静力学第三章平面一般力系
- 格式:ppt
- 大小:1.67 MB
- 文档页数:65
基础部分——静力学第3 章力系的平衡主要内容:§3-7 重心即:力系平衡的充分必要条件是,力系的主矢和对任一点3-2-1 平衡方程的一般形式∑=iF F R ∑=)(i O O F M M 已知∑=iF F R ∑=)(i O O F M M 投影式:平衡方程i即:力系中所有力在各坐标轴上投影的代数和分别等于零;所有力对各坐标轴之矩的代数和分别等于零。
说明:¾一般¾6个3个投影式,3个力矩式;¾一般形式基本形式3-2-2 平面一般力系的平衡方程xy zOF1F2Fn平面内,¾一般形式¾3个2个投影式,1个力矩式;¾ABAzzCC附加条件:不垂直附加条件:不共线Bx二矩式的证明必要性充分性合力平衡AA 点。
B 点。
过ABBx故必有合力为零,力系平衡证毕平面问题3个3个 解题思路BAMFo45l l[例3-1] 悬臂梁,2解:M A 校核:0)(=∑F MB满足!解题思路?AyF AxF[例3-2] 伸臂梁F AxF AyF BF q 解:0=∑x F 0)(=∑F AM3(F −+0=∑yF3(F −+(F −+0)(=∑F AM=∑yF0=∑x F F AxF AyF BF q 思考:如何用其他形式的平衡方程来求解?0=∑x F 3(F −+0)(=∑F AMF AxF F BF q 0)(=∑F BM(F −+二矩式思考练习][练习FFlll F ACB DlllACB DM=F l[思考][思考]lll F ACB DlllACB DF见书P54例3-1—约束lllACB DF—约束CBADEFM—约束—约束—整体平衡局部平衡CB ADEFM研究对象的选取原则¾仅取整体或某个局部,无法求解;¾一般先分析整体,后考虑局部;¾尽量做到一个方程解一个未知力。
qCBAm2m2m2m2MBCM[例3-3] 多跨梁,求:如何选取研究对象?F CqF CFAxF AyM ABAqF'BxF'ByM A F Ax F AyF Bx F By解:先将分布力用合力来代替。
第三章平面任意力系3.1 平面任意力系的简化·主矢与主矩3.2 平面任意力系的平衡条件与平衡方程3.3 物体系统的平衡·静定与静不定问题3.4 平面简单桁架的内力计算3.1 平面任意力系的简化·主矢与主矩所谓平面任意力系是指力系中各力的作用线在同一平面内且任意分布的力系,简称平面力系。
在实际工程中经常会遇到平面任意力系的情形,例如,下图所示的曲柄连杆机构,受力F ,矩为M 1,M 2的力偶以及支座反力F Ax ,F Ay 和F N 的作用,这些力及力偶构成平面任意力系。
3、固定端(或插入端)约束FAxFAyM AA4、平面任意力系的简化结果分析(1)简化为一个力偶当F R = 0,M O ≠0则原力系合成为合力偶,其矩为∑=)(i O O M M F 此时主矩与简化中心选择无关,主矩变为原力系合力偶。
由此很容易证得平面任意力系的合力矩定理:平面任意力系的合力对作用面内任一点的矩等于力系中各力对同一点的矩的代数和。
即∑=)()(R i O O M M F F 当F R ’= 0,M O = 0则原力系平衡。
(3)平面力系平衡例题3-3考虑一小型砌石坝的1m长坝段,受重力和的静水压力作用。
已知h = 8 m,a= 1.5 m,b= 1 m,P1=600 kN,P2=300 kN,单位体积的水重γ = 9.8 kN/m3。
求(1)将重力和水压力向O点简化的结果,(2)合力与基线OA的交点到点O的距离x,以及合力作用线方程。
解:(1)以点O 为简化中心,求主矢∑=′x RxF F ()()kNF F yxR1.95322=+=′∑∑F 329.0cos =′=∑RxF F θ944.0cos −=′=∑RyF F β°±=79.70θ°±°=21.19180β故主矢在第四象限内,与x 轴的夹角为°−79.70F R ’M O θβkN 6.313=22121h qh γ==kN P P F F y Ry 90021−=−−==′∑(2)以点O 为简化中心,求主矩F R ’M O θβ()()()q M P M P M M O O O O ++=21bP a P hh 212321−+×−=γmkN ⋅−= 27.236表明主矩的方向与假设方向相反,及主矩的方向为顺时针。
一、导入由上节课的简化结果可知:若平面一般力系平衡,则作用于简化中心的平面汇交力系和附加力偶也必须同时满足平衡条件。
由此可知,物体在平面一般力系的作用下,既不发生移动,也不发生转动的静力平衡条件为:力系中的所有各力在两个不同方向的X\Y轴上投影的代数和均为零,且力系中各力对平面内任意一点的力矩大代数和也等于零。
二、新授3-2平面一般力系的平衡与应用一、平面一般力系的平衡条件、平衡方程及其应用平面一般力系平衡的充要条件是力系主矢F R/ 和力系对某一点的主矩m o都等于零。
即:F R/ =0,m o =0要使F R/ =0,必须满足:∑F x =0 ∑F y =0要使m o =0,必须满足:∑m o(F)=0于是,平面一般力系的平衡条件可表达为:∑F x =0基本形式∑F y =0∑m o(F)=0 力矩方程平面一般力系有三个独立方程。
例1:钢筋混凝土钢架的受力及支座情况如图。
已知F=10KN,m=15KN.m,钢架自重不计,求支座反力。
平面一般力系平衡必须同时满足三个平衡方程式,这三个方程彼此独立,可求解三个未知量。
因此,平面一般力系平衡的充要条件又可叙述为:力系中所有各力在两个坐标轴上的投影的代数和都等于零,而且力系中所有各力对任一点力矩的代数和也等于零。
解:1、刚架为研究对象,画刚架的受力图, 建立坐标轴2、列平衡方程求解未知力 ∑F x =0 F -F BX =0 F BX =F =10KN∑m A (F )=0 -F ×3-m +F BY ×3=0 F BY =15KN () ∑F y =0 F A +F BY =0 F A =-F BY =-15KN () 二、平面一般力系平衡方程的其他形式 1、二力矩式平衡方程的基本形式并不是唯一的形式,还可以写成其他的形式,它与基本形式的平衡方程是等效的,但往往应用起来会方便一些。
形式:三个平衡方程中有两个力矩方程和一个投影方程00===∑∑∑xBA Fm m如果力系满足0=∑A m 的方程,简化结果就不可能是个合力偶,而只能是合力或平衡;若是合力则合力应通过A 点,同理,力系又满足0=∑B m ,则此合力还应通过B 点,也就是说,力系如果有合力则合力作用为AB 连线,又因为力系还满足=∑xF的方程,则进一步表明力系即使有合力,这合力也只是能与X 轴相垂直,但附加条件是AB 连线不与OX 轴垂直。