生存分析1(精选)
- 格式:ppt
- 大小:1.26 MB
- 文档页数:24
生存分析与临床应用一.概述在医学科研中,我们常常对观察对象作追踪观察,并记录各个时点某事件的发生状况。
对这种资料进行分析时,不仅应该考虑某事件发生的频率,还要考虑从试验开始到该事件发生的时间。
因为即使事件发生的频率相同,但若某事件的发生与时间有关,则仍可提示各个试验组存在差异。
因此,对于随访研究资料而言,仅仅考虑随访的结果是不够的,还应该考虑随访的时间。
生存分析(survival analysis)就是将随访结果与随访时间(times to event)结合起来对资料进行分析的一类统计方法,它充分地利用了研究中所得到的信息,能够更加全面地、准确地分析随访资料。
生存分析中的观察结果可以是任何事件,如死亡、痊愈、发病等,故生存分析可广泛用于医学科研工作中。
生存分析的主要内容包括了生存率的计算、两组或多组生存率的比较,以及多因素的生存分析方法,如Cox回归模型、Logistic回归。
二.生存分析中的常用术语(1)“死亡”事件,或称失败事件(failure event)在生存分析中,用以反映处理因素失败的特征事件,它可以是任何事件,如死亡、痊愈、发病等。
一般来说,做生存分析最好的资料是全部观察对象都已产生特征事件的资料,也就是说截尾值越少越好,而截尾值太多的资料,其分析结果的可靠性较差。
(2)截尾值(终检值,censored value)由于各种原因无法得到观察对象明确的结局事件,不知道观察对象的确切生存时间,属于信息不完整的数据。
如研究者常遇到如下情况:①直到研究结束时点,观察对象尚未发生某事件(未死亡、未缓解等)。
②观察对象死于其他疾病或因某种原因中断了治疗;③观察对象搬迁到其它地区,中断了联系。
这时,无论把这些观察对象归为发生或归为未发生某个事件都不合理,包含有这些情况的资料都不能提供分析所需要的完整信息。
因此,将其数值称为终检值(截尾值,censored value),有终检值的数据称为终检数据(截尾数据,censored data)。
收藏可能是网上最全的生存分析资料1、生存分析的概念生存分析(survival analysis)是对生存时间进行分析的统计技术总称。
既考虑结果又考虑生存时间的一种统计方法,并可充分利用截尾数据所提供的不完全信息,对生存时间的分布特征进行描述,对影响生存时间的主要因素进行分析。
生存分析的基本目的就是刻画生存时间的分布。
生存分析相较于其它多因素分析的主要区别点:生存分析考虑到了每个研究对象出现某一结局所经历的时间长短。
(一)基本概念:1.起始事件(initial event):反应生存时间起始特征的事件,如疾病确诊、某种疾病治疗开始等。
2.失效事件(failure event):在生存分析随访研究过程中,一部分研究对象可观察到死亡,可以得到准确的生存时间,它提供的信息是完全的,这种事件称为失效事件,也称之为死亡事件、终点事件。
3.生存时间(survival time):从规定的观察起点到某一特定终点事件出现的时间长短。
其中根据研究对象的结局,生存时间数据可分为两种类型:1)完全数据:在规定的观察期内,对某些观察对象观察到了终点事件发生,从起点到终点事件所经历的时间,称为生存时间的完全数据(complete data)。
用符号“ t ”表示。
2)删失数据(截尾数据):规定的观察期内,对某些观察对象,由于某种原因未能观察到病人的终点事件发生,并不知道其确切的生存时间,如病人生存时间在未达到规定的终点就被截尾一样,称为生存时间的删失数据,又称截尾数据,用符号“ t+ ”表示。
产生删失数据的常见原因有:1)研究结束时终点事件尚未发生;2)失访;3)死于其它原因;4)由于严重药物反应而终止观察或改变治疗措施。
4.死亡概率(probability of death):表示某单位时段开始存活的个体,在该时段内死亡的可能性;如年死亡概率。
注意:如果年内有删失,则分母用校正人口数(有效数目):校正人口数 = 年初人口数—删失例数/25.生存概率(probability of survival):单位时段开始时存活的个体,到该时段结束时仍然存活的可能性。
第1章基本概念第1节生存资料的特点生存资料(Survival Data)或失效时间资料(Failure-time Data)与多元线性回归资料很相似,只不过因变量(或反应变量)通常为观测对象生存的时间,常用t来表示。
当然,生存时间是广义的,可以指在通常意义下生物体的生存时间、也可以指所关心的某现象(如疾病治愈后、合格品使用后)持续的时间。
若生存时间是准确观测到的,则称为完全数据。
生存资料的一个明显特点是:所收集的资料中常常包含不完全数据,也称为截尾数据、删失数据、终检数据(Censored Data)。
包括删失数据的资料,称为删失资料。
对于删失数据,既不能简单地弃之,踊能像对待完全数据那样给予充分的信任,需要采取一些技术处理。
专门处理这种资料的统计方法,称为生存分析(Survival Analysis)。
导致数据删失有多种原因,最常见的有:失访(病人因搬家、随访信件丢失、车祸等原因,导致医生对他们的随访观察中断)和研究截止。
由随机因素引起的,称为随机删失;若事先就定了截止日期,则称为定时删失(也称Ⅰ型删失);若事先就定了观察完多少例就截止研究,则称为Ⅱ型删失(也称为定数删失)。
在表达删失数据时,常在其右上角放一个“+”号;而用SAS软件分析时,常在其前放一个“-”号或产生1个指示变量(如:C=0表示删失数据、C=1表示完全数据,反过来也可以),便于计算时区别对待。
为了使数据的表达与计算在形式上统一起来,本篇一律用负数表示删失数据,因生存时间不可能为负值,故不会产生混淆。
第2节生存时间函数描述生存时间规律的函数很多,统称为生存时间函数。
其中最主要的有生存函数、死亡概率函数、概率密度函数和危险率函数。
1.生存函数(Survival Function)生存函数也称为生存概率或累积生存率,常用S(t)表示,它表示一个体生存时间长于t的概率。
在具体问题中,该函数在t时刻的取值可用式(5.1.1)来估计∶S(t)≈生存时间长于t的病人数/病人总数(5.1.1)2.死亡概率函数(Failure Probability Function)死亡概率函数简称为死亡概率,常用F(t)表示,它表示一个体从开始观察起到时刻t为止的死亡概率。
生存分析入门生存分析是一种统计方法,用于研究个体在给定时间内生存或发生特定事件的概率。
它可以帮助我们理解和预测个体在不同条件下的生存状况,对于医学、生物学、社会科学等领域的研究具有重要意义。
本文将介绍生存分析的基本概念、常用方法和应用领域。
一、生存分析的基本概念1. 生存时间:生存时间是指个体从某一起始时间点到达终止时间点的时间间隔。
在生存分析中,生存时间可以是任意单位,如天、月、年等。
2. 生存状态:生存状态是指个体在某一时间点是否发生了特定事件。
常见的生存状态包括生存、死亡、复发等。
3. 生存函数:生存函数描述了个体在给定时间内生存下来的概率。
生存函数通常用Kaplan-Meier曲线表示,可以直观地展示个体的生存状况。
4. 风险函数:风险函数描述了个体在给定时间点发生特定事件的概率。
风险函数通常用Cox比例风险模型进行估计。
二、生存分析的常用方法1. Kaplan-Meier方法:Kaplan-Meier方法是一种非参数方法,用于估计生存函数。
它假设个体之间的生存时间是相互独立的,不受其他因素的影响。
Kaplan-Meier曲线可以根据不同的因素进行分组比较,以评估其对生存时间的影响。
2. Cox比例风险模型:Cox比例风险模型是一种半参数方法,用于估计风险函数。
它可以同时考虑多个因素对生存时间的影响,并估计各个因素的风险比值。
Cox比例风险模型可以用于预测个体的生存概率,并评估不同因素对生存的相对重要性。
3. Log-rank检验:Log-rank检验是一种常用的统计检验方法,用于比较两个或多个生存曲线之间的差异。
它基于Kaplan-Meier曲线,通过计算观察到的事件数与期望事件数之间的差异来判断差异是否显著。
三、生存分析的应用领域1. 医学研究:生存分析在医学研究中广泛应用于评估治疗效果、预测疾病进展和生存期等。
通过分析患者的生存时间和生存状态,可以帮助医生制定个体化的治疗方案,提高治疗效果。
⽣存分析⽣存分析本数据资料主要探讨不同处理对⽣存时间的影响,数据中,treat为连续变量,num2_treat为⼆分类变量,num3_treat为三分类等级变量。
共纳⼊病⼈200例,进⾏⽣存分析步骤如下:1.⽣存资料的定义:命令:stset[时间变量] [截尾变量]对应本数据为:stset time mortality结果:1)其中time指随访时间,即产⽣预期结果或者截尾时的时间减去纳⼊随访时的初始时间得到的天数。
2)Mortality为截尾变量,Stata视变量mortality不等于0的⾮缺失值为出现预期结果。
3)Stata会同时产⽣4个新的变量:_st代表:数据中该条记录是否被定义为⽣存资料。
_d 代表:数据中该条记录是否出现预期结果。
_t 代表:数据中观察对象被随访的时间。
_t0 代表:数据中观察对象第⼀次被观察到的时间(开始过程的时间为0)2.⽣存资料的描述。
1)计算中位⽣存时间的命令:stsum[if 表达式] ,[by(分组变量)选择项]对应本数据:stsum,by(num2_treat)结果:由于两组中截尾数据出现的较早,故25%、50%和75%⽣存时间⽆法估计,Stata⽤缺失值表⽰。
4)stci命令可以⽤来计算中位⽣存时间、平均⽣存时间、⽣存时间的百分数及其可信区间。
命令:stci [if 表达式],[by(分组变量) 选择项]其中选择项有:median(计算中位⽣存时间);rmean(计算平均⽣存时间)P(#)(⽣存时间的百分数);level(#)(可信区间的可信度)对应本数据:stci,by(num2_treat) median结果:同样由于两组中截尾数据出现的较早,故中位⽣存时间⽆法估计,Stata⽤缺失值表⽰。
stci,by(num2_treat) rmean结果:num2_treat=0组的平均⽣存时间⼤于num2_treat=1组。
对于观察队列中最后⼀例为截尾者,平均⽣存时间的估计值偏低,Stata在相应数值后加“*”表⽰。