带间跃迁的量子力学处理
- 格式:pptx
- 大小:742.18 KB
- 文档页数:13
量子跃迁中的选择定则张扬威(华中师范大学物理学院2008级基地班,武汉,430079)摘 要 本文根据量子跃迁过程中遵从的角动量守恒和宇称守恒运用量子化概念,推导出电偶极近似条件下,在不同的外场中单电子原子以及多电子原子 辐射跃迁时的选择定则,并结合具体实例,说明这些规律的实质。
关键词 辐射跃迁 选择定则 角动量守恒 宇称守恒 原子态 电偶极近似 1 、 引言推微观粒子在不同的量子化状态间变化,称为跃迁。
跃迁有很多种,不同跃迁遵从不同的跃迁选择定则。
原子辐射跃迁的选择定则是原子能级之间发生跃迁所满足的条件,它对于研究光的吸收和发射具有很重要的意义。
由于电偶极矩跃迁强度比其它形式的跃迁强度大很多(倍),原子的辐射跃迁选择定则是指电偶极辐射跃迁选择定则。
它是从大量光谱的观察分析和研究中总结出来的,本文则运用量子力学的理论对它进行推导研究。
510~1082、 入射光为单色偏振光引入周期性微扰下的跃迁概率的基本知识:设微扰Hamilton 算符为(式中为与无关的厄米算符)'0(0)A cos ()(0)i t i t H t t F e e t ωωω∧∧∧−=<=+≥或 (1)体系在处于'0t =(0)n ϕ态, 跃迁到态的概率为't =t (0)m ϕ22(0)(0)2()()n m m mn m n W a t F E E πδω→==−±h h(2) 若该单色偏振光是沿x 轴 方向传播,偏振方向沿z 轴,在电偶极近似条件下,它的电场为0cos z t εεω= 0x ε= 0y ε= (3)电子的电偶极矩为 D er ex =−=−r(4)微扰作用势为 '00cos ()2i t i tz ez H D ez ez t e e ωωεεεεω∧−=−===+r uv (5) 对比(1)式可得 02ez F ε∧=(6) 带入(2)式可得 222(0)(0)0()2n m mn m n e W z E E πεδω→=−h h±(7)由(7)式可以得出,原子能否由n 态跃迁到m 态,决定于电子位矢的z 分量在这两个态之间的矩阵元mn z 是否为零。
第1篇在物理学和材料科学中,带间跃迁和带内跃迁是电子在固体材料中传输的重要机制。
带间跃迁和带内跃迁是电子在不同能带之间的跃迁,它们对电子输运、光学性质以及半导体器件的性能有着重要的影响。
本文将介绍带间跃迁机制和三种带内跃迁机制,并对它们在材料科学中的应用进行简要分析。
一、带间跃迁机制带间跃迁是指电子从一个能带跃迁到另一个能带的过程。
根据跃迁前后的能带类型,带间跃迁可以分为以下几种:1. 导带与价带之间的跃迁在半导体和绝缘体中,导带和价带之间的跃迁是最常见的带间跃迁。
当电子吸收能量(如光子)后,从价带跃迁到导带,成为自由电子。
这一过程被称为光吸收。
相反,自由电子在导带中失去能量后,可以跃迁回价带,释放出光子,这一过程被称为光发射。
2. 导带与导带之间的跃迁在多能谷半导体中,导带可能存在多个子能级。
电子在不同导带子能级之间的跃迁称为导带与导带之间的跃迁。
这种跃迁通常需要较高的能量,因此在室温下不易发生。
3. 价带与价带之间的跃迁价带与价带之间的跃迁在半导体和绝缘体中很少发生,因为价带中的电子能量较低,不易吸收能量发生跃迁。
二、三种带内跃迁机制带内跃迁是指电子在同一个能带内从一个能级跃迁到另一个能级的过程。
以下介绍三种常见的带内跃迁机制:1. 直接带内跃迁直接带内跃迁是指电子在同一个能带内从一个能级直接跃迁到另一个能级的过程。
这种跃迁通常需要较小的能量,因此在室温下容易发生。
直接带内跃迁是半导体器件中常见的载流子传输机制。
2. 间接带内跃迁间接带内跃迁是指电子在同一个能带内从一个能级跃迁到另一个能级,但需要通过中间能级的过程。
这种跃迁需要较大的能量,因此在室温下不易发生。
间接带内跃迁在低温下对电子输运有重要影响。
3. 量子限制效应下的带内跃迁在量子限制效应下,电子在量子点、量子线等纳米尺度材料中的运动受到限制。
在这种情况下,电子在同一个能带内的跃迁过程会呈现出量子力学性质。
量子限制效应下的带内跃迁对纳米电子器件的性能具有重要影响。
原子发光量子场论跃迁《量子领域中的原子发光与跃迁:探究量子场论的奥秘》一、引言在现代物理学领域中,原子发光与跃迁是一个极具深度和广度的研究课题。
通过对量子场论的探究,我们能够更深入地理解原子发光与跃迁的机制,以及这背后的奥秘。
二、原子结构与量子场论1. 原子的基本结构在我们深入探讨原子发光与跃迁的过程之前,首先要了解原子的基本结构。
原子由电子、质子和中子组成,电子围绕原子核旋转,其能级和轨道决定了原子的化学性质和光谱特性。
2. 量子场论简介量子场论是一种描述基本粒子相互作用的理论,它将粒子视作场的量子激发,可描述电磁相互作用、弱相互作用和强相互作用等。
三、原子发光的基本过程1. 基础概念原子发光是原子从高能级跃迁到低能级时释放出光子的过程。
这一过程遵循着能量守恒和量子力学的规律。
2. 发射光谱不同元素的原子发射光谱具有独特的特征,这是由于原子内部电子的能级结构和跃迁的特殊性质所决定的。
四、原子跃迁的物理机制1. 跃迁过程原子跃迁是电子从一个能级跃迁到另一个能级的过程,其转变的概率与波函数重叠积分相关。
2. 碰撞诱导跃迁除了自发辐射跃迁外,碰撞诱导跃迁也是一种常见的跃迁机制,它与原子与外界环境的相互作用有关。
五、深入探讨:量子场论的视角1. 量子场论对原子发光与跃迁的解释量子场论视角下的原子发光与跃迁是一种场的量子激发过程,它将原子与电磁场的相互作用和轨道跃迁纳入统一的框架下进行描述。
2. 共振态与非共振态跃迁在量子场论中,我们可以更加深刻地理解共振态和非共振态跃迁对原子发光谱的影响,从而揭示出更多微观粒子间相互作用的奥秘。
六、总结与展望在本文中,我们通过对原子发光与跃迁的深入探讨,结合量子场论的视角,更加全面地理解了这一主题。
也展望了在量子领域对于原子发光与跃迁的未来探索方向,希望未来能够揭示更多关于原子内部结构和跃迁机制的奥秘。
七、个人观点与理解对于原子发光与跃迁这一主题,在量子场论的框架下,我深刻理解了原子内部微观粒子的行为规律,也更加清晰地认识到了量子力学与场论在这一问题上所起到的重要作用。
量子力学解释原子稳定性的原理引言:量子力学是一门研究微观粒子行为的物理学分支,它的出现彻底改变了我们对世界的认识。
在量子力学的框架下,我们可以更好地理解原子的稳定性,揭示了一系列奇妙的现象和规律。
本文将探讨量子力学如何解释原子稳定性的原理,带领读者走进微观世界的奇妙之旅。
一、波粒二象性的揭示量子力学最重要的突破之一是对微观粒子的波粒二象性的揭示。
在经典物理学中,我们将粒子和波看作是两种截然不同的物质形态。
然而,量子力学告诉我们,微观粒子既可以表现出粒子的特性,又可以表现出波的特性。
这一发现为我们理解原子稳定性提供了重要线索。
二、电子的波动性与稳定轨道在原子中,电子围绕原子核运动。
根据传统的经典力学,电子应该会不断向原子核靠近,最终坠入原子核中。
然而,实际观测却告诉我们,原子是稳定的,电子并不会坠入原子核。
这一现象的解释正是基于量子力学的波动性。
根据量子力学的理论,电子在原子中的运动状态可以用波函数来描述。
波函数表示了电子在空间中的分布情况。
根据波粒二象性,电子的波函数也可以看作是电子的概率分布。
当电子处于稳定轨道上时,其波函数表现出驻波的形式,即波峰和波谷重叠,形成稳定的能量状态。
这种稳定轨道被称为原子轨道,它们对应着电子在原子中的不同能级。
三、能级跃迁与辐射吸收原子的稳定性还可以通过能级跃迁和辐射吸收来解释。
根据量子力学的原理,电子在不同能级之间可以发生跃迁,从一个能级跃迁到另一个能级。
当电子从高能级跃迁到低能级时,会释放出能量,产生辐射。
而当电子从低能级跃迁到高能级时,会吸收外界的能量。
这种能级跃迁和辐射吸收的现象可以解释为电子在原子轨道之间的能量差。
当电子处于较高能级时,其波函数的分布范围较大,与原子核的相互作用较小,因此电子在这个能级上相对稳定。
而当电子跃迁到较低能级时,其波函数的分布范围较小,与原子核的相互作用较强,因此电子在这个能级上也相对稳定。
这种能级跃迁和辐射吸收的现象使得原子能够保持稳定,并且能够与外界发生相互作用。
原子结构知识:原子结构中的跃迁选择定则原子结构是物质存在的最基本单位,其内部结构的研究一直是物理学、化学等学科领域中的重要研究内容。
不同的原子结构之间存在着能量差异,原子内部能级跃迁是物质中能量转移的基本过程之一。
跃迁选择定则是描述原子内部能级跃迁的规律性以及其对物质的光谱、激光等应用具有指导作用的基本规则。
本文将从跃迁选择定则的背景、基本概念、提出者和应用等方面进行详细介绍。
一、背景原子内部能级跃迁是物质中分子、原子、离子等基本粒子之间实现能量传递的基本方式之一。
人们对原子中的能级跃迁有很早的认识,在19世纪中叶,光谱学成为了物理学和化学研究领域中的热门课题,研究人员通过对光谱的观察和分析,得出了有关原子的很多性质和规律。
在20世纪初期,玻尔、赫兹和朗道等人的工作奠定了原子结构研究的基础,他们的研究成果揭示了原子内部的电子分布情况和能级结构。
但是,对于原子内部能级跃迁的机制和规律性还知之甚少。
直到20世纪中叶,海森堡、泡利、范德华尔和斯特克等人的研究,才从不同的角度阐述了原子内部能级跃迁中的选择规律,提出了跃迁选择定则。
二、概念跃迁选择定则是描述原子内部能级跃迁所遵循的规律和选择性的定律,是研究原子光谱和激光等物理现象的基础理论规律。
通俗地说,跃迁选择定则是描述电子在一个能级跃迁到另一个能级时所需要遵循的规则。
跃迁选择定则涉及到原子内部随机电子分布的量子力学概念,体现在光谱和激光的发射和吸收中。
跃迁选择定则根据电子在能级之间跃迁时改变的角动量、自旋、电偶极矩、偶极矩等量的多少作为判断标准。
在选择定则中,根据电子跃迁时角动量守恒、自旋守恒、电偶极矩守恒、偶极矩守恒原则,来判断电子跃迁是否会发生、跃迁后的光谱线强度大小和波长位置等变化。
三、提出者跃迁选择定则是由德国物理学家海森堡等人在1925年提出的。
由于该理论的提出者中海森堡是一个独立思考者,不惯常规思维,所以在当时这个定则被认为是非常奇特的。
第十一章:量子跃迁[1] 具有电荷q 的离子,在其平衡位置附近作一维简谐振动,在光的照射下发生跃迁,入射光能量密为)(ωρ,波长较长,求:(1)跃迁选择定则。
(2)设离子处于基态,求每秒跃迁到第一激发态的几率。
(解)本题是一维运动,可以假设电磁场力的方向与振动方向一致。
(1)跃迁选择定则:为确定谐振子在光照射下的跃迁选择定则,先计算跃迁速率,因为是随时间作交变的微扰,可以用专门的公式(12)(§11.4,P396))(34//'2222k k kk kk r q W ωρπ→= (1)式中2'→k k r 应理解为谐振子的矢径的矩阵元的平方和,但在一维谐振子情形,→k k r /仅有一项2/k k x )(34//'2222k k k k kk x q W ωρπ = (2)根据谐振子的无微扰能量本征函数来计算这矩阵元dx x k k k ⎰∞∞-=)0('/ψ (3)式中)(2)(!)0(ax H k ax k kk πψ=,μω=a~446~ 要展开(3)式,可以利用谐振子定态波函数的递推公式:}212{1)0(1)0(1)0(+-++=k k k k k x ψψαψ (4) 代入(3),利用波函数的正交归一化关系:mn n xn dx δψψ=⎰)0(*)0( dxk k x k k kk k ⎰∞∞-+-++⋅=}212{1)0(1)0(1*)0(''ψψαψ1,1,''21121+-++=k k k k k k δαδα(5) 由此知道,对指定的初态k 来说,要使矢径矩阵元(即偶极矩阵元)不为零,末态'k 和初态k 的关系必需是:,1'-=k k 这时21,1'kk x x k k k α==- (6) ,1'+=k k 这时211,1'+==+k k x x k k k α因得结论:一维谐振子跃迁的选择定则是:初态末态的量子数差数是1。
物理学中的量子跃迁量子跃迁是物理学中一个重要的概念,它描述了微观粒子在量子力学中的跃迁现象。
量子跃迁是指微观粒子从一个能级跃迁到另一个能级的过程,这个过程是不连续的,因为能级之间存在能量差异。
本文将介绍量子跃迁的基本原理、应用以及相关实验研究。
一、量子跃迁的基本原理量子力学认为,微观粒子的状态可以用波函数来描述。
波函数在空间中随时间的演化会影响微观粒子的行为。
当微观粒子处于某个能级时,它的波函数对应于该能级的特征。
而当微观粒子发生跃迁时,它的波函数会发生变化,从一个能级的特征转变为另一个能级的特征。
具体而言,量子跃迁可以分为两种类型:吸收跃迁和辐射跃迁。
吸收跃迁发生在微观粒子从低能级吸收能量转移到高能级的过程中。
辐射跃迁则是指微观粒子从高能级向低能级释放能量的过程。
这两种跃迁都是由微观粒子的波函数发生变化引起的。
二、量子跃迁的应用量子跃迁在物理学中有广泛的应用,尤其在光学和电子学领域。
其中最典型的应用之一是激光技术。
激光是一种具有高度相干性的光,它的产生正是基于量子跃迁的原理。
激光的工作原理是通过激发介质中的原子,使其发生辐射跃迁,从而产生一束强聚焦、具有特定频率和相位的光。
此外,量子跃迁还被广泛应用于量子计算和量子通信领域。
量子计算是利用微观粒子的量子态进行计算,相较于传统计算方式具有更高的计算效率。
量子通信则是利用微观粒子的量子态进行信息传输,其具有更高的安全性和可靠性。
三、相关实验研究为了验证量子跃迁的存在以及进一步研究其规律,科学家们进行了大量的实验研究。
其中一项重要的实验是弗兰克-赫兹实验。
弗兰克-赫兹实验是关于电子在原子中跃迁的实验,通过通过气体中的电子束,使其与气体原子碰撞,观察电子能量与电流的关系,从而确定了电子能级的存在和量子跃迁的概念。
另外,随着技术的不断进步,科学家们能够实现单个原子和量子系统的精确控制,这为进一步研究量子跃迁提供了条件。
通过利用单个原子和量子系统的特殊性质,例如超导量子比特和离子阱等,科学家们能够观察和控制单个量子系统跃迁行为,深入研究量子力学的本质。