大一高数期末复习重点 .ppt
- 格式:ppt
- 大小:1.14 MB
- 文档页数:39
高数期末知识点大一上学期高等数学是大一上学期的一门重要课程,主要涵盖了微积分的基础知识。
在期末考试前,理解和掌握好以下几个重要的知识点对于取得好成绩至关重要。
1. 函数与极限函数是数学中一个非常重要的概念,它描述了数值之间的依赖关系。
函数的概念和性质是微积分的基础,包括函数的定义域、值域、奇偶性、单调性等。
在函数的研究中,极限是一个关键的概念,它描述了函数在某一点附近的行为。
学习中需要关注极限的定义、性质和计算方法,包括数列的极限和函数的极限。
2. 导数与微分导数是函数变化率的一种度量,可以理解为函数在某一点的瞬时变化速率。
导数的计算方法主要有基本的导数公式、求导法则和高阶导数的计算方法。
微分是导数的一种应用,通常可以用来求函数的增减性、极值点和函数的曲线图。
3. 不定积分与定积分不定积分是求原函数的反向运算,也称为不定积分或者积分常数。
学习不定积分时,需要掌握基本的积分公式和求积分的方法,如分部积分法和换元积分法。
定积分是求函数曲线下的面积,具有几何和物理上的应用,需要学习积分的定义、性质和计算方法。
4. 微分方程微分方程是描述变化过程的数学方程,它是应用数学中的重要工具之一。
学习微分方程时,需要了解一阶和二阶微分方程的基本形式、求解方法和初值问题的求解步骤。
掌握微分方程的解法,可以应用于许多实际问题的求解,如生物学、物理学和工程学等领域。
5.级数与数项级数级数是无穷个数的和,数项级数是级数的一种常见形式。
学习数项级数时,需要了解级数的定义、性质和收敛判别法。
特别是数项级数的常用收敛判别法,如比值判别法、根值判别法和积分判别法等。
以上是高等数学高数期末考试中的重要知识点,希望同学们能够认真复习,理解掌握这些知识点,并通过大量的习题练习加深对知识的理解和记忆。
只有牢固掌握了基础知识,才能更好地应对考试,取得优异的成绩。
祝同学们顺利通过高数期末考试!。
高数解题技巧。
高数(上册)期末复习要点高数(上册)期末复习要点第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。
(高等数学、考研数学通用)高数解题的四种思维定势●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
线性代数解题的八种思维定势●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。
大一高数复习知识点一、函数与极限1. 函数的概念函数是数学中的一个基本概念,它描述了输入与输出之间的关系。
一般来说,我们把输入称为自变量,输出称为因变量。
2. 极限的概念极限是函数中的一个重要概念,用来描述函数在某一点上的趋近性。
简单来说,一个函数的极限可以看作是函数在该点附近的稳定值。
3. 基本的极限运算法则- 常数乘以函数的极限等于函数的极限乘以该常数。
- 两个函数的和的极限等于两个函数的极限之和。
- 函数的极限与自变量无关。
二、导数与微分1. 导数的定义导数描述了函数在某一点上的变化率。
在数学上,导数可以通过极限来定义,即函数在某一点上的极限值。
2. 常见函数的导数公式- 常数函数的导数为0。
- 幂函数的导数可以通过幂函数的指数减1再乘以导数来计算。
- 指数函数和对数函数的导数可以通过指数函数或对数函数自身来计算。
3. 微分的概念微分描述了函数在某一点上的局部线性逼近。
它是导数的一种应用。
三、微分中值定理1. 罗尔定理罗尔定理指出,如果一个函数在某一闭区间上连续,在该区间的两个端点处取得相同的函数值,那么在这个区间内,存在至少一点使得函数的导数等于零。
2. 拉格朗日中值定理拉格朗日中值定理是导数中值定理的一种情况,它表示在一个开区间上,函数存在至少一点处的导数等于该区间上函数的平均斜率。
四、不定积分与定积分1. 不定积分的定义不定积分是函数逆运算的一种形式,使用一个表示无穷小的符号 "dx" 来表示。
不定积分可以求出一个函数的原函数。
2. 常见函数的不定积分公式- 幂函数的不定积分可以通过幂函数的幂次加1再除以幂次来计算。
- 指数函数和对数函数的不定积分可以通过指数函数或对数函数自身来计算。
3. 定积分的定义定积分用来计算曲线与坐标轴之间的面积或曲线的弧长。
定积分可以看作是不定积分的一种应用。
五、常微分方程1. 常微分方程的定义常微分方程是含有未知函数的导数的方程,其中未知函数是变量的函数。
高等数学(本科少学时类型)第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★)○邻域(去心邻域)(★) 第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞=【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦。
当N n >时,始终有不等式n x a ε-<成立,∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<,∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立,∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦ (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x )1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;)2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小;(()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算 设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110 则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<(特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim 9x x x →-- 【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()2333331lim lim lim 9333x x x x x x x x x →→→--====-+-+其中3x =为函数()239x f x x -=-的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):解:()()00233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim23--→x x x【求解示例】x →=== 第六节 极限存在准则及两个重要极限 ○夹迫准则(P53)(★★★)第一个重要极限:1sin lim0=→xxx ∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim 0=→xx x (特别地,000sin()lim1x x x x x x →-=-) ○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x 【求解示例】 第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★) 1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1U U U U U U U e +- 2.U U cos 1~212- (乘除可替,加减不行) 【题型示例】求值:()()x x x x x x 31ln 1ln lim 20++++→ 【求解示例】 第八节 函数的连续性○函数连续的定义(★) ○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数 【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0f g C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x 1,>≤x x 在0=x 处可导,求a ,b 【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b == 【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=-法线方程:()()()1y f a x a f a -=--'第二节 函数的和(差)、积与商的求导法则 ○函数和(差)、积与商的求导法则(★★★)1.线性组合(定理一):()u v u v αβαβ'''±=+特别地,当1==βα时,有()u v u v '''±=±2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则 ○反函数的求导法则(★) 【题型示例】求函数()x f 1-的导数 【求解示例】由题可得()x f 为直接函数,其在定于域D 上单调、可导,且()0≠'x f ;∴()()11f x f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】第四节 高阶导数○()()()()1n n fx f x -'⎡⎤=⎣⎦(或()()11n n nn d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数【求解示例】()1111y x x -'==++,()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ……第五节 隐函数及参数方程型函数的导数○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程y e x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由y e x y +=两边对x 求导即()y y x e '''=+化简得1y y e y ''=+⋅∴ee y -=-='11111∴切线方程:()e x ey +--=-1111 法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dx t ϕ'⎛⎫⎪⎝⎭='第六节 变化率问题举例及相关变化率(不作要求) 第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★)第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★)【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立 【证明示例】 1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导; 2.又∵()()00sin00f ϕ==即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,x e e x >⋅【证明示例】 1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,x e e x >⋅【题型示例】证明不等式:当0x >时,()ln 1x x +<【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+; 2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立, 化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈,∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=,即证得:当1x >时,x e e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★)1.☆等价无穷小的替换(以简化运算) 2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件A .属于两大基本不定型(0,0∞∞)且满足条件, 则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆为基本不定型)⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】(一般地,()0lim ln 0x x x βα→⋅=,其中,αβ⑵∞-∞【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭ 【求解示例】()()()()000002sin 1cos 1cos limlimlim22L x x L x x x x xx x x ''→→→''---===''⑶00型(对数求极限法)【题型示例】求值:0lim x x x →【求解示例】()00ln 00002,ln ln ln ln 0lim ln lim 11lim lim 0lim lim 1x x x x L x y x x x x y x y x x x xx y x x x y e x∞∞'→→→→→→→====→====-===-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()1lim cos sin xx x x →+【求解示例】⑸0∞型(对数求极限法)【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】本思路(★★) ⑴通分获得分式换)⑵取倒数获得分式形式)⑶取对数获得乘积式提前))}续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)【题型示例】求221dx a x+⎰ 【求解示例】222211111arctan 11x x dx dx d C a x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求 【求解示例】○第二类换元法(去根式)(★★) (()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈)::令t =,于是2t b x a -=, 则原式可化为t ⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<), 于是arctan xt a=,则原式可化为sec a t ; ⑶对于根号下平方差的形式(0a >):a令sin x a t =(22t ππ-<<),于是arcsinxt a=,则原式可化为cos a t ; b令sec x a t =(02t π<<),于是arccosat x =,则原式可化为tan a t ;【题型示例】求⎰(一次根式) 【求解示例】2221t x t dx tdttdt dt t C C t =-=⋅==+=⎰⎰【题型示例】求(三角换元) 【求解示例】第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指”○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰ ⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C 【题型示例】求2x e x dx ⋅⎰ 【求解示例】【题型示例】求sin x e xdx ⋅⎰ 【求解示例】∴()1sin sin cos 2x x e xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★) 设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<); 即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m=-则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:其中参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出 ⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】第五节 积分表的使用(不作要求) 第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)(()f x 称为被积函数,()f x dx 称为被积表达式,x 则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★) ⑴()()bbaaf x dx f u du =⎰⎰⑵()0aaf x dx =⎰⑶()()b ba a kf x dx k f x dx =⎡⎤⎣⎦⎰⎰ ⑷(线性性质)⑸(积分区间的可加性)⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b b aaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★) (定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则 ○变限积分的导数公式(★★★)(上上导―下下导) 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)【题型示例】求2121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足:a .,αβ∃,使得()(),ab ϕαϕβ==; b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续则:()()()ba f x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰【题型示例】求40⎰ 【求解示例】⑶(分部积分法) ○偶倍奇零(★★) 设()[],f x C a a ∈-,则有以下结论成立:⑴若()()f x f x -=,则()()02aa af x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0a af x dx -=⎰ 第四节 定积分在几何上的应用(暂时不作要求)第五节 定积分在物理上的应用(暂时不作要求)第六节 反常积分(不作要求)如:不定积分公式21arctan 1dx x C x=++⎰的证明。
大一高数复习资料(总7页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高等数学第一章 函数与极限第一节 函数●函数基础(高中函数部分相关知识)(▲▲▲)●邻域(去心邻域)(▲) 第二节 数列的极限●数列极限的证明(▲)〖题型 〗已知数列{}n x ,证明{}lim n x x a →∞=〖证明 〗N -ε语言1.由n x a ε-<化简得()εg n >,∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限●0x x →时函数极限的证明(▲) 〖题型 〗已知函数()x f ,证明()A x f x x =→0lim〖证明 〗δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim●∞→x 时函数极限的证明(▲)〖题型 〗已知函数()x f ,证明()A x f x =∞→lim〖证明 〗X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大●无穷小与无穷大的本质(▲) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim●无穷小与无穷大的相关定理与推论(▲▲)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1-为无穷大〖题型 〗计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x )1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;)2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小;(()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则●极限的四则运算法则(▲▲) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110 则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<(特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)〖题型 〗求值233lim 9x x x →--〖求解示例〗解:因为3→x ,从而可得3≠x ,所以原式()()23333311lim lim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()00233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ●连续函数穿越定理(复合函数的极限求解)(▲▲)(定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦〖题型 〗求值:93lim 23--→x x x〖求解示例〗36x →===第六节 极限存在准则及两个重要极限 ●夹迫准则(P53)(▲▲▲)第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim 0=→x x x(特别地,000sin()lim1x x x x x x →-=-) ●单调有界收敛准则(P57)(▲▲▲)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )〖题型 〗求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x 〖求解示例〗第七节 无穷小量的阶(无穷小的比较) ●等价无穷小(▲▲) 1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1U U U U U U U e +-2.U U cos 1~212-(乘除可替,加减不行)〖题型 〗求值:()()xx x x x x 31ln 1ln lim 20++++→〖求解示例〗第八节 函数的连续性 ●函数连续的定义(▲)●间断点的分类(P67)(▲)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)〖题型 〗设函数()⎩⎨⎧+=xa e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?〖求解示例〗1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ●零点定理(▲)〖题型 〗证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 〖证明 〗1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0f g C ξξ--=(10<<ξ)4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ第二章 导数与微分第一节 导数概念●高等数学中导数的定义及几何意义(P83)(▲▲)〖题型 〗已知函数()⎩⎨⎧++=bax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b 〖求解示例〗1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩∴1,2a b ==〖题型 〗求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 〖求解示例〗1.()x f y '=',()a f y a x '='=|2.切线方程:()()()y f a f a x a '-=-法线方程:()()()1y f a x a f a -=--'第二节 函数的和(差)、积与商的求导法则●函数和(差)、积与商的求导法则(▲▲▲)1.线性组合(定理一):()u v u v αβαβ'''±=+特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则 ●反函数的求导法则(▲) 〖题型 〗求函数()x f 1-的导数〖求解示例〗由题可得()x f 为直接函数,其在定于域D 上单调、可导,且()0≠'x f ;∴()()11f x f x -'⎡⎤=⎣⎦' ●复合函数的求导法则(▲▲▲) 〖题型 〗设(ln y e =,求y '〖求解示例〗第四节 高阶导数●()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(▲)〖题型 〗求函数()x y +=1ln 的n 阶导数〖求解示例〗()1111y x x -'==++,()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦,……第五节 隐函数及参数方程型函数的导数 ●隐函数的求导(等式两边对x 求导)(▲▲▲)〖题型 〗试求:方程y e x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程〖求解示例〗由y e x y +=两边对x 求导即()y y x e '''=+化简得1y y e y ''=+⋅ ∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111 法线方程:()()e x e y +---=-111●参数方程型函数的求导〖题型 〗设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd〖求解示例〗1.()()t t dx dy ϕγ''= 2.()22dy d y dx dx t ϕ'⎛⎫⎪⎝⎭='第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分●基本初等函数微分公式与微分运算法则(▲▲▲)第三章 中值定理与导数的应用第一节 中值定理●引理(费马引理)(▲) ●罗尔定理(▲▲▲)〖题型 〗现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0f f ξξξξ'+=成立〖证明 〗1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导; 2.又∵()()00sin00f ϕ==即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立●拉格朗日中值定理(▲)〖题型 〗证明不等式:当1x >时,x e e x >⋅ 〖证明 〗1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-, 化简得x e e x >⋅,即证得:当1x >时,x e e x >⋅ 〖题型 〗证明不等式:当0x >时,()ln 1x x +<〖证明 〗1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+; 2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立, 化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,x e e x >⋅ 第二节 罗比达法则●运用罗比达法则进行极限运算的基本步骤(▲▲)1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件A .属于两大基本不定型(0,0∞∞)且满足条件, 则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出) B .☆不属于两大基本不定型(转化为基本不定型)⑴0⋅∞型(转乘为除,构造分式) 〖题型 〗求值:0lim ln x x x α→⋅〖求解示例〗(一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母)〖题型 〗求值:011lim sin x x x →⎛⎫-⎪⎝⎭ 〖求解示例〗()()()()00000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---=====''⑶00型(对数求极限法) 〖题型 〗求值:0lim x x x →〖求解示例〗()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法) 〖题型 〗求值:()10lim cos sin xx x x →+〖求解示例〗⑸0∞型(对数求极限法)〖题型 〗求值:tan 01lim xx x →⎛⎫⎪⎝⎭〖求解示例〗●运用罗比达法则进行极限运算的基本思路(▲▲)⑴通分获得分式(通常伴有等价无穷小的替换) ⑵取倒数获得分式(将乘积形式转化为分式形式)⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ●连续函数单调性(单调区间)(▲▲▲) 〖题型 〗试确定函数()3229123f x x x x =-+-的单调区间〖求解示例〗1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数的单调递增区间为(][),1,2,-∞+∞;单调递减区间为()1,2〖题型 〗证明:当0x >时,1x e x >+ 〖证明 〗1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10x x e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1x e x >+〖题型 〗证明:当0x >时,()ln 1x x +< 〖证明 〗1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<●连续函数凹凸性(▲▲▲)〖题型 〗试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点〖证明 〗1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩3.(四行表)4.⑴函数单调递增区间为(0,1),(1,2) 单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值 ●函数的极值与最值的关系(▲▲▲)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <, 我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈ 则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈ 则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =; 〖题型 〗求函数()33f x x x =-在[]1,3-上的最值〖求解示例〗1.∵函数()f x 在其定义域[]1,3-上连续,且可导∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= 3.(三行表)4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====-第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求)第四章 不定积分第一节 不定积分的概念与性质 ●原函数与不定积分的概念(▲▲) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数 ⑵原函数存在定理:(▲▲)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(▲▲)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)●基本积分表(▲▲▲)●不定积分的线性性质(分项积分公式)(▲▲▲)第二节 换元积分法●第一类换元法(凑微分)(▲▲▲) (()dx x f dy ⋅'=的逆向应用)〖题型 〗求221dx a x +⎰〖求解示例〗222211111arctan 11x x dx dx d C a x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:〖题型 〗求⎰〖求解示例〗●第二类换元法(去根式)(▲▲)(()dx x f dy ⋅'=的正向应用) ⑴对于一次根式(0,a b R ≠∈)::令t =,于是2t bx a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctanxt a=,则原式可化为sec a t ; ⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsinxt a=,则原式可化为cos a t ; b.sec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ; 〖题型 〗求⎰(一次根式) 〖求解示例〗2221t x t dx tdttdt dt t C C t =-=⋅==+=⎰⎰〖题型 〗求(三角换元) 〖求解示例〗第三节 分部积分法 ●分部积分法(▲▲)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指”●运用分部积分法计算不定积分的基本步骤:⑴遵照分部积分法函数排序次序对被积函数排序;⑵就近凑微分:(v dx dv '⋅=)⑶使用分部积分公式:udv uv vdu =-⎰⎰ ⑷展开尾项vdu v u dx '=⋅⎰⎰,判断 a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果);b .若v u dx '⋅⎰依旧是相当复杂,无法通过a中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C〖题型 〗求2x e x dx ⋅⎰ 〖求解示例〗〖题型 〗求sin x e xdx ⋅⎰ 〖求解示例〗∴()1sin sin cos 2x x e xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ●有理函数(▲)设:()()()()101101m m mn n n P x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式 ●有理函数(真分式)不定积分的求解思路(▲)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m=-则参数,b cp q a a==⑵则设有理函数()()P x Q x 的分拆和式为:其中参数121212,,...,,,,...,l k lM M MA A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解〖题型 〗求21x dx x +⎰(构造法) 〖求解示例〗第五节 积分表的使用(不作要求) 第五章 定积分极其应用第一节 定积分的概念与性质 ●定积分的定义(▲)(()f x 称为被积函数,()f x dx 称为被积表达式,x 则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)●定积分的性质(▲▲▲) ⑴()()bbaaf x dx f u du =⎰⎰⑵()0aaf x dx =⎰⑶()()b ba a kf x dx k f x dx =⎡⎤⎣⎦⎰⎰ ⑷(线性性质)⑸(积分区间的可加性)⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0ba f x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰●积分中值定理(不作要求) 第二节 微积分基本公式●牛顿-莱布尼兹公式(▲▲▲)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则●变限积分的导数公式(▲▲▲)(上上导―下下导)〖题型 〗求21cos 2limt xx e dt x -→⎰〖求解示例〗第三节 定积分的换元法及分部积分法 ●定积分的换元法(▲▲▲) ⑴(第一换元法)〖题型 〗求20121dx x +⎰〖求解示例〗()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足:a .,αβ∃,使得()(),ab ϕαϕβ==; b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续则:()()()ba f x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰ 〖题型 〗求40⎰ 〖求解示例〗⑶(分部积分法) ●偶倍奇零(▲▲)设()[],f x C a a ∈-,则有以下结论成立:⑴若()()f x f x -=,则()()02aaaf x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0aaf x dx -=⎰第四节 定积分在几何上的应用(暂时不作要求)第五节 定积分在物理上的应用(暂时不作要求)第六节 反常积分(不作要求)如:不定积分公式21arctan 1dx x C x=++⎰的证明。
第一章复习x.1 函数的极限及其连续性 概念:省略注意事项1. 无界变量与无穷大的区别:无穷大量一定是无界变量,但无界变量不一定是无穷大量,例如,x x x f y sin )(==是无界变量,但不是无穷大量。
因为取22ππ+==n x x n 时,22)(ππ+=n x f n ,当n 充分大时,)(n x f 可以大于一预先给定的正数M ;取πn x x n 2==时,0)(=n x f 2. 记住常用的等价形式 当0→x 时,,~arctan ,~tan ,~arcsin ,~sin x x x x x x x xx x x x x e x x x αα~1)1(,21~cos 1,~1,~)1ln(2-+--+例1 当0→x 时,下列函数哪一个是其他三个的高阶无穷小 (1)2x 。
(2)x cos 1-。
(3)x x tan sin - (4))1ln(2x +。
()解:因为222~)1ln(,21~cos 1x x x x +-,所以选择C 练习 xxe x x cos ln cos lim 20-→解 )]1(cos 1ln[cos 11limcos ln cos lim2200-+-+-=-→→x xe x x e x x x x 31cos cos 1lim 1cos lim)]1(cos 1ln[cos 1lim)]1(cos 1ln[1lim020002-=--+-=-+-+-+-=→→→→x xx x x xx e x x x x x3. 若函数的表达式中包含有b a +(或b a +),则在运算前通常要在分子分母乘以其共轭根式b a -(或b a -),反之亦然,然后再做有关分析运算 例2 求)1sin(lim 2π+∞→n n 。
解 ])1sin[(lim )1sin(lim 22πππn n n n n n +-+=+∞→∞→nn n n n n n n ++-=-+-=∞→∞→1sin)1(lim )1sin()1(lim 22ππ当∞→n 时,)(,01~1sin22∞→→++++n nn nn ππ又 1|)1(|=-n,故0)1sin(lim 2=+∞→πn n练习 求])1(2121[lim -+++-+++∞→n n n解 原式=22)1()1(221lim 2)1(2)1(lim =-++⋅=⎥⎦⎤⎢⎣⎡--+∞→∞→n n n n n n n n n n n 4. e x xx =⎪⎭⎫⎝⎛+∞→11lim 该极限的特点:⎩⎨⎧∞与幂互为倒数后的变量(包括符号))括号中(型未定式121)1(解题方法(1) 若极限呈∞1型,但第二个特点不具备,则通常凑指数幂使(2)成立 (2) 凡是∞1型未定式,其结果:底必定是e ,幂可这样确定: 设0)(lim =x u ,∞=)(lim x v ,则)()(lim )]()[(lim ))(1ln()(lim ))(1ln()()(lim ))(1lim (x u x v x u x v x u x v x u x v x v e e e e x u ±±±±====±这是因为 )(~))(1ln(x u x u ±±。
大一上学期高数期末知识点高等数学是大学数学的重要组成部分,也是理工科学生必修的一门基础课程。
下面将对大一上学期高等数学的期末考试中可能涉及的重要知识点进行总结和梳理,供同学们参考复习。
1. 函数与极限- 函数的定义及性质- 极限的概念和性质- 极限的运算法则- 无穷小与无穷大- 函数连续性及其判定2. 导数与微分- 导数的定义及性质- 常见函数求导法则- 高阶导数和隐函数求导- 微分的定义及性质- 泰勒展开与近似计算3. 微分中值定理与应用- 罗尔定理- 拉格朗日中值定理- 柯西中值定理- 应用题中的最值和最优化问题4. 不定积分与定积分- 不定积分的基本概念- 常见函数的不定积分- 定积分的定义及性质- 牛顿-莱布尼茨公式- 定积分的应用5. 微分方程- 微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程- 常系数线性齐次微分方程- 高阶线性齐次微分方程及特征方程6. 多元函数及偏导数- 多元函数的定义及性质- 偏导数的概念和计算方法- 隐函数求导- 多元函数的极值及条件极值7. 重积分- 重积分的定义及性质- 二重积分的计算方法- 三重积分的计算方法- 坐标变换与重积分的应用8. 曲线与曲面积分- 第一类曲线积分的计算- 第二类曲线积分的计算- 曲面积分的计算- 格林公式及其应用9. 空间解析几何- 点、直线、平面的坐标表示 - 空间曲线和空间曲面的方程 - 空间曲线的切向量和法平面 - 直线与平面的位置关系10. 数列和级数- 数列的定义和性质- 数列极限的概念和性质- 常见数列极限的计算方法 - 级数的概念和性质- 收敛级数和发散级数的判定以上是大一上学期高等数学的重要知识点总结,同学们可以根据自己的学习进度和实际情况进行有针对性的复习。
希望大家在期末考试中取得好成绩!。