(OR)C. 非(NOT)D. 模(MOD)6. 函数f: A → B,下列哪个条件不是函数的一一对应的必要条件?A. 对于A中不同的元素,它们的函数值不同B. 对于B中的每个元素,A中至少有一个元素映射到它C. 对于A中的每个元素,B中只有一个元素映射到它D. A和B的元素数量相同7. 在组合数学中,下列哪个是排列的定义?A. 从n个不同元素中取出r个元素的所有可能组合B. 从n个不同元素中取出r个元素的所有可能排列C. 从n个元素中取出r个元素的所有可能组合,不考虑顺序D. 从n个元素中取出r个元素的所有可能排列,考虑顺序8. 逻辑等价是指两个命题:A. 总是同时为真或同时为假B. 在所有可能的真值分配下都具有相同的真值C. 只有在某些真值分配下具有相同的真值D. 至少在一个真值分配下具有相同的真值9. 递归函数的特点是:A. 只能通过迭代来实现B. 必须有一个或多个基本情况C. 只能通过递归调用自身来实现D. 不能包含任何循环结构10. 在证明中,归纳法的基本步骤是:A. 基础步骤和归纳步骤B. 假设步骤和证明步骤C. 假设步骤和归纳步骤D. 基础步骤和假设步骤二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集包含元素个数为______。
参考答案试卷一一、选择填空1.C2.A3.D4.D5.A6.A7.B8.C9.D 10.B二、填空1.主合取范式)()(q p q p ⌝∨∧∨⌝.前束范式))()((x G x F x →∀或))()((y G x F y x →∀∀ 2. n-k,93.=)(A ρ{Φ,{1},{2},{1,2}},B A ⨯={〈1,a 〉,<1,b>,<2,a>,<2,b>}4. [b]R ={1,2,3}, X/R={{1,2,3},{4},{5}}.5. ,,G y x ∈∀ )()()(y f x f y x f *= 。
6.=-)(1R r { <2,1>,< 4,2>,<1,1>,<3,3>,<2,2>},=S R {<1,4>,<2,2>}。
7.15,12.8. =τσ⎪⎪⎭⎫ ⎝⎛42134321 =(132) =-1στ⎪⎪⎭⎫ ⎝⎛41324321=(123) 9.0, 45 10.2,0三 1.× 2.√ 3. √ 4.× 5.×四.1.一棵树具有3个2度结点,2个3度结点,2个4度结点,其余为叶。
试求其共有多少个结点?多少片叶?解: 设该树其有x 片叶,则顶点数为x+7, 根据树的性质知,该树有x+6边,由握手定理有:3*2+2*3+2*4+x*1=2(x+6), 得x=8故该树共有15个结点,8 片叶 .2.已知X={a,b,c},给出X 上的所有等价关系。
解:X 的划分其有五种:S 1={{a,b,c}}, S 2={{a,b},{c}}, S 3={{a,c},{b}}, S 4={{a},{b,c}},S 5={{a},{b},{c}},因为X 上划分与等价关系一一对应,故x 上共有五个等价关系,它们是:R 1={<a,b>,<b,a>,<a,c><c,a>,<b,c>,<c,b>}X I ⋃R 2={<a,b>,<b,a>}X I ⋃, R 3={<a,c><c,a>}X I ⋃R 4={<b,c>,<c,b>}X I ⋃, R 5=X I3..画一棵权为2,3,3,4,5,6,7,8 的最优二叉树,并计算出它的树权。
、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列各图是平面图的是()A.IL J D-2•设G是n个顶点的无向简单图,则下列说法不.正确的是)A. 若G是树,则其边数等于n-1B. 若G是欧拉图,则G中必有割边C•若G中有欧拉路,则G是连通图,且有零个或两个奇度数顶点D.若G中任意一对顶点的度数之和大于等于n-1,则G中有汉密尔顿路3•格L是分配格的充要条件是L不含与下面哪一个选项同构的子格()A.链C.五角格B.钻石格D.五角格与钻石格4•设<G,*>是有限循环群,则下列说法不.正确的是()A. <G,*>的生成元是唯一的B. 有限循环群中的运算*适合交换律C. G中存在一元素a,使G中任一元素都由a的幕组成D. 设a是<G,*>的生成元,则对任一正整数i,存在正整数j使a-i=a j5.在实数集合R上,下列定义的运算中是可结合的只有()A.a*b=a+2b C.a*b=a-b+2abB.a*b=a+b-2ab D.a*b=a-b-2ab6.设群G=<A,*>中,A的元素个数大于1,若元素a€ A的逆元素为b € A,则a*b的运算结果是()A.aC.G中零元素B.bD.G中幺元7.非空集合A上的二元关系R若是自反和对称的,则R是()A.偏序关系C.相容关系B.等价关系D.拟序关系8. 下面的图是A= { 1,2,3} 上关系R的关系图G(R),从G(R)可判断R所具有的性质是()1。
A. 自反,对称,传递B. 反自反,非对称C. 反自反,对称,非传递D. 反自反,对称,反对称,传递9. 设A= {1, 2, 3}, B= { a,b},下列二元关系R为A到B的函数的是()A. R= {<1,a>,<2,a>,<3,a> }B. R= {<1,a>,<2,b> }C. R= {<1,a>,<1,b>,<2,a>,<3,a> }D. R= {<1,b>,<2,a>,<3,b>,<1,a> }10. 设$为空集,P(x)是集合x的幕集,下列论断不.正确的是()A. 0 € P( $ ), $ P( $ )B. { $ } € P ( $ ), { $ }U P ($)C. $ € P (P ($ )), $ §P (P ( $ ))D. { $ } € P ( P ( $ )) ,{ $ }0P (P ( $ ))11. 利用谓词的约束变元改名规则和自由变元代入规则,可将如下公式:(-x)(p(x,y) > ( z)Q(x,z)) (-y)R(x,y)改写成( )A. (-z)(p(z,y) > ( y)Q(z,y)) (-s)R(z,s)B. (—z)(p(z,y)—. ( s)Q(x,s)) (-y)R(z,y)C. (-x)(p(x, m)—;( y)Q(x,y)) (-m)R(m,m)D. (-x)(p(y,y) > ( y)Q(x,y)) (_s)R(y,s)12. 设论域为整数集,下列谓词公式中真值为假的是()A. ( F( y)(x y 0)B. ( -x)( y)(x y =1)C. ( y)(—x)(x y =x)D. (-x)(-y)( z)(x -y z)13. 在命题演算中,语句为真为假的一种性质称为()A.真值B.陈述句C. 命题D.谓词14.设P:明天天晴;q:我去爬山;那么“除非明天天晴,否则我不去爬山。
《离散数学》试题带答案试卷十四试题与答案一、 填空 10% (每小题 2分)1、 设>-∧∨<,,,A 是由有限布尔格≤><,A 诱导的代数系统,S 是布尔格≤><,A ,中所有原子的集合,则>-∧∨<,,,A ~ 。
2、 集合S={α,β,γ,δ}上的二元运算*为那么,代数系统<S, *>中的幺元是 , α的逆元是 。
3、 设I 是整数集合,Z 3是由模3的同余类组成的同余类集,在Z 3上定义+3如下:]3m od )[(][][3j i j i +=+,则+3的运算表为 ;<Z +,+3>是否构成群 。
4、 设G 是n 阶完全图,则G 的边数m= 。
5、 如果有一台计算机,它有一条加法指令,可计算四数的和。
现有28个数需要计算和,它至少要执行 次这个加法指令。
二、 选择 20% (每小题 2分)1、 在有理数集Q 上定义的二元运算*,Q y x ∈∀,有xy y x y x -+=*,则Q 中满足( )。
A 、 所有元素都有逆元;B 、只有唯一逆元;C 、1,≠∈∀x Q x 时有逆元1-x ; D 、所有元素都无逆元。
2、 设S={0,1},*为普通乘法,则< S , * >是( )。
A 、 半群,但不是独异点;B 、只是独异点,但不是群;C 、群;D 、环,但不是群。
3、图 给出一个格L ,则L 是( )。
A 、分配格;B 、有补格;C 、布尔格;D 、 A,B,C 都不对。
3、 有向图D=<V , E>,则41v v 到长度为2的通路有( )条。
A 、0;B 、1;C 、2;D 、3 。
4、 在Peterson 图中,至少填加( )条边才能构成Euler图。
A 、1;B 、2;C 、4;D 、5 。
三、 判断 10% (每小题 2分)1、 在代数系统<A,*>中如果元素A a ∈的左逆元1-e a 存在,则它一定唯一且11--=e a a 。
一、选择题(每题2分,共20分)1. 下列命题中,正确的是()A. 逻辑真命题一定是逻辑假命题B. 逻辑假命题一定是逻辑真命题C. 逻辑真命题和逻辑假命题都是存在的D. 逻辑真命题和逻辑假命题都不存在2. 设A和B是两个集合,则下列命题中正确的是()A. A∩B = A∪BB. A∩B = A-BC. A∪B = A∩BD. A-B = A∩B3. 设A和B是两个集合,则下列命题中正确的是()A. A⊆B当且仅当A∩B = AB. A⊆B当且仅当A∩B = BC. A⊆B当且仅当A-B = ∅D. A⊆B当且仅当A∪B = B4. 下列命题中,不是逻辑等价命题的是()A. A→B与¬A∨BB. A∧B与A→BC. A∨B与B→AD. A→B与¬B∨A5. 设R是一个关系,下列命题中正确的是()A. R是等价关系当且仅当R是自反的、对称的和传递的B. R是等价关系当且仅当R是自反的、非对称的和传递的C. R是等价关系当且仅当R是非自反的、对称的和传递的D. R是等价关系当且仅当R是非自反的、非对称的和传递的6. 设P和Q是两个命题,则下列命题中正确的是()A. P∧Q的否定是P∨QB. P∧Q的否定是P∧QC. P∨Q的否定是P∧QD. P∨Q的否定是P∧Q7. 设R是一个偏序关系,下列命题中正确的是()A. R是自反的、反对称的和传递的B. R是自反的、对称的和传递的C. R是自反的、非对称的和传递的D. R是非自反的、对称的和传递的8. 设R是一个全序关系,下列命题中正确的是()A. R是自反的、反对称的和传递的B. R是自反的、对称的和传递的C. R是自反的、非对称的和传递的D. R是非自反的、对称的和传递的9. 设R是一个函数,下列命题中正确的是()A. R是单射当且仅当R是满射B. R是单射当且仅当R是自反的C. R是满射当且仅当R是自反的D. R是单射当且仅当R是反对称的10. 设R是一个关系,下列命题中正确的是()A. R是等价关系当且仅当R是自反的、对称的和传递的B. R是等价关系当且仅当R是自反的、非对称的和传递的C. R是等价关系当且仅当R是非自反的、对称的和传递的D. R是等价关系当且仅当R是非自反的、非对称的和传递的二、填空题(每题2分,共20分)1. 在集合A={1, 2, 3}中,A的子集个数是______。
一、 填空 20% (每空 2分)1、 设 f ,g 是自然数集N 上的函数x x g x x f N x 2)(,1)(,=+=∈∀,则=)(x g f 。
2、 设A={a ,b ,c},A 上二元关系R={< a, a > , < a, b >,< a, c >, < c, c>} ,则s (R )= 。
3、 A={1,2,3,4,5,6},A 上二元关系}|,{是素数y x y x T ÷><=,则用列举法 T= ; T 的关系图为; T 具有 性质。
4、 集合}}2{},2,{{Φ=A 的幂集A2= 。
5、 P ,Q 真值为0 ;R ,S 真值为1。
则))()(())((S R Q P S R P wff ∧∧∨→∨∧的真值为 。
6、 R R Q P wff →∨∧⌝))((的主合取范式为 。
7、 设 P (x ):x 是素数, E(x):x 是偶数,O(x):x 是奇数 N (x,y):x 可以整数y 。
则谓词))),()(()((x y N y O y x P x wff ∧∃→∀ 的自然语言是。
8、 谓词)),,()),(),(((u y x uQ z y P z x P z y x wff ∃→∧∃∀∀的前束范式为。
二、 选择 20% (每小题 2分)1、 下述命题公式中,是重言式的为( )。
A 、)()(q p q p ∨→∧ ;B 、))())(()(p q q p q p →∧→↔↔ ;C 、q q p ∧→⌝)( ;D 、q p p ↔⌝∧)( 。
2、 r q p wff→∧⌝)(的主析取范式中含极小项的个数为( )。
A 、2;B 、 3;C 、5;D 、0;E 、 8 。
3、 给定推理①))()((x G x F x →∀ P ②)()(y G y F → US ① ③)(x xF ∃ P ④)(y F ES ③ ⑤)(y G T ②④I ⑥)(x xG ∀UG ⑤)())()((x xG x G x F x ∀⇒→∀∴推理过程中错在( )。
离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。
B. 有向图中的边无方向性,无向图中的边有方向性。
C. 无向图和有向图都是由顶点和边组成的。
D. 无向图和有向图都只由边组成。
答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。
B. 若集合A和B相交为空集,则A和B相等。
C. 若集合A和B相等,则A和B互相包含。
D. 若集合A和B相等,则A和B相交为空集。
答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。
答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。
答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。
答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。
答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。
答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。
证明过程:假设A和B互相包含,即A包含于B且B包含于A。
设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。
同理,对于集合B中的任意元素y,y也属于集合A。
一、单项选择题(本大题共15小题,每题1分,共15分)在每题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.一个连通的无向图G,如果它的全部结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,以下是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,以下系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.以下各代数系统中不含有零元素的是( )A.〈Q,X〉Q是全体有理数集,X是数的乘法运算B.〈Mn(R),X〉,Mn(R)是全体n阶实矩阵集合,X是矩阵乘法运算C.〈Z, 〉,Z是整数集, 定义为x xy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.以下式子正确的选项是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.以下公式在R下为真的是( )A.( ∀x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z))B.( ∀x)A(f(a,x),a)C.(∀x)(∀y)〔A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.假设P:他聪慧;Q:他用功;则“他虽聪慧,但不用功〞,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。
离散数学试题及答案离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E +正偶数) 则 =⋃B A 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。
3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。
6.设A={1,2,3,4},A 上关系图为则 R 2 = 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。
8.图的补图为 。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。
10.下图所示的偏序集中,是格的为 。
二、选择 20% (每小题 2分)1、下列是真命题的有( ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。
2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
3、设A={1,2,3},则A 上的二元关系有()个。
A . 23 ; B . 32 ; C . 332⨯; D . 223⨯。
4、设R ,S 是集合A 上的关系,则下列说法正确的是( ) A .若R ,S 是自反的, 则S R 是自反的; B .若R ,S 是反自反的, 则S R 是反自反的; C .若R ,S 是对称的, 则S R 是对称的; D .若R ,S 是传递的, 则S R 是传递的。
离散数学试卷1(参考答案)一、 选择题1、设}}8,7,6{},5,4{},3,2,1{{=A ,下列选项正确的是:(3) (1)A ∈1 (2)A ⊆}3,2,1{ (3)A ⊂}}5,4{{ (4)A ∈∅ 2、对任意集合C B A ,,,下述论断正确的是:(1)(1)若C B B A ⊆∈,,则C A ∈ (2)若C B B A ⊆∈,,则C A ⊆ (3)若C B B A ∈⊆,,则C A ∈ (4)若C B B A ∈⊆,,则C A ⊆ 3、假设},,{c b a A =上的关系如下,具有传递性的关系是:(4) (1)},,,,,{>><><><><<a b b a a a a c c a (2)},,,{>><><<a a a c c a (3)},,{>><<a c c a (4)},{><c a4、非空集合A 上的空关系R 不具备下列哪个性质:(1)(1)自反性 (2)反自反性 (3) 对称性 (4)传递性 5、假设},,{c b a A =,}2,1{=B ,令:B A f →:,则不同的函数个数为:(2) (1)2+3个 (2)32个 (3)32⨯个 (4)23个 6、假设},,{c b a A =,}2,1{=B ,下列哪个关系是A 到B 的函数:(3) (1)}2,1,2,1,2,1,{>><><><><><<=c c b b a a f (2)},,,,,,{>><><><><><<=c c a c b b a b b a a a f (3)}1,2,1,{>><><<=c b a f (4)},1,2,1{>><><<=c b a f7、一个无向简单图G 有m 条边,n 个顶点,则图中顶点的总度数为:(3) (1)2m (2)2n (3)m 2 (4)n 2 8、一个图是欧拉图是指:(1)(1)图中包含一条回路经过图中每条边一次且仅一次; (2)图中包含一条路经过图中每条边一次且仅一次; (3)图中包含一条回路经过图中每个顶点一次且仅一次; (4)图中包含一条路经过图中每个顶点一次且仅一次。
大学离散数学试卷三及答案一、单项选择题(每题2分,共20分)1.下列语句是命题的有[ B ]。
A .请保持安静!B .2011年元旦是星期六;C .x ≤6;D .今天是星期五吗?2.下面哪个命题公式是重言式[ B ]。
A .)()(r q q p →∧→;B .)(p q p →→;C .)()(q p q p ⌝∧⌝∧∨⌝;D .p q p ∧∨⌝)(。
3.下列二元关系中,具有传递性的二元关系是[ A ]。
A .{<a,b>}B .{<a,b>,<b,a>}C .{<a,b>,<b,c>}D .{<a,a>,<a,b>,<b,a>}4.若A={a,b,c},则下列集合中,[ C ]是A 的划分。
A .{Φ,{a},{b,c}}B .{{a,b},{b,c}}C .{{a},{b},{c}}D .{{a},{b}}5.N 是自然数集,定义3mod )(,:x x f N N f =→(即x 除以3的余数),则函数f 是[ A ]。
A .满射非单射;B .单射非满射;C .双射;D .非单射非满射6.下面集合[ C ]关于减法运算不是封闭的。
A .Z ;B .{2x ∣x ∈Z}C .{2x+1∣x ∈Z}D .{0}7.设R 是实数集合,“⨯”为普通乘法,则<R ,×> [ B ]。
A .是群;B .是独异点,不是群;C .是半群,不是独异点;D .是代数系统,不是半群8.下图中既不是Eular 图,也不是汉密尔顿图的是[ B ]。
9.如左下图,相对于5阶无向完全图K 5的补图为[ ]。
[本题图错误]10.给定无向图>=<E V G ,,下面哪个顶点子集是图G 的点割集[ A ]。
A .{}4v ;B .{}41,v v ;C .{}42,v v ;D .{}43,v v二、填空题(每题2分,共20分)1.设F(x):x 是人;G(x):x 会犯错误,则在谓词逻辑中,命题“没有不犯错误的人”谓词符号化为))()((x G x M x ⌝∧⌝∃或 ))()((x G x M x →∀。
离散数学总分:100 考试时间:100分钟一、单项选择题1、设集合A={2,3},B={1,2,3,4,5,6,7,8},定义A到B的关系R 为:当a能整除b时,有序偶(a,b)∈R.则R的值域为()(正确答案:A,答题答案:)A、{2,3,4,6,8}B、{2,3}C、{1,2,3,4,5,6,7,8}D、{1,5,7}2、设集合A={1,2,3,4},满足R={(a,b)|b=a-2}的有序偶为()(正确答案:B,答题答案:)A、{(1,1),(2,2),(3,3),(4,4)}B、{(3,1),(4,2)}C、{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)}D、{(1,1),(1,2),(1,3),(1,4)}3、若对于任意a∈A,都有(a,a)∈R,则称集合A上的关系R是()(正确答案:A,答题答案:)A、自反的B、对称的C、传递的D、反自反的4、设A1,A2,…,An是任意n个集合,定义在这n个集合上的n元关系为A1,A2,…,An的子集,其中,集合A1,A2,…,An称为n 元关系的域,n称为它的()(正确答案:A,答题答案:)A、阶B、基C、底D、质5、设集合A={2,3,4,5,6},A上的关系R={(a,b)|a整除b},则R 中的有序偶为()(正确答案:A,答题答案:)A、{(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(5,5),(6,6)}B、{(2,2),(3,3),(4,4),(5,5),(6,6)}C、{(2,4),(2,6),(3,6)}D、{2,3,4,5,6}6、设从集合A到集合B的关系为R,则把从B到集合A的关系{(b,a)|b∈B,a∈A且(a,b)∈R}称为关系R的()运算(正确答案:A,答题答案:)A、逆B、反C、补D、差7、设A为任意集合,R为集合A上的关系,则R等于R的逆当且仅当关系R是().(正确答案:A,答题答案:)A、对称的B、自反的C、互补的D、传递的8、若对于任意a,b∈A(a≠b),当(a,b)∈R和(b,a)∈R时,必有a=b,则称R为().(正确答案:B,答题答案:)A、自反的B、反对称的C、传递的D、对称的9、设R为集合A上的关系,如果对任意a,b,c∈A,当(a,b)∈R 且(b,c)∈R时,一定有(a,c)∈R,则称关系R是()(正确答案:C,答题答案:)A、自反的B、对称的C、传递的D、反自反的10、关系R的自反闭包记作()(正确答案:A,答题答案:)A、r(R)B、t(R)C、s(R)D、p(R)二、多项选择题1、关系的性质有()(正确答案:ABC,答题答案:)A、自反性B、对称性C、传递性D、不变性2、设在集合A={1,2,3,4}上有R1={(1,1),(1,2),(1,3),(1,4),(2,2),(3,1),(3,4),(4,2)(4,4)},则R1的性质为()(正确答案:ABCD,答题答案:)A、不是自反的B、不是反自反的C、不是对称的D、不是反对称的3、表示有限集之间关系的方法是很多的.常见方法有()(正确答案:ABC,答题答案:)A、集合表示法B、关系图表示法C、关系矩阵表示法D、真值表表示法4、设集合A={1,2,3},则集合A上的关系R={(1,1),(2,3),(3,1)}是()(正确答案:AB,答题答案:)A、不是自反的B、不是反自反的C、是自反的D、是反自反的5、设集合A={1,2,3},()集合是对称的(正确答案:AC,答题答案:)A、R1={(1,2),(2,1)}B、R2={(1,1),(1,2),(2,3)}C、R3={(1,1),(2,2),(3,3)}D、R4={(1,2),(2,1),(3,1)}6、设R是集合A上的二元关系,如果R同时满足()条件,则称R是等价关系.(正确答案:ABC,答题答案:)A、R是自反的B、R是对称的C、R是传递的D、R是反自反的7、偏序关系满足()(正确答案:ABC,答题答案:)A、自反的B、反对称的C、可传递的D、对称的8、关系的运算包括()(正确答案:ABCD,答题答案:)A、交B、并C、差D、补9、关系的闭包有()(正确答案:ABC,答题答案:)A、自反闭包B、对称闭包C、传递闭包D、恒等闭包10、在偏序集({2,5,8,10,15,16,20},整除)中,哪些元素是极小元素(正确答案:AB,答题答案:)A、2B、5C、15D、16三、判断题1、一个从A到B的二元关系是有序偶的集合R,在每一个有序偶中,第一个元素取自A,第二个元素取自B。
离散数学考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 对于命题逻辑,下列哪个是真值表的表示方法?A. 真值表B. 逻辑图C. 布尔代数D. 集合论答案:A3. 以下哪个是图论中的基本单位?A. 点B. 线C. 面D. 体答案:A4. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0C. 4D. 6答案:C5. 在关系数据库中,以下哪个操作用于删除表中的记录?A. SELECTB. INSERTC. UPDATED. DELETE答案:D6. 以下哪个是离散数学中的归纳法证明方法?A. 直接证明法B. 反证法C. 归纳法D. 构造性证明法答案:C7. 在逻辑中,以下哪个是析取命题?A. P ∧ QB. P ∨ QC. ¬PD. P → Q答案:B8. 以下哪个是图的遍历算法?B. BFSC. Dijkstra算法D. Floyd算法答案:B9. 在集合{1, 2, 3}上,以下哪个是幂集?A. {∅, {1}}B. {1, 2}C. {1, 2, 3}D. 所有选项答案:D10. 以下哪个是递归算法的特点?A. 不能自我调用B. 必须有一个终止条件C. 必须有一个基本情况D. 所有选项答案:D二、填空题(每空2分,共20分)1. 在离散数学中,_________ 表示一个命题的否定。
答案:¬P2. 如果集合A和集合B的交集为空集,那么A和B被称为_________。
答案:不相交3. 一个函数f: A → B是_________,如果对于集合B中的每个元素b,集合A中至少有一个元素a与之对应。
答案:满射4. 在图论中,一个没有环的连通图被称为_________。
答案:树5. 一个命题逻辑公式是_________,如果它在所有可能的真值分配下都是真的。
答案:重言式6. 一个关系R在集合A上是_________,如果对于A中的任意两个元素a和b,如果(a, b)属于R,则(b, a)也属于R。
离散数学试题及答案一、选择题1. 下列哪个是由离散数学的基本概念组成的?A. 集合论和函数论B. 图论和逻辑C. 运算符和关系D. 全数论和数论答案:B2. 下列哪个是离散数学的一个应用领域?A. 数据结构和算法分析B. 微积分和线性代数C. 概率论和统计学D. 数值分析和微分方程答案:A3. 集合A={1, 2, 3},集合B={2, 3, 4},则A交B的结果是:A. {1, 2, 3, 4}B. {2, 3}C. {2}D. {1}答案:B4. 下列哪个是对于集合的补集运算的正确描述?A. A∪A' = ∅B. A∩A' = ∅C. A - A' = AD. A'∩B' = (A∪B)'答案:B5. 若命题p为真,命题q为假,则命题p→q的真值为:A. 真B. 假C. 不确定D. 无法确定答案:B二、填空题1. 对于命题“如果x是偶数,则x能被2整除”,其逆命题为________________。
答案:如果x不能被2整除,则x不是偶数。
2. 在一个完全图中,如果有12条边,则这个图有__________个顶点。
答案:6个顶点。
3. 设集合A={1, 2, 3, 4},则A的幂集的元素个数是__________。
答案:2^4=16个元素。
4. 设关系R={(-1, 0), (0, 1), (1, 0)},则R的逆关系是__________。
答案:R^(-1)={(0, -1), (1, 0), (0, 1)}。
5. 若集合A={1, 2, 3},集合B={2, 3, 4},则A的笛卡尔积B是__________。
答案:A×B={(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
三、计算题1. 求集合A={1, 2, 3}和集合B={2, 3, 4}的并集。
离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。
答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。
答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。
答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。
答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。
答案:欧拉路径是一条通过图中每条边恰好一次的路径。
2. 解释什么是二元关系,并给出一个例子。
答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。
例如,小于关系就是一个二元关系。
3. 请说明什么是递归函数,并给出一个简单的例子。
答案:递归函数是一种通过自身定义来计算函数值的函数。
例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。
四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。
2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。