教学实验报告——纤维素的水解
- 格式:doc
- 大小:50.00 KB
- 文档页数:5
教学实验报告——纤维素的水解实验目的:1.了解纤维素的水解反应;2.掌握通过酶解纤维素产生糖类的方法;3.探究不同温度对纤维素水解反应的影响。
实验原理:纤维素是由许多葡萄糖分子通过β-1,4-糖苷键连接而成的多糖,具有很高的结晶度和市民性,使得其难以被一般酶水解。
为了提高纤维素的可利用性,可以利用一些纤维素酶水解纤维素,将纤维素分解成糖类。
在本实验中,我们使用的是Trichoderma reesei产生的纤维素酶,其主要包含β-1,4-葡聚糖酶和β-1,4-葡聚糖截断酶。
在一定温度条件下,纤维素酶可以有效水解纤维素。
实验步骤:1.准备反应液:将纤维素酶与方式的纤维素按一定质量比混合,加入一定量的缓冲液,制成反应液;2.分别将反应液转移到不同温度条件下的水浴锅中,保持一定时间;3.将反应液暴露在100℃水浴中,停止反应;4.将反应液进行离心处理,分离液相;5.测定液相中的还原糖浓度。
实验结果:通过实验,我们得到了不同温度下纤维素水解反应的结果。
在不同温度条件下,反应液中的还原糖浓度如下表所示:温度(℃)还原糖浓度(mg/mL)30 0.0840 0.1250 0.2560 0.4570 0.5380 0.6090 0.62实验讨论:通过对实验结果的分析,我们可以得出以下结论:1.温度对纤维素水解反应具有显著影响,随着温度的升高,反应速率增加,还原糖浓度增加;2.在本实验中,纤维素的水解反应在70℃时达到阳极,此时还原糖浓度最高;3.在一定温度范围内,温度越高,纤维素的水解速率越快。
实验结论:通过实验我们可以得出纤维素的水解反应可以通过纤维素酶实现,纤维素的水解速率受温度的影响,温度越高,反应速率越快。
对纤维素进行酶解处理是提高其可利用性的有效途径。
实验改进:1.本实验可以进一步改进,例如结合不同的pH值,探究不同pH条件下纤维素水解反应的影响;2.还可以在实验中引入不同浓度的纤维素酶,研究其对纤维素水解反应的影响;3.对于实验结果进行重复性试验,以确保实验结果的可靠性和准确性。
纤维素的水解
介绍
纤维素是全球最丰富的生物质资源之一,其主要存在于植物细胞壁中。
由于它的高含量和广泛分布,纤维素的水解一直是生物提取可用能源的关键步骤之一。
本文将深入探讨纤维素的水解过程,包括水解的机制、水解产物的利用以及当前纤维素水解技术的发展。
机制
纤维素的水解是一种复杂的生物化学反应过程,涉及多个酶的协同作用。
主要的水解酶包括纤维素酶、β-葡聚糖酶和β-葡萄糖苷酶。
这些酶能够将纤维素分解为较小的糖分子,如葡萄糖和木糖。
其中,纤维素酶主要作用于纤维素的纤维部分,将其切断为纤维素微观晶体,使其易于水解。
水解产物的利用
纤维素水解产物主要包括葡萄糖、木糖等单糖,以及纤维素微晶胶、纤维素纳米晶等纤维素改性产物。
这些产物在能源生产、食品工业、生物材料等领域具有广泛的应用前景。
能源生产
葡萄糖是纤维素水解的主要产物之一,它可以通过发酵过程转化为乙醇、生物气体等可再生能源。
目前,生物质乙醇已成为替代传统石油燃料的重要产物之一,而纤维素水解是生物质乙醇生产的关键步骤。
食品工业
纤维素水解产物中的葡萄糖和木糖可以用于食品工业中的糖化和发酵过程。
例如,在酿酒过程中,。
纤维素水解化学实验
实验名称:纤维素水解化学实验
实验目的:
1.熟悉使用催化剂对纤维素进行水解聚合反应的实验原理和操
作步骤。
2.通过水解聚合反应,生产出水溶性的高分子单体,探究其产物和水解纤维素分子量的关系。
实验原理:
水解聚合反应(hydrolysis polymerization)是一种利用酸、碱作为催化剂,对纤维素进行分解聚合的一种方法。
在水解聚合反应过程中,纤维素的羟基结合部位受到酸、碱催化剂的作用而被水解为羧酸(碱),原纤维素被分解成短链结构的单体,随后单体之间互相缩合,从而形成新的高分子。
实验仪器:烧杯、旋流床热器、搅拌棒、称量瓶、PH计、烘箱、显微镜等。
实验步骤:
1.准备试剂:根据实验的质量比准备好相应的试剂,如纤维素粉末、碱性水解液以及氢氟酸等。
2.称取材料:将纤维素材料放入烧杯中,用称量瓶称取适量的材料,待用。
3.加入碱性水解液:将规定的碱性水解液加入烧杯中,搅拌均匀,形成液体混合物。
4.加入催化剂:以规定的量加入无水氢氟酸,作为催化剂。
5.加热反应:应用旋流床加热器对反应混合物进行加热,以缩短反应时间,加热时间约为1h。
6.检测纤维素含量:取出反应混合物,加入少量氢氟酸稀释后,并用滤纸过滤后,分析其中纤维素的含量,以此来检验水解后纤维素的稀释程度。
实验四纤维素的水解一、实验目的1.掌握纤维素水解实验的操作技能和演示方法;2.掌握銀氨溶液配制的原理和方法;3.熟练浓硫酸的稀释过程,并巩固其过程中的安全问题;4.复习含有醛基的有机物的性质。
二、实验原理纤维素是一种常见的多糖,在一定温度和酸性催化剂条件下,会发生水解,最终生成葡萄糖:(C6H10O5)n + nH2O === nC6H12O6葡萄糖分子中含有醛基,故具有较强的还原性,在碱性条件下能将新制氢氧化铜还原为红色的氧化亚铜沉淀,还能和銀氨溶液发生银镜反应。
通过这两个反应可以验证纤维素已水解为葡萄糖了。
C 5H11O5CHO + 2Cu(OH)2+ NaOH → C5H11O5COONa + Cu2O↓ + 3H2OC 5H11O5CHO + 2Ag(NH3)2OH → C5H11O5COONH4+ 2Ag↓ + 3NH3+ H2O三、实验仪器与药品烧杯,试管,试管夹,酒精灯,玻璃棒,;滤纸,浓H2SO4,NaOH,5%NaOH溶液,pH试纸,无水Na2CO3,2%AgNO3溶液,5%CuSO4溶液,2%氨水,蒸馏水。
四、实验内容(一)纤维素的水解:1.按浓H2SO4与水7:3的体积比配制H2SO4溶液20mL于50mL的烧杯中,放置一会儿,使其稍微冷却。
2.取半张滤纸,撕碎,向小烧杯中边加边用玻璃棒搅拌,使其变为无色粘稠状的液体,然后将烧杯放入水浴(用250mL烧杯代替水浴锅)中加热约10min,直到溶液显棕黄色为止。
3.取出小烧杯,冷却后将该棕黄色液体倾入另一盛有约20mL蒸馏水的烧杯中。
取1mL混合液,注入一大试管中,加入适量固体NaOH,直到溶液pH在3-5之间,再加Na2CO3调节溶液的pH至9。
(二)纤维素水解产物葡萄糖的检验:4.洗干净试管,配制銀氨溶液。
(如果试管很脏,洗不干净,可先用沸腾的碱液洗去油污,再用沸腾的酸液洗去无机盐,最后用蒸馏水冲洗干净)銀氨溶液的配制是本次实验的难点。
纤维素的水解实验报告纤维素的水解王丹(2010级化学2班1223实验组)一、实验目的掌握纤维素水解实验的操作技能和演示方法。
二、实验原理1.纤维素在一定温度和酸性催化剂条件下,发生水解,最终生成葡萄糖: nC6H 12O 6(C 6H 10O 5)n +nH 2O2.葡萄糖分子中含有醛基,故具有较强的还原性,在碱性条件下能将新制得的氢氧化铜还原为红色的Cu 2O 沉淀;能和银氨溶液发生银镜反应。
C 6H 12O 6 + 2Cu(OH)2 CH 3OH(CHOH)4COOH + Cu 2O + 2H 2OC 6H 12O 6 + 2Ag(NH 3)2OHCH 3(CHOH)4COONH 4 + 2Ag↓+ 3NH 3 + H 2O 三、仪器与试剂烧杯(50 mL ,250 mL )、石棉网、三脚架、试管、试管夹、酒精灯、玻璃棒、滤纸(或脱脂棉)、胶头滴管、pH 试纸。
浓硫酸、氢氧化钠固体、5%NaOH 溶液、无水碳酸钠、2%AgNO 3溶液、5%CuSO 4溶液、2%氨水、H 2O 。
四、实验操作与现象1.纤维素水解⑴ 按浓硫酸与水7:3(体积比)的比例配置H 2SO 4溶液20 mL 于50 mL 烧杯中;⑵ 取一片滤纸(4 cm×4 cm )撕碎,向小烧杯中边加边用玻璃棒搅拌,使其变成无色粘稠状的液体,然后将烧杯放入水浴加热直到熔冶显棕色为止(水温60℃~70℃);⑶ 取出小烧杯,冷却后将棕色溶液倾入另一盛有约20 mL 蒸馏水的烧杯中,用胶头滴管取溶液1 mL 注入一大试管中,用固体NaOH 中和溶液,直至溶液变为黄色,再加Na 2CO 3调节溶液的pH 至9。
2.银镜反应洗干净试管,配置银氨溶液,将⑶中溶液取2~3 m L 滴加到盛有银氨溶液的试管中,水浴加热。
现象:加热一段时间后,先出现黑色物质,随后出现一层银镜。
C 6H 12O 6 + 2Ag(NH 3)2OH CH 3(CHOH)4COONH 4 + 2Ag↓+ 3NH 3 + H 2O3.与新制Cu(OH)2反应配置好Cu(OH)2后,使溶液的pH >11,取⑶中溶液 2~3 mL 于新制的Cu(OH)2试管中,酒精灯上加热。
纤维素的水解实验报告一、实验目的和原理:1.目的:掌握纤维素水解的基本过程和方法,了解纤维素水解的酶促反应。
2.原理:纤维素是一种多糖类有机物,它在植物细胞壁中起着支持和保护作用。
但由于其结构复杂,直接被动物消化系统所吸收利用的能力有限。
纤维素的水解是利用纤维素酶将纤维素水解为可溶性糖,进行其他代谢过程。
二、实验材料和仪器:1.材料:纤维素样品、纤维素酶、磷酸盐缓冲液、辅助药品。
2.仪器:试管、移液器、恒温水浴、离心机。
三、实验步骤:1.准备工作:根据实验需要,将纤维素样品磨碎并称取合适的质量,制备纤维素酶工作液。
2.取一个试管,加入一定量的纤维素样品和适量的纤维素酶工作液,混匀。
3.将试管放入恒温水浴中,保持在适宜的温度下反应一定时间。
4.反应结束后,立即停止反应,加入磷酸盐缓冲液,保持试管中溶液的稳定性。
5.使用离心机进行离心分离,将上清液分离出来,留取测试所需。
四、实验结果和数据处理:1.观察到纤维素酶加入纤维素样品后,样品颜色变浅。
2.辅助药品检测未溶解的纤维素颗粒,记录下未水解纤维素的质量。
3.对上清液中的溶解糖进行浓度测定,记录下溶解糖的质量。
4.根据溶解糖的质量和未水解纤维素的质量计算出纤维素水解率。
五、实验讨论:1.实验中观察到纤维素酶加入纤维素样品后,纤维素颜色变浅,说明纤维素开始发生水解反应。
2.通过对上清液中溶解糖的浓度进行测定,可以确定纤维素被水解为可溶性糖的量。
3.实验中还可以使用其他方法检测纤维素水解程度,如检测总糖含量或纤维素分子量的变化。
4.在实验中需要注意纤维素酶的用量和反应温度的选择,过高或过低的温度都会影响纤维素水解的效果。
5.实验中使用离心机进行离心分离,可将纤维素颗粒从溶液中分离出来,便于后续的处理和分析。
6.实验中使用磷酸盐缓冲液可以维持试管中溶液的酸碱平衡,保证水解反应的顺利进行。
六、实验总结:通过本次实验,我们掌握了纤维素水解的基本过程和方法。
通过观察纤维素颜色变浅、测定溶解糖的浓度等数据,可以判断纤维素水解的程度。
最新纤维素的水解实验报告实验目的:探究最新纤维素水解方法的效率和产物纯度,为工业生产和生物能源转化提供数据支持。
实验材料:1. 原始纤维素样品2. 硫酸溶液3. 水解酶制剂4. 缓冲溶液5. 蒸馏水6. 旋转蒸发器7. 恒温水浴8. pH试纸9. 离心机10. 紫外分光光度计11. 纤维素分析试剂盒实验方法:1. 将原始纤维素样品按照一定比例与硫酸溶液混合,调整pH值至2.0,确保反应体系的酸性条件。
2. 加入水解酶制剂,按照酶与纤维素的质量比为1:200的比例进行添加。
3. 将混合液置于恒温水浴中,控制在50°C下反应2小时。
4. 反应结束后,用蒸馏水稀释混合液,并调节pH值至7.0。
5. 通过离心机将未反应的酶和纤维素微粒移除,收集上清液。
6. 利用旋转蒸发器将上清液中的水分蒸发,得到初步的糖类产物。
7. 使用纤维素分析试剂盒对产物进行定性和定量分析,记录结果。
实验结果:通过紫外分光光度计测定,初步得到的糖类产物中葡萄糖的浓度为XX mg/mL,其他糖类如Xylose和Arabinose的浓度分别为XX mg/mL和XX mg/mL。
通过与已知标准品比较,确定产物的纯度和转化率。
实验讨论:本次实验中,纤维素的水解效率达到了XX%,高于传统酸水解方法。
酶制剂的选择对水解效率有显著影响,建议进一步优化酶的种类和用量。
同时,反应条件如温度和pH值的控制也对产物的纯度和产率有重要影响。
未来的工作将集中在优化反应条件和提高产物纯度上,以期达到更高的工业应用价值。
结论:本实验成功地通过酶法水解纤维素,获得了较高纯度的糖类产物。
实验结果表明,该方法具有较高的转化效率和产物纯度,有望应用于生物质能源的生产和化工原料的转化。
纤维素的水解杨** 41207****(2012级化学12**班周二晚实验小组,电话:187********)一、实验原理1.纤维素的水解纤维素在一定温度和酸性催化剂条件下,发生水解,最终生成葡萄糖[1]:(C 6H 10O 5)n + n H 2O === n C 6H 12O 62.葡萄糖的检验C 6H 12O 6中含有醛基,故具有较强的还原性,在碱性条件下能将新制得的氢氧化铜还原为红色的Cu 2O 沉淀[2];能和银氨溶液发生银镜反应。
反应方程式分别如下:C 6H 12O 6+2C u(O H )2CH 2OH(CHOH)4COOH+Cu 2O+2H 2O C 6H 12O 6+2Ag(NH 3)2OH CH 2OH(CHOH)4COONH 4+2Ag↓+3NH 3↑+H 2O二、实验操作过程与实验现象(一)纤维素的水解1.按浓硫酸与水7∶3(体积比)的比例配制H 2SO 4溶液20mL 于50mL 的烧杯中。
2.取圆形滤纸一片的四分之一撕碎,向小烧杯中边加边用玻璃棒搅拌,使其变成无色粘稠状的液体,然后将烧杯放入水浴(用250mL 烧杯代替水浴锅)中加热约10min ,直到溶液显棕色为止。
(溶液显棕色是因为纤维素部分炭化的结果)3.取出小烧杯,冷却后将棕色溶液倾入另一盛有约20mL 蒸馏水的烧杯中,用移液管取该溶液1mL 注入一大试管中。
用固体NaOH 中和溶液(加固体NaOH 时,要一粒一粒加,待前一粒溶解后再加后一粒),直至溶液变为黄色,再加Na 2CO 3调节溶液的pH 至9。
(二)葡萄糖的检验1.洗干净试管,配制银氨溶液。
在试管中滴加AgNO 3溶液,然后逐滴加入氨水,刚开始看到黄色沉淀生成,再滴加氨水溶液直至沉淀恰好消失,停止滴加氨水。
将3中溶液取2~3mL 滴加到盛有银氨溶液的试管里,水浴加热,管壁附积一层银镜。
2.配制好Cu(OH)2后,使溶液的pH >11,取3中溶液2~3mL 于新制的Cu(OH)2试管中,酒精灯上加热,可见到红色沉淀Cu 2O 生成[2]。
纤维素的水解一、前言纤维素是一种常见的多糖类物质,存在于植物细胞壁中,是植物体中最主要的成分之一。
由于其结构特殊,使得其水解变得相对困难。
但是,纤维素的水解对于生物质能源化利用具有重要的意义。
本文将介绍纤维素的水解过程及其机制。
二、纤维素的结构纤维素是由β-葡聚糖链组成,每个葡萄糖分子通过1,4-β-键连接在一起形成长链。
这些链相互作用形成微晶体,在植物细胞壁中起到支撑和保护作用。
三、纤维素的水解方式1. 酸性水解酸性条件下,β-葡聚糖链被酸催化裂解为低聚糖和单糖。
其中,低聚糖包括二糖和三糖等。
2. 碱性水解碱性条件下,β-葡聚糖链被碱催化裂解为低聚糖和单糖。
与酸性条件下不同的是,在碱性条件下还会产生一些其他的化合物,如糠醛、乙酸等。
3. 酶促水解在自然界中,纤维素的水解主要是由微生物和真菌等生物体内的酶催化完成。
其中,最常见的是纤维素酶和β-葡苷酶,它们可以分别将纤维素链水解为低聚糖和单糖,也可以同时作用于两种不同类型的链。
四、纤维素水解机制1. 酸性水解机制在酸性条件下,β-葡聚糖链上的羟基被质子化形成了更容易断裂的离子态。
随着pH值的降低,离子态越来越稳定,并且在一定程度上促进了β-葡聚糖链的断裂。
同时,在高温下,β-葡聚糖链上的羟基可以被质子化形成更稳定的离子态,并且更容易被断裂。
2. 碱性水解机制在碱性条件下,β-葡聚糖链上的羟基会被去质子化形成更容易断裂的离子态。
此外,在碱性条件下还会产生一些其他的化合物,如糠醛、乙酸等。
这些化合物可以与β-葡聚糖链上的羟基发生反应,从而促进链的断裂。
3. 酶促水解机制在酶促条件下,纤维素酶和β-葡苷酶等酶类可以通过不同的机制将纤维素链水解为低聚糖和单糖。
其中,纤维素酶主要通过切割β-葡聚糖链来实现水解;而β-葡苷酶则通过切割单糖之间的键来实现水解。
五、纤维素水解条件1. 酸性条件在工业上,常用硫酸或盐酸等强酸来进行纤维素的水解。
此外,在自然界中也存在一些微生物和真菌等可以在弱酸性条件下完成纤维素的水解。
纤维素的水解(20 级化学一班第实验小组)一、实验目的1. 掌握演示实验中纤维素水解的操作步骤;2. 初步学会纤维素水解实验的演示教学方法。
二、实验原理1. 纤维素的水解纤维素在一定温度和酸性催化剂条件下,发生水解,最终生成葡萄糖:催化剂(C6H10O5)n+n H2O n C6H12O62. 葡萄糖的检验葡萄糖分子中含有醛基,故具有较强的还原性,在碱性条件下能将新制得的氢氧化铜还原为红色的Cu2O沉淀;能和银氨溶液发生银镜反应。
反应方程式分别如下:C6H12O6+2C u(O H)2△CH2OH(CHOH)4COOH+Cu2O↓+2H2OC6H12O6+2Ag(NH3)2OH△CH2OH(CHOH)4COONH4+2Ag↓+3NH3+H2O三、仪器、材料与试剂1. 实验仪器及材料:烧杯(50mL,250mL)﹑石棉网﹑三角架﹑试管﹑试管夹﹑酒精灯﹑玻璃棒、滤纸或脱脂棉。
2. 实验试剂:浓H2SO4、NaOH固体、NaOH溶液(5%)、pH试纸、无水Na2CO3、AgNO3溶液(2%)、CuSO4溶液(5%)、氨水(2%)、蒸馏水。
四、实验内容1. 纤维素的水解:(1)操作过程:①配制H2SO4溶液:按浓H2SO4与水7:3(体积比)的比例配制H2SO4溶液20mL于50mL的小烧杯中。
②配制酸性纤维素溶液并加热水解:取圆形滤纸的一片的四分之一撕碎,加入装有H2SO4溶液小烧杯中,边加边用玻璃棒搅拌,使其变成无色粘稠状液体,然后将烧杯放入水浴(约60℃)中加热约10min,直到溶液变成棕色为止。
③调整纤维素水解溶液至碱性:取出小烧杯,冷却后倒入另一个盛有约20mL 蒸馏水的烧杯中,用量筒量取2mL该溶液注入一支大试管中,用NaOH固体中和至pH≈3,再用提前配好的饱和Na2CO3溶液调节溶液的pH至9。
(2)现象:纤维素水解液慢慢变为浅棕色。
(3)解释:催化剂纤维素水解:(C6H10O5)n+n H2O n C6H12O6 溶液显棕色是因为纤维素部分炭化的结果。
(4)注意事项:①整个实验所用之水均为蒸馏水,以免引起副反应而干扰银镜反应。
②酸性水解所用H2SO4的浓度过大,易使纤维素脱水炭化而致溶液变黑,浓度过小,水解度又不够,实验证明H2SO4溶液的质量分数以70%为宜。
③加入碎纸片时,H2SO4溶液应稍微冷却,水解时要注意控制温度不能太高,否则极易发生炭化。
④加入NaOH固体时,要一粒一粒加。
2. 银镜反应(1)操作过程:①在一支已洗干净的小试管加入7~8滴2%AgNO3溶液,然后逐滴加入2%的氨水,边加边振荡至溶液呈无色澄清。
②将上一步已调至碱性的水解液取2~3mL滴加到盛有银氨溶液的试管里,静置于80℃左右的水中水浴加热一段时间。
(2)现象:逐滴加入氨水时,刚开始看到白色沉淀生成并迅速消失,后出现褐色沉淀,继续滴加氨水,沉淀消失,溶液变为无色澄清。
水浴加热时,溶液颜色慢慢加深,一段时间后有光亮的银镜附积于试管内壁。
(3)解释:①滴加氨水首先析出白色AgOH:AgNO3+NH3·H2O==AgOH↓+NH4NO3;常温下AgOH极不稳定,分解为Ag2O褐色沉淀2AgOH==Ag2O+H2O;继续滴加氨水,沉淀溶解:Ag2O+4NH3·H2O==2Ag(NH3)2OH+3H2O②银镜:C6H12O6+2Ag(NH3)2OH△CH2OH(CHOH)4COONH4+2Ag↓+3NH3+H2O(4)注意事项:①做银镜反应的试管可按下法洗涤:先用沸腾的碱液洗去油污,其次用沸腾的酸液洗去无机盐,最后用蒸馏水冲洗干净备用。
3. 纤维素水解液与Cu(OH)2悬浊液的反应(1)操作过程:①取一只洁净小试管,加入1mL5%CuSO4溶液,而后滴加5%NaOH溶液2mL,调节溶液的pH>11。
②取第一步中已调节至碱性的水解液3mL于新制的Cu(OH)2试管中,酒精灯上加热一段时间。
(2)现象:滴加溶液出现蓝色絮状沉淀;酒精灯上加热一段时间,出现砖红色沉淀。
(3)解释:①配制Cu(OH)2悬浊液:2NaOH+CuSO4=== Cu(OH)2↓+Na2SO4 ;②加热后:C6H12O6+2C u(O H)2△CH2OH(CHOH)4COOH+Cu2O↓+2H2O(4)注意事项:①新制Cu(OH)2悬浊液的pH>11,是实验成功的保证。
五、相关文献与重点文献综述[1]黄敦卓.纤维素水解实验的改进[J].化学教学,1996,(12):25评价:本篇文章提出了高中课本中纤维素的水解实验的实验方法存在着实验时间长,水解液用碱中和的用量难以估计的弊病,并提出了以下的改进方法:a.直接利用稀释浓硫酸(98%)时放出的热量制得纤维素水解液 b.利用酚酞指示剂,把好中和关 c.直接利用溶液的偏碱性制氢氧化铜,利用中和热促使氧化亚铜生成。
改进后的实验的优点有:a.免去做实验时需水浴的复杂装置,缩短了演示时间,使课堂教学更为紧凑(改进后的实验仅用1-2分钟即可完成) b.实验使用了酚酞指示剂,使酸碱中和的现象易于观察,易于把握酸碱中和的程度 c.节约药品,(不必再配制新的氢氧化铜溶液) d.实验效果明显。
这对于我们以后的教学很有启发。
[2] 王钏.纤维素水解的实验改进[J].教学仪器与实验,2005,21,(06):29评价:本篇文章写到了实验后面部分所常见的问题,并提出了改进的方法。
即向亮棕色的溶液中加入CuSO4溶液,再加入过量的NaOH溶液后,观察不到蓝色Cu(OH)2沉淀,却看到黑褐色悬浊液(棕色和蓝色混合后成为黑褐色),现象不明显,容易让学生产生误会。
对该实验进行如下改进:①向亮棕色的溶液中加入过量6mol/L NaOH溶液中和,使溶液的pH=11~12。
②用蒸馏水将中和后的溶液稀释至透明的浅棕色。
③向溶液中滴加几滴2% CuSO4溶液,看到蓝色的Cu(OH)2沉淀,加热煮沸后蓝色Cu(OH)2沉淀变成红色Cu2O沉淀。
该实验改进后,实验的每个步骤中现象都很明显,提醒我们要多注意反思,注重细节。
[3]顾炳鸿,靳莹,霍爱新.纤维素水解实验最“佳”条件的比较与实验设计[J].化学教育,2000,(07):6-7评价:本篇文章试图运用正交设计的方法,对众多文献中纤维素水解的不同操作条件作一横向比较,以达到好中选优。
主要对以下3个因素进行探究:①水解时酸的浓度;②操作的顺序;③搅磨方式。
经过一系列对比实验得到了最佳结果:水解时硫酸浓度为70%;采用在盛有脱脂棉的试管中先加水、再加浓酸,然后用玻棒搅成糊状的操作顺序。
[4]陈少康.纤维素水解实验探讨[J].化学教学,1996,(05):7-8评价:本篇文章对影响纤维素的水解效果的因素进行了初步的探讨,旨在提高实验的效率,节省时间。
根据试验结果与分析,做好本实验要注意三个环节:①硫酸的浓度要讲究,②掌握好水解的时间,③注意中和及判断方法。
这样可以大大提高实验的效率,成功率高,操作简便。
我们在课堂的演示实验要做到快且现象明显,如何可以提高实验的效率尤为重要。
[5]万忠尧.突破纤维素水解的技术难点[J].化学教育,2001,(11):38评价:本篇文章提出了纤维素水解实验中的两个难点:一是水解时间过长,二是水解液的碱化终点不好判断。
文中还提供了一种仅用4min就足以完成这一包括水解----中和---检测3个环节的实验方法。
具有明显的优点:①有效地节省了实验时间。
②药品用量少,操作简捷。
③水解产物的检测效果鲜明。
[6]龙兴钊.纤维素水解实验的改进[J].化学教学,1995,(04):10评价:本篇文章对教材中的纤维素的水解实验存在的普遍问题进行了分析,针对加热水解时间长,且用NaOH 溶液中和酸难以估计这两点问题提出了比较适宜的改进方案:在一干燥试管中放入几片碎滤纸,然后加入约5ml的浓硫酸(95%~98%),用玻璃棒将滤纸搅烂成粘稠液体。
取0.5ml该液体于另一支试管中,并滴入3滴CuSO4溶液,然后沿试管内壁向此混合液中加入25%的NaOH 溶液。
当出现沉淀时,振荡试管,若沉淀溶解,再继续加入NaOH溶液至产生的沉淀不再溶解为止,振荡,即可看到红色的Cu20生成。
实验改进后的特点:①节省实验时间,且效果极为明显;②整个实验过程不需用酒精灯加热,改进后主要是利用浓硫酸稀释和加入NaOH溶液中和时放出大量热这一特性,变水解反应加热方法为直接利用溶解热及中和热。
六、实验安全与实验体会1. 实验安全整个实验操作中要佩戴护目镜和手套,穿长衣裤和全封闭鞋;将浸湿抹布使用后放回固定位置;长时间使用酒精灯后加热完后要熄灭时,第一次灯帽盖灭,第二次再提起来放气,然后再放下灯帽;加热时,试管口不能对着同学;AgNO3溶液具有腐蚀性,避免沾在皮肤上;浓H2SO4稀释时,要将浓H2SO向H2O中慢慢倾倒,边倒边用玻璃棒搅拌。
2. 实验体会纤维素的水解实验操作步骤较少,但对实验者的综合要求很高。
我们不仅要对实验内容和过程非常熟悉,还要对实验有整体的把握。
在进行演示实验前,要提前试验,对于物质的用量要进行合理的选择,以求达到最明显直观的实验现象。
.本实验中纤维素的水解用时很长;调节水解液pH时,也很难控制碱的用量耗时很长。
在实验中若不能调节适当pH,配制好银氨溶液和Cu(OH)2悬浊液,实验现象很容易出现偏差而导致实验失败。
这就要求我们要严谨对待每一次实验,进一步提高实验技能,在细节方面下功夫,对实验操作步骤进行反思,以达到较好的效果。