布尔代数与逻辑函数化简
- 格式:ppt
- 大小:892.50 KB
- 文档页数:34
用代数法化简逻辑函数一、引言逻辑函数是计算机科学中的重要概念之一,它是由一个或多个逻辑变量构成的表达式。
在实际应用中,我们需要对逻辑函数进行化简,以便更好地理解和优化电路设计。
本文将介绍代数法化简逻辑函数的方法。
二、基本概念1. 逻辑变量:指只能取两个值(真或假)的变量。
2. 逻辑运算:指对逻辑变量进行操作的运算符,包括非(NOT)、与(AND)、或(OR)等。
3. 逻辑表达式:由逻辑变量和逻辑运算符组成的表达式。
三、代数法化简方法1. 布尔代数定律布尔代数定律包括以下几种:(1)结合律:A AND (B AND C) = (A AND B) AND C;A OR (B OR C) = (A OR B) OR C。
(2)交换律:A AND B = B AND A;A OR B = B OR A。
(3)分配律:A AND (B OR C) = (A AND B) OR (A AND C);A OR (B AND C) = (A OR B) AND (A OR C)。
(4)吸收律:A OR (A AND B) = A;(A OR B) AND A = A。
(5)恒等律:A AND 1 = A;A OR 0 = A。
(6)补充律:A OR NOT A = 1;A AND NOT A = 0。
2. 化简步骤化简逻辑函数的基本步骤如下:(1)将逻辑函数写成标准形式;(2)应用布尔代数定律进行化简;(3)使用代数运算法则进行化简;(4)使用卡诺图进行化简。
四、例子假设有一个逻辑函数F(A,B,C)=AB+BC+AC,要将其化简为最简形式。
步骤如下:(1)将逻辑函数写成标准形式:F(A,B,C)=(A AND B) OR (B AND C) OR (A AND C)。
(2)应用布尔代数定律进行化简:F(A,B,C)=(A AND B) OR (B AND C) OR (A AND C)=(A AND B) OR (B AND C)=(B AND (A OR C)) OR (A AND B)(3)使用代数运算法则进行化简:F(A,B,C)=(B AND (A OR C)) OR (A AND B)=(AB OR BC) OR AC=AB+BC+AC因此,原来的逻辑函数F可以被化简为最简形式AB+BC+AC。
《数字电子技术》课程教学大纲课程名称:数字电子技术英文名称:Digital Electronic Technology 课程代码: 课程类别: 必修专业基础学分: 2 学时: 32开课单位: 计算机科学与信息工程学院适用专业: 物联网工程制订人:谭晓东审核人:黄华升审定人: 陶程仁一、课程的性质和目的(一)课程性质本课程是计算机与技术、物联网工程等本科专业的必修专业基础课。
且为主干课程。
本课程主要讲述数字逻辑的基本概念、基本定律和基本分析方法,数字逻辑电路的特性、功能,分析方法及应用。
(二)课程目的课程教学所要达到的目的是:1.能正确理解本课程的基本概念、基本理论;2.掌握数字电路的工作原理、性能和特点;3.掌握数字电路的基本分析方法和设计方法;4.能独立的应用所学的知识去分析和求解从工程中抽象出的逻辑问题以及与专业有关的某些数字电路的实际问题,并具有工程计算和分析能力,为后续专业课程的学习打下基础。
二、与相关课程的联系与分工要求学生具备高等数学、大学物理、电路理论、半导体器件等方面的知识,才能进入该课程的学习,该课程为后续电子计算机及接口技术等方面的课程及专业课程中的电子电路实际应用奠定基础。
三、教学内容及要求第一章数制与代码本章是学习数字逻辑电路及其工作原理的基础,应掌握各种数制、代码的特点及相互之间的转换规律。
1.1 进位计数制1.1.1进位计数制的基本概念1.1.2 常用进位计数制1.2 数制转化1.2.1 非十进制转化成十进制数1.2.2 十进制数转化成其它进制数1.2.3 二进制数转化成八进制数或十六进制数1.2.4 八进制数或十六进制数转化成二进制数1.3 常用代码1.3.1 二—十进制码(BCD码)1.3.2 可靠性编码1.3.3 字符代码【重点与难点】本章主要讲述简单的逻辑运算及常用的逻辑门。
重点是熟练掌握基本逻辑运算、各种门电路的图形符号及其输出函数表达式,正确处理各种门电路使用中的实际问题。
逻辑函数化简公式大全逻辑函数化简是在布尔代数中常用的一种方法,它通过应用逻辑运算规则和布尔代数定律,将复杂的逻辑函数简化为更简洁的形式。
这种简化可以减少逻辑电路的复杂性,提高计算机系统的效率。
以下是一些常见的逻辑函数化简公式大全:1. 与运算的化简:- 与运算的恒等律:A∧1 = A,A∧0 = 0- 与运算的零律:A∧A' = 0,A∧A = A- 与运算的吸收律:A∧(A∨B) = A,A∧(A∧B) = A∧B- 与运算的分配律:A∧(B∨C) = (A∧B)∨(A∧C)- 与运算的交换律:A∧B = B∧A2. 或运算的化简:- 或运算的恒等律:A∨1 = 1,A∨0 = A- 或运算的零律:A∨A' = 1,A∨A = A- 或运算的吸收律:A∨(A∧B) = A,A∨(A∨B) = A∨B- 或运算的分配律:A∨(B∧C) = (A∨B)∧(A∨C)- 或运算的交换律:A∨B = B∨A3. 非运算的化简:- 非运算的双重否定律:(A) = A- 非运算的德摩根定律:(A∧B) = A∨B,(A∨B) = A∧B4. 异或运算的化简:- 异或运算的恒等律:A⊕0 = A,A⊕1 = A- 异或运算的自反律:A⊕A = 0- 异或运算的结合律:A⊕(B⊕C) = (A⊕B)⊕C- 异或运算的交换律:A⊕B = B⊕A5. 条件运算的化简:- 条件运算的恒等律:A→1 = 1,A→0 = A- 条件运算的零律:A→A' = 0,A→A = 1- 条件运算的反转律:A→B = A∨B- 条件运算的分配律:A→(B∧C) = (A→B)∧(A→C)这些公式是逻辑函数化简中常用的基本规则,通过灵活应用它们,可以将复杂的逻辑表达式简化为更简单的形式。
使用这些规则,我们可以提高逻辑电路的效率和简洁性,并降低硬件成本。
一:布尔代数的基本公式公式名称公式1、0-1律A*0=0 A+1=12、自等律A*1=A A+0=A3、等幂律A*A=A A+A=A4、互补律A*A=0 A+A=15、交换律A*B=B*A A+B=B+A6、结合律A*(B*C)=(A*B)*C A+(B+C)=(A+B)+C7、分配律A(B+C)=AB+AC A+BC=(A+B)(A+C)8、吸收律1(A+B)(A+B)=A AB+AB=A9、吸收律2A(A+B)=A A+AB=A10、吸收律3A(A+B)=AB A+AB=A+B11、多余项定律(A+B)(A+C)(B+C)=(A+B)(A+C)AB+AC+BC=AB+AC12、否否律()=A13、求反律AB=A+B A+B=A*B下面我们来证明其中的两条定律:(1)证明:吸收律1第二式AB+AB=A左式=AB+AB=A(B+B)=A=右式(因为B+B=1)(2)证明:多余项定律AB+AC+BC=AB+AC左式=AB+AC+BC=AB+AC+BC(A+A)=AB+AC+ABC+ABC=AB(1+C)+AC(1+B)=AB+AC=右式证毕注意:求反律又称为摩根定律,它在逻辑代数中十分重要的。
二:布尔代数的基本规则代入法则它可描述为逻辑代数式中的任何变量A,都可用另一个函数Z 代替,等式仍然成立。
对偶法则它可描述为对任何一个逻辑表达式F,如果将其中的“+”换成“*”,“*”换成“+”“1”换成“0”,“0”换成“1”,仍保持原来的逻辑优先级,则可得到原函数F的对偶式G,而且F与G互为对偶式。
我们可以看出基本公式是成对出现的,二都互为对偶式。
反演法则有原函数求反函数就称为反演(利用摩根定律),我们可以把反演法则这样描述:将原函数F中的“*”换成“+”,“+”换成“*”,“0”换成“1”,“1”换成“0”;原变量换成反变量,反变量换成原变量,长非号即两个或两个以上变量的非号不变,就得到原函数的反函数。
逻辑函数公式法化简逻辑函数是分析和设计数字电路的数学依据和基础,用化简后的表达式构成逻辑电路可节省器件,降低成本,提高工作的可靠性,因此将逻辑函数化简为最简式是至关重要的。
逻辑函数的化简一般有两种方法:卡诺图化简法、公式化简法。
本文主要阐述公式化简法的注意事项,其目的在于帮助学生理清解题步骤,减轻学生学习负担。
标签:逻辑函数,公式法,化简1 引言逻辑函数又称布尔代数,是分析和设计数字电路的数学依据和基础,它最初的表达式一般重复性较多,使构成的电路复杂化.用化简后的表达式构成逻辑电路可节省器件,降低成本,提高工作的可靠性,因此将逻辑函数化简为最简式是至关重要的。
而公式化简法是学生学习数字电路中的一个难点,大部分学生在看到题目之后,不知从何处开始下手,不知道用何种方法,即没有解题思路。
2 最简式的判断依据一个与或表达式的最简标准是:1、乘积项个数最少,2、每个乘积项中变量因子最少。
这个标准是一个模糊概念,一个逻辑函数的最简结果应是几个乘积项,乘积项中应是几个变量,显然是不能定论的,鉴别的方法是用基本公式再无法化简时,可认为该逻辑表达式是最简函数。
这就要求逻辑设计者具有一定的逻辑函数化简经验并掌握技巧才行乘积项个数最少。
因此本人通过教学和参考相关教学资料,总结出最简式的判断依据为:1、函数表达式中只存在“与” 、“与-或”逻辑运算(单个自变量可看作它本身与1);2、与运算乘积项中自变量的个数最少;3、每个自变量在式子中重复出现的机会最少:一般情况下每个自变量以相同的形式出现一次。
以上依据只是定性表达,“最少”的含义只有在具体实例中才能领会,下面就公式法举例说明。
比如:化简函数化简得到:我们来判断此式,勉强符合依据1和2,但A和B以原变量的形式分别出现了两次,不符合依据3中的“最少”条件,因此不是最简式.继续化简如下:3 公式法化简技巧(1)尽量减少记忆的公式由于公式繁多,不易记住,学生即使记住公式,也不知道如何应用公式化简,因此在教学中要尽量减少学生记忆公式,对于能简单计算出的公式,要求学生通过计算或简单化简得到。
《数字电子技术(第三版)》3布尔代数与逻辑函数化简数字电子技术第3章布而代数与逻辑函数化简学习要点:学习要点:三种基本运算,基本公式、定理和规则。
逻辑函数及其表示方法。
逻辑函数的公式化简法与卡诺图化简法。
无关项及其在逻辑函数化简中的应用。
3.1基本公式和规则3.1.1逻辑代数的公式和定理(1)常量之间的关系与运算:00=001=010=011=1或运算:0+0=0非运算:1=00+1=10=11+0=11+1=1(2)基本公式A+0=A0-1律:A1=A互补律:A+A=1A+1=1A0=0AA=0双重否定律:A=A等幂律:A+A=A(3)基本定理AB=BA交换律:A+B=B+A(AB)C=A(BC)结合律:(A+B)+C=A+(B+C)A00A(B+C)=AB+AC1分配律:A+BC=(A+B)(A+C)1BA.BB.A000100000111A.B=A+B反演律(摩根定律):A+B=AB证明分配率:A+BC=(A+B)(A+C)证明:证明:(A+B)(A+C)=AA+AB+AC+BC=A+AB+AC+BC=A(1+B+C)+BC=A+BC分配率A(B+C)=AB+AC等幂率AA=A等幂率AA=A分配率A(B+C)=AB+AC0-1率A+1=1(4)常用公式AB+AB=A还原律:(A+B)(A+B)=AA+AB=A吸收率:A(A+B)=AA(A+B)=ABA+AB=A+B证:A+AB=(A+A)(A+B)明分配率A+BC=(A+B)(A+C)互补率A+A=1互补率A+A=10-1率A·1=11=1 =1(A+B)=A+B冗余律:AB+AC+BC=AB+AC证明:AB+AC+BC=AB+AC+(A+A)BC=AB+AC+ABC+ABC互补率A+A=1互补率A+A=1分配率A(B+C)=AB+AC0-1率A+1=1=AB(1+C)+AC(1+B)3.1.2逻辑代数运算的基本法则(1)代入法则:任何一个含有变量A的等式,如果将所有出现A的位置都用同一个逻辑函数代替,则等式仍然成立。