第3章 遥感数字图像的表示与统计描述..
- 格式:ppt
- 大小:2.52 MB
- 文档页数:62
第一章概论1、按图像的明暗程度和空间坐标的连续性,可以分为数字图像和模拟图像。
数字图像:可用计算机存储和处理,空间坐标和灰度均不连续。
模拟图像:计算机无法直接处理,空间坐标和明暗程度连续变化。
2遥感数字图像中的像素值称为亮度值(灰度值/DN值),它的高低由传感器所探测到的地物电磁波的辐射强度决定。
2、遥感数字图像处理的主要内容包括以下三个方面:图像增强、图像校正、信息提取。
1)图像增强:用来改善图像的对比度,突出感兴趣的地物信息,提高图像大的目视解译效果,它包括灰度拉伸、平滑、锐化、滤波、变换(K—L/K—T)、彩色合成、代数运算、融合等。
图像显示:为了理解数字图像中的内容,或对处理结果进行对比。
图像拉伸:为了提高图像的对比度(亮度的最大值与最小值的比值),改善图像的显示效果。
2)图像校正(恢复/复原):为了去除和压抑成像过程中由各种因素影响而导致的图像失真。
注意:图像校正包括辐射和几何校正,前者通过辐射定标和大气校正等处理将像素值由灰度级改变为辐照度或反射率,后者利用已有的参照系修改像素坐标,使得图像能够与地图匹配或多景图像之间可以相互匹配。
3)信息提取:从校正后的遥感数据中提取各种有用的地物信息。
包括图像分割、分类等。
图像分割:用于从背景中分割出感兴趣的地物目标。
分割的结果可作为监督分类的训练区。
图像分类:按照特定的分类系统对图像中像素的归属类别进行划分。
3、遥感数字图像处理系统:硬件系统(输入、存储、处理、显示、输出),软件系统。
4、数字图像处理的两种观点:离散方法(空间域)、连续方法(频率域)2.遥感图像的获取和存储1、遥感是遥感信息的获取、传输、处理以及分析判读和应用的过程。
遥感的实施依赖于遥感系统2、遥感系统是一个从地面到空中乃至整个空间,从信息收集、储存、传输、处理到分析、判读、应用的技术体系,主要包括遥感试验、信息获取(传感器、遥感平台)、信息传输、信息处理、信息应用等5个部分。
遥感数字图像处理第一章1.图像是对客观对象一种相似性的描述或写真,它包含了被描述或写真对象的信息,是人们最主要的信息源。
根据人眼的视觉可视性将图像分为可见图像和不可见图像。
按图像的明暗程度和空间坐标的连续性,将图像分为数字图像和模拟图像。
2数字图像指用计算机存储和处理的图像,是一种空间坐标和灰度均不连续、以离散数学原理表达的图像。
数字图像最基本的单位是像素。
3遥感数字图像是数字形式的遥感图像。
4遥感数字图像处理,是利用计算机图像处理系统对遥感图像中的像素进行系列操作的过程。
主要内容:(1)图像增强:灰度拉伸、平滑、锐化、彩色合成、主成分变换、K-T变换、代数运算、图像融合等压抑、去除噪声,增强整体图像或突出图像中的特定地物的信息,使图像更容易理解、解释和判读(2)图像校正(3)信息提取5遥感数字图像处理系统:硬件系统(计算机、数字化设备、大容量存储设备、显示器和输出设备、操作台)、软件系统(ERDAS IMAGING最突出的特色是专家模拟系统、可视化建模工具以及与ArcGIS软件的高度集成、ENVI 最突出的特色是具有丰富的高光谱数据处理工具和内嵌的IDL开发语言、PCI Geomatica最特出的特色是功能丰富的工具箱和建模系统、ER Mapper遥感图像处理系统最大特点是基于算法的图像处理)6遥感基本知识:物理学、地学、数学、信息理论、计算机技术和地理信息系统第二章1遥感是遥感信息的获取、传输、处理以及分析判读和应用的过程2遥感系统是一个从地面到空中乃至整个空间,从信息收集、存储、传输、处理到分析、判读、应用的技术体系,主要包括遥感实验、信息获取、信息传输、信息处理、信息应用等5个部分。
3传感器是收集和记录电磁辐射能量信息的装置。
按工作方式分为被动、主动方式,按数据的记录方式,分为成像和非成像方式。
4摄影成像:传感器主要是摄影机,在快门打开的一瞬间几乎同时收集目标上所有的反射光,聚焦到胶片上成为衣服影响,并记录下来。
遥感数字图像处理教程第一章名词解释1、遥感数字图像(P1):以数字形式存储和表达的遥感图像2、A/D 转换(P1):把模拟图像转变成数字图像称为模/数转换,记作A/D 转换3、D/A 转换(P1):把数字图像转 变成模拟图像称为数/模转换,记作D/A 转换简答题1、模拟图像(照片)与遥感数字图像有什么区别? (P2) 答表1.1遥感数字图像与印刷照片的区别颜色没有特定的规则,在处理过程「二可以根据需 要通过合成产生多个波段(3-8000) 2、怎么理解图像处理的两个观点? (P7)答:两种观点是:离散方法的观点和连续方法的观点。
1 .离散方法:图像的存储和表示均为数字形式,数字是离散的,因此,使用离散 方法进行图像处理才是合理的。
与该方法相关的一个概念是空间域。
空间域图像 处理以图像平面本身为参考,直接对图像中的像素进行处理。
2 .连续方法:图像通常源自物理世界,它们服从可用连续数学描述的规律,因此 具有连续性,应该使用连续数学方法进行图像处理。
与该方法相关的一个主要概 念是频率域。
频率域基于傅里叶变换,频率域的图像处理是对傅里叶变换后产生 的反映频率信息的图像进行处理。
完成频率域图像处理后,往往要变换回到空间 域进行图像的显示和对比。
四、论述题1、什么是遥感数字图像处理,主要内容有哪些? (P2)答:遥感数字图像处理是通过计算机图像处理系统对遥感图像中的像素进行系列 操作的过程。
(1)图像增强:使用多种方法去除噪声,增强显示图像整体或突出图像中的特 定地物的信息,使图像更容易理解、解释和判读。
例:例如灰度拉伸、平滑、锐 化、彩色合成、主成分(K-L )变换、K-T 变换、代数运算、图像融合照片来自于模拟方式通过摄影系统产生没有像素没有行列结构没有才」推行o 表示投有数据任何点,都没有编号摄影受电黑波谱的成像范围限制遛感数字图像 来自干数字方式 通过扫描和数码相机产生 基本利成单位是像素 具有行和列 可能会观察到扫描行 。
遥感图像数字处理与分析知识要点围绕遥感基础知识-数字图像处理与分析总体框架来组织相关内容要点。
其中,第一、二、三章介绍遥感数字图像处理、主要成像方式、存取及表示基础知识,是图像处理、理解及分析的起点;第四、五、六、七章常用遥感数字图像处理方法,应视具体遥感数字图像处理要求有所选择;第八章图像分割是图像处理高级方法,是灰度拉伸、变换、滤波等数字图像增强方法的综合应用,为进一步深入学习和掌握决策树、面向对象及专家系统等高级分类技术奠定基础;第九章图像分类是图像处理的主要目的和最终成果第一章概论图像、遥感数字图像、照片与遥感数字图像区别、遥感数字图像处理及观点图像:物理世界中客观对象的相似性描述,包含客观对象的信息,是人们最主要的信息源数字图像:用计算机存储和处理的图像,是一种空间坐标和灰度均不连续、以离散数学原理表达的图像遥感数字图像:数字形式表示的遥感图像遥感数字图像和照片的差异:遥感图像处理:利用计算机图像处理系统对遥感图像中的像素进行系列操的过程遥感数字图像处理的观点:连续方法:我们感兴趣的图像源自物理世界,服从可用连续数学描述的规律,具有连续性,连续数学方法,频率域(高通滤波、低通滤波等)离散方法:数字图像的存储和表示均为数字形式,数字是离散的,离散数学方法,空间域(点运算算法-灰度变换、直方图修正;邻域去噪算法-图像平滑、锐化等)第二章遥感数字图像的获取和存取数字扫描和数字摄影、数字化(重采样和量化)及意义、遥感数字图像级别、存储格式及元数据、传感器分辨率数字扫描:在遥感平台前进过程中,进行横向(与飞行方向垂直)行扫描来获取地物目标反射或辐射的电磁波信号,逐行记录成像特点:能以分割得相当精确的波段通道,分别收集和记录地物目标的电磁波信号数字摄影:地物目标反射的太阳辐射通过相机镜头投射到感光胶片上发生光化学反应,经过形成潜影、显影、定影和放印等过程而获得图像特点:瞬间成像,图像几何特征服从中心投影成像规律,可形成模拟图像(传统胶片照相机)和数字图像(数码相机),相片灰度反映了地物反射或辐射电磁波的强弱,工作波段:紫外、可见光、红外、多光谱,工作时间:白天,遥感平台:地面和航空平台采样:将空间上连续的图像变换成离散点(即像素)的操作重采样:根据一类象元的信息内插出另一类象元信息的过程量化:将像素灰度值转换成整数灰度级的过程数字化的意义:通过成像方式获取的图像是连续的,无法直接进行计算机处理。
遥感数字图像处理-要点编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(遥感数字图像处理-要点)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为遥感数字图像处理-要点的全部内容。
遥感数字图像处理—要点1.概论遥感、遥感过程遥感图像、遥感数字图像、遥感图像的数据量遥感图像的数字化、采样和量化通用遥感数据格式(BSQ、BIL、BIP)遥感图像的模型:多光谱空间遥感图像的信息内容:遥感数字图像处理、遥感数字图像处理的内容遥感图像的获取方式主要有哪几种?如何估计一幅遥感图像的存储空间大小?遥感图像的信息内容包括哪几个方面?多光谱空间中,像元点的坐标值的含义是什么?与通用图像处理技术比较,遥感数字图像处理有何特点?遥感数字图像处理包括那几个环节?各环节的处理目的是什么?2。
遥感图像的统计特征2。
1图像空间的统计量灰度直方图:概念、类型、性质、应用最大值、最小值、均值、方差的意义2.2多光谱空间的统计特征均值向量、协方差矩阵、相关系数、相关矩阵的概念及意义波段散点图概念及分析主要遥感图像的统计特征量的意义两个重要的图像分析工具:直方图、散点图3。
遥感数字图像增强处理图像增强:概念、方法空间域增强、频率域增强3.1辐射增强:概念、实现原理直方图修正,线性变换、分段线性变换算法原理直方图均衡化、直方图匹配的应用3。
2空间增强邻域、邻域运算、模板、模板运算空间增强的概念平滑(均值滤波、中值滤波)原理、特点、应用锐化、边缘增强概念方向模板、罗伯特算子、索伯尔算子、拉普拉斯算子的算法和特点•计算图像经过下列操作后,其中心象元的值:–3×3中值滤波–采用3×3平滑图像的减平滑边缘增强–域值为2的3×1平滑模板–Sobel边缘检测–Roberts边缘检测–模板3.3频率域处理高频和低频的意义图像的傅里叶频谱频率域增强的一般过程频率域低通滤波频率域高通滤波同态滤波的应用3。
遥感数字图像处理课程教学大纲一、基本概况课程名称:遥感数字图像处理(Remote Sensing Digital Image Processing)课程代码:234010054课程类别:专业核心课学时/学分:52/3.0(其中理论32学时,实验20学时)需预修课程:遥感技术概论、计算基础、自然地理适用专业:适用地理信息科学专业的本科教学课程简介本课程为地理信息科学专业本科生的专业核心课。
课程针对遥感图像处理中的基本理论与实际应用问题,在讲解基本概念与原理的同时,结合课程的内容进行图像处理上机实验。
通过本课程学习,使大家了解遥感图像处理的基本原理,掌握遥感图像处理的一般流程和基本方法,并对遥感技术的前沿领域和未来发展趋势有一定了解。
课程要求学生理解遥感数字图象处理的基本理论与研究方法,初步掌握进行遥感数字图象处理的基本技术,具备一定的实际处理能力与技巧,提高综合处理、分析与理解遥感数字图像的能力,奠定开展遥感数字图象处理深入研究的理论与技术基础。
二、教学目标学生通过本课程的学习,在知识和能力等方面达到以下要求:1.理论、知识目标:掌握遥感图像处理的基本知识。
掌握主要处理方法的基本原理;熟悉并掌握遥感图像信息增强、校正、提取等各种单元操作的基本原理;熟悉重要图像处理方法的主要步骤和计算过程。
2.能力目标:培养学生分析和解决遥感图像处理有关单元操作的能力及运用基础理论分析和上机操作实践解决实际问题的能力。
3.达成目标:本课程对应人才培养方案中毕业要求的专业知识、专业技能、协作能力和创新性思维。
三、教学内容及教学要求第一章概论(讲课2学时;实验0学时)教学内容:1.课程介绍(研究内容,对象,特点,学习方法);2.图像、遥感数字图像、遥感数字图像处理等基本概念;3.基础理论和基本知识要求。
教学要求:通过本章的学习,认识图像和遥感数字图像,理解遥感数字图像处理的主要内容及遥感数字图像的发展和两个观点。
了解对学生关于学习该门课程的基础理论和基本知识要求。
第一章1遥感数字图像定义:是数字形式好好遥感图像。
不同的地物能够辐射不同波长的电磁波,利用这一特征,遥感系统可以产生不同的遥感数字图像2遥感数字图像处理的三个方面:图形增强,图像校正,信息提取3遥感数字图形处理的两种观点:离散方法的观点和连续方法的观点(简答题)离散方法的观点:该观点认为,一幅图像的存储和表示均为数字形式,数字式离散的,因此使用离散方法进行图像处理才是合理的。
与该方法相关的概念是空间域。
空间域图像处理一图像平面本身为参考,直接对图像中的像素进行处理连续方法的观点:该观点认为,我们感兴趣的区域图像通常源自物理世界,它们服从可用连续数学描述的规律,因此有连续性,应该使用连续数学方法进行空间图像处理。
与该方法相关的是频率域。
频率域基于傅里叶变换,频率域的图像处理是对傅里叶变换后产生的反映频率信息的图像进行处理。
完成频率域图像处理后,往往要变换至空间域进行图像的显示和对比第二章1 传感器的分类:按工作方式是否有人工辐射源,分主动方式和被动方式,对应的遥感为被动遥感和主动遥感;按数据的记录方式可以分为成像方式和非成像方式;按成像原理分为摄影遥感,扫描遥感2不同的波段及波谱范围按使用的工作波段,可将传感器分为紫外、可见光、红外、微波、多波段等类型。
紫外的探测波段为50~380nm,可见光380~760nm,红外传感器的探测波段为760~1.0*106,微波传感器的探测波段为1.0*106~1.0*109;多波段传感器使用的波段在可见光波段和红外波段范围内,由若干个窄波段组成3传感器的分辨率指标(论述题)辐射分辨率;光谱分辨率;空间分辨率;时间分辨率辐射分辨率:传感器区分反射或发射的电磁波辐射强度差异的能力。
高辐射分辨率意味着可以区分信号的微小差异。
辐射分辨率在可见、近红外波段用噪声等效反射率来表示,在热红外波段用噪声等效温差、最小可探测温差和最小可分辨温差表示光谱分辨率:是传感器记录的电磁刚普中特定波长的范围和数量。