生存分析(1)
- 格式:ppt
- 大小:375.00 KB
- 文档页数:44
⽣存分析(survivalanalysis)⼀、⽣存分析(survival analysis)的定义 ⽣存分析:对⼀个或多个⾮负随机变量进⾏统计推断,研究⽣存现象和响应时间数据及其统计规律的⼀门学科。
⽣存分析:既考虑结果⼜考虑⽣存时间的⼀种统计⽅法,并可充分利⽤截尾数据所提供的不完全信息,对⽣存时间的分布特征进⾏描述,对影响⽣存时间的主要因素进⾏分析。
⽣存分析不同于其它多因素分析的主要区别点:⽣存分析考虑了每个观测出现某⼀结局的时间长短。
应⽤场景 什么是⽣存?⽣存的意义很⼴泛,它可以指⼈或动物的存活(相对于死亡),可以是患者的病情正处于缓解状态(相对于再次复发或恶化),还可以是某个系统或产品正常⼯作(相对于失效或故障),甚⾄可是是客户的流失与否等。
在⽣存分析中,研究的主要对象是寿命超过某⼀时间的概率。
还可以描述其他⼀些事情发⽣的概率,例如产品的失效、出狱犯⼈第⼀次犯罪、失业⼈员第⼀次找到⼯作等等。
在某些领域的分析中,常常⽤追踪的⽅式来研究事物的发展规律,⽐如研究某种药物的疗效,⼿术后的存活时间,某件机器的使⽤寿命等。
在医学研究中,常常⽤追踪的⽅式来研究事物发展的规律。
如,了解某药物的疗效,了解⼿术的存活时间,了解某医疗仪器设备使⽤寿命等等。
对⽣存资料的分析称为⽣存分析。
所谓⽣存资料就是描述寿命或者⼀个发⽣时间的数据。
更详细的说⼀个⼈的⽣存时间的长短与许多因素有联系的,研究因素与⽣存时间的联系有⽆及程度⼤⼩,称为⽣存分析。
例如研究病⼈感染了病毒后,多长时间会死亡;⼯作的机器多长时间会发⽣崩溃等。
这⾥“个体的存活”可以推⼴抽象成某些关注的事件。
所以SA就成了研究某⼀事件与它的发⽣时间的联系的⽅法。
这个⽅法⼴泛的⽤在医学、⽣物学等学科上,近年来也越来越多⼈⽤在互联⽹数据挖掘中,例如⽤survival analysis去预测信息在社交⽹络的传播程度,或者去预测⽤户流失的概率。
⽣存分析研究的内容 1.描述⽣存过程 研究⽣存时间的分布特点,估计⽣存率及平均存活时间,绘制⽣存曲线等,根据⽣存时间的长短,可以估算出各个时点的⽣存率,并根据⽣存率来估计中位⽣存时间,也可以根据⽣存曲线分析其⽣存特点,⼀般使⽤Kaplan-Meier法和寿命表法。
生存分析入门及其应用领域生存分析是一种统计方法,用于研究个体在给定时间内生存或发生特定事件的概率。
它广泛应用于医学、生物学、社会科学等领域,帮助研究人员了解个体的生存状况和预测未来事件的发生概率。
本文将介绍生存分析的基本概念和方法,并探讨其在不同领域的应用。
一、生存分析的基本概念和方法1.1 生存函数和生存率生存函数是描述个体在给定时间内存活的概率分布函数。
它可以用来计算个体在不同时间点的生存率。
生存率是指个体在给定时间段内存活下来的概率。
1.2 风险函数和累积风险函数风险函数是描述个体在给定时间点发生事件的概率密度函数。
它可以用来计算个体在不同时间点发生事件的风险。
累积风险函数是指个体在给定时间段内发生事件的累积概率。
1.3 生存分析方法生存分析方法包括Kaplan-Meier方法、Cox比例风险模型等。
Kaplan-Meier方法用于估计生存函数和生存率,适用于无法满足正态分布假设的数据。
Cox比例风险模型用于分析多个协变量对生存时间的影响,可以得出各个协变量的风险比。
二、生存分析在医学领域的应用2.1 癌症生存分析生存分析在癌症研究中广泛应用。
研究人员可以通过分析患者的生存时间和相关协变量,评估不同治疗方法对患者生存率的影响。
此外,生存分析还可以用于预测患者的生存时间和制定个体化治疗方案。
2.2 药物研发生存分析在药物研发中也有重要应用。
研究人员可以通过分析药物对动物或人体的生存时间和相关协变量,评估药物的疗效和安全性。
生存分析可以帮助筛选出具有潜在治疗效果的药物,并为临床试验的设计提供依据。
三、生存分析在社会科学领域的应用3.1 人口统计学生存分析在人口统计学中被广泛应用。
研究人员可以通过分析人群的生存时间和相关协变量,评估不同因素对人口生存率的影响。
生存分析可以帮助政府和决策者制定人口政策和社会福利政策。
3.2 金融风险管理生存分析在金融风险管理中也有应用。
研究人员可以通过分析金融产品的生存时间和相关协变量,评估不同因素对金融产品的风险和收益的影响。
第1章基本概念第1节生存资料的特点生存资料(Survival Data)或失效时间资料(Failure-time Data)与多元线性回归资料很相似,只不过因变量(或反应变量)通常为观测对象生存的时间,常用t来表示。
当然,生存时间是广义的,可以指在通常意义下生物体的生存时间、也可以指所关心的某现象(如疾病治愈后、合格品使用后)持续的时间。
若生存时间是准确观测到的,则称为完全数据。
生存资料的一个明显特点是:所收集的资料中常常包含不完全数据,也称为截尾数据、删失数据、终检数据(Censored Data)。
包括删失数据的资料,称为删失资料。
对于删失数据,既不能简单地弃之,踊能像对待完全数据那样给予充分的信任,需要采取一些技术处理。
专门处理这种资料的统计方法,称为生存分析(Survival Analysis)。
导致数据删失有多种原因,最常见的有:失访(病人因搬家、随访信件丢失、车祸等原因,导致医生对他们的随访观察中断)和研究截止。
由随机因素引起的,称为随机删失;若事先就定了截止日期,则称为定时删失(也称Ⅰ型删失);若事先就定了观察完多少例就截止研究,则称为Ⅱ型删失(也称为定数删失)。
在表达删失数据时,常在其右上角放一个“+”号;而用SAS软件分析时,常在其前放一个“-”号或产生1个指示变量(如:C=0表示删失数据、C=1表示完全数据,反过来也可以),便于计算时区别对待。
为了使数据的表达与计算在形式上统一起来,本篇一律用负数表示删失数据,因生存时间不可能为负值,故不会产生混淆。
第2节生存时间函数描述生存时间规律的函数很多,统称为生存时间函数。
其中最主要的有生存函数、死亡概率函数、概率密度函数和危险率函数。
1.生存函数(Survival Function)生存函数也称为生存概率或累积生存率,常用S(t)表示,它表示一个体生存时间长于t的概率。
在具体问题中,该函数在t时刻的取值可用式(5.1.1)来估计∶S(t)≈生存时间长于t的病人数/病人总数(5.1.1)2.死亡概率函数(Failure Probability Function)死亡概率函数简称为死亡概率,常用F(t)表示,它表示一个体从开始观察起到时刻t为止的死亡概率。
生存分析方法生存分析是一种统计方法,旨在研究个体在给定时间范围内发生某一事件(比如死亡、疾病复发等)的概率。
在医学、流行病学、生态学、经济学等领域都有广泛的应用。
本文将介绍生存分析的基本概念、常用方法及其在实际研究中的应用。
1. 生存曲线生存曲线是生存分析的基本图形,通常用Kaplan-Meier曲线绘制。
该曲线能够展示在研究时间内个体存活下来的概率。
在曲线上,横轴表示时间,纵轴表示生存概率。
曲线下降的越快,表示事件发生的风险越高。
研究者可以通过比较不同曲线来判断处理组和对照组之间的差异是否显著。
2. 生存分布函数生存分布函数(Survival Function)是描述个体在给定时刻仍然存活的概率。
通常用S(t)表示,其中t为时间点。
生存曲线就是基于生存分布函数绘制而成。
生存分布函数可以根据研究者的需要来选择不同的统计模型,比如指数分布、Weibull分布等。
3. 风险因素分析生存分析方法还可以用来分析不同因素对事件发生的影响程度。
通过协变量的加入,可以计算不同因素的危险比(Hazard Ratio),从而确定某些因素是否与事件发生有关。
例如,在癌症生存分析中,病人的年龄、性别、病情严重程度等因素都可能影响其存活率。
4. 应用领域生存分析方法在医学领域有着广泛的应用。
比如在临床试验中,可以通过生存分析来评估新药的疗效;在流行病学中,可以研究某种疾病的传播方式;在经济学领域,可以分析公司的倒闭率等。
总之,生存分析方法可以帮助研究者更全面地了解事件的发生规律,从而制定更有效的预防和干预措施。
总结生存分析方法是一种强大的统计工具,能够帮助研究者预测在给定时间内事件发生的概率,分析不同因素对事件的影响,并在不同领域中得到广泛的应用。
熟练地掌握生存分析方法,有助于提高研究的深度和准确性,为决策提供科学依据。
希望本文能为读者提供一些关于生存分析方法的基本知识,并激发对该领域更深入研究的兴趣。
⽣存分析(Survivalanalysis)⽣存分析(Survival analysis)是研究影响因素与⽣存时间和结局关系的⽅法。
简单的说就是要分析影响因素是否与结局相关,还要分析影响因素与结局出现时间关系。
⽣存分析中的最主要有以下⼏个概念:⽣存时间(Survival time)是指从某起点事件开始到被观测对象出现终点事件所经历的时间,如从疾病确诊到进展/死亡的时间;⽣存时间有两种类型:第⼀种是完全数据(Complete data),指被观测对象从观察起点到出现终点事件所经历的时间;第⼆种是截尾数据(Consored data),截尾数据的产⽣主要有三个原因,失访(Loss offollow-up)、退出和终⽌。
失访和退出都是在试验还没有结束时,研究者就已经追踪不到数据了,⽽终⽌是研究已经结束仍未观察到患者结局。
截尾数据过多会影响⽣存分析的效果。
死亡概率(Mortality probability)是指某段时间开始时⽣存的个体在该段时间内死亡的可能性⼤⼩;⽣存概率(Survival probability)是指某段时间开始时存活的个⼈⾄该时间结束时仍然存活的可能性⼤⼩;以下我们简单展⽰两个⽣存分析常⽤的⽅法:Kaplan-Meier曲线和Cox⽐例风险模型。
本次⽤到的数据和上期logistic⽤到的数据⼀样,都是虚构。
⼀、各变量的含义⼆、单因素⽣存分析程序如下:data survival_analysis;input SampleID$ Age Gender Primary_site Vascular_invasion GeneA GeneB GeneC Outcome$PFS;if Outcome='PD' then Outcome1=1;else Outcome1=0;cards;T1 1 1 0 0 1 1 1 PD155T2 1 0 0 1 1 1 1 PD247T3 1 1 0 1 0 0 0 PD51……T68 0 1 0 0 0 0 0 SD 40T69 1 1 0 0 0 0 0 SD 139T70 1 0 0 1 1 1 1 SD 238;run;proc print;run;proc lifetest plots=(s,ls,lls) data=survival_analysis;*plots选项分别绘制S图,LS图和LLS图;time PFS*Outcome1(0);strata Age;run;以GeneB单因素分析结果为例:GeneB突变与未突变两条⽣存曲线⽐较的假设检验结果显⽰,两条曲线差异有统计学意义,表明突变与未突变⼈群的PFS差异有统计学意义。
医学统计学中的生存分析方法研究生存分析是医学统计学中非常重要的一个分析方法,它的主要用途是研究人类或动物在某种特定条件下的生存情况。
例如,在药物临床试验过程中,生存分析可以帮助医生或研究人员评估药物对患者的疗效。
除此之外,生存分析还可以应用于其他领域,如生态学、工程学、经济学等。
在本文中,我们将详细探讨医学统计学中的生存分析方法及其应用。
1. 生存分析概述生存分析又称事件史分析、时间性数据分析或存活分析,是一种用于探讨时间到达某个重要事件的统计学方法。
生存分析所研究的事件主要包括死亡、疾病恶化、再入院等。
它的一个重要优点是可以分析不同事件发生的时间,还可以考虑到不同个体可能有不同的去留时间。
在生存分析中,有一个核心概念:生存函数,它是指某一时间点时患者仍然存活的概率。
生存函数通常用Kaplan-Meier曲线来表示,可直观地向我们展示不同时间点生存率的变化情况。
2. 生存分析的应用在医学研究中,生存分析常用于药物疗效评估、预后评价、风险评估等方面。
例如,在药物研究中,我们需要了解药物治疗作用的持续时间、不同疾病状态下药物效果的差异、治疗后患者生存期延长的效应等。
通过生存分析,研究人员可以计算药物的中位生存期、生存曲线、相对风险等,从而更好地判断药物的疗效是否显著。
除了药物研究,生存分析还可以应用于遗传学研究、人群流行病学调查等领域。
例如,通过对家族中患有某种疾病的人员进行生存分析,可以了解这种疾病的潜在遗传风险,进而为家族成员提供有效的遗传咨询。
在流行病学调查中,生存分析可以用来计算不同暴露因素对某种疾病罹患率的影响,从而对公众健康做出科学的评估。
3. 生存分析的方法生存分析的方法有很多,其中比较常用的是Kaplan-Meier生存曲线、Cox回归分析和Logistic回归分析。
(1)Kaplan-Meier生存曲线Kaplan-Meier生存曲线是一种经验生存函数曲线,它能够通过分析研究对象的生存时间来计算生存率。
第十六章 生存分析(答案)一、选择题1、D2、E3、C4、B5、D6、E 二、问答题1、 (1)在生存资料中,截尾值指尚未观察到研究对象出现反应时,即由于某种原因停止了随访,这时记录到的时间信息是不完整的,这种生存资料称为截尾值。
(2)出现截尾值的原因主要有以下3种情况:①失访;②退出;③终止。
2、Cox 回归模型中,偏回归系数i β的意义是,当其它协变量不变时,i X 每变化一个单位,相对危险度的自然对数变化i β个单位。
3、Cox 回归模型与logistic 回归模型具有相似之处,即在估计出回归系数后可以得到协变量对应的相对危险度。
但Cox 回归模型不仅考虑了事件发生的结果,同时也利用了生存时间提供的信息,而logistic 回归模型是一种概率模型,只考虑了事件是否发生,而不考虑事件发生所需要的时间长短。
三、计算题:1、(1)Cox 回归模型参数估计和假设检验结果见下表表 cox 回归模型计算及检验结果 (621.332=χ, 000.0=P )变量 偏回归系数 偏回归系数标准误 Wald P 值 OR 值 OR 值95%可信区间 下限 上限 x1 0.001 0.002 0.360 0.548 1.001 0.997 1.005 x2 0.454 0.206 4.846 0.028 1.574 1.051 2.358 x3 -1.8860.37725.0500.0000.1520.072 0.317由上表可见,在05.0=α检验水准上,所建立的Cox 回归模型成立(621.332=χ,000.0=P );入院时白细胞数(1x )的偏回归系数无统计学意义,淋巴结浸润度(2x )和缓解出院后的巩固治疗(3x )的偏回归系数均有统计学意义。
Cox 回归模型为:[])886.1454.0001.0ex p()(),(3210x x x t h X t h i -+=。
以上结果可解释为:淋巴结浸润度(2x )和缓解出院后的巩固治疗(3x )均对急性淋巴细胞性白血病病人的生存时间产生影响。
生存分析在医学研究中的作用生存分析是医学研究中一种重要的统计分析方法,用于研究个体在一定时间内生存或发生某种事件的概率。
生存分析主要应用于临床医学、流行病学和生物统计学等领域,能够帮助研究人员评估治疗效果、预测疾病进展和生存时间,为临床决策提供科学依据。
本文将介绍生存分析在医学研究中的作用及其应用场景。
一、生存分析的基本概念生存分析是一种统计方法,用于研究个体在一定时间内生存或发生某种事件的概率。
在医学研究中,生存分析通常用于评估治疗效果、预测疾病进展和生存时间。
生存分析的基本概念包括生存时间、生存函数、生存率和风险比等指标。
1. 生存时间:生存时间是指从个体被诊断出患有某种疾病或接受治疗开始,到发生特定事件(如死亡、疾病复发等)的时间间隔。
生存时间可以是连续的,也可以是离散的。
2. 生存函数:生存函数是描述个体在给定时间内存活的概率分布函数。
常用的生存函数包括生存曲线、生存率曲线和危险函数等。
3. 生存率:生存率是指个体在给定时间段内存活下来的概率。
生存率可以用生存曲线来表示,反映了个体在不同时间点的存活概率。
4. 风险比:风险比是比较两组个体在发生特定事件的风险大小的指标。
在生存分析中,常用的风险比包括相对风险(hazard ratio)和绝对风险(absolute risk)。
二、生存分析的应用场景生存分析在医学研究中有着广泛的应用场景,主要包括以下几个方面:1. 评估治疗效果:生存分析可以帮助研究人员评估不同治疗方案对患者生存时间的影响。
通过比较不同治疗组的生存曲线和风险比,可以确定哪种治疗方案更有效,为临床决策提供依据。
2. 预测疾病进展:生存分析可以用于预测患者疾病进展的风险。
通过构建预测模型,可以根据患者的临床特征和生存时间数据,预测患者未来发生疾病进展的可能性,从而采取相应的干预措施。
3. 评估生存质量:生存分析可以帮助评估患者的生存质量。
通过分析患者的生存时间和生存率,可以了解患者在治疗过程中的生存状态和生活质量,为改善患者的生存质量提供参考。