集成运放基本运算电路
- 格式:ppt
- 大小:663.50 KB
- 文档页数:13
集成运算放大器的基本运算电路x本文介绍了集成运算放大器的基本运算电路,包括其结构、功能、特性和应用。
集成运算放大器是一种半导体器件,用于放大电气信号,它有助于提高信号的电压或电流,使信号可以传输到远处。
集成运算放大器具有很多优点,如体积小、功耗低、抗干扰能力强、可靠性高等。
此外,它还可以实现各种电路设计,如移相器、高通滤波器和低通滤波器等。
本文将详细介绍集成运算放大器的基本运算电路,包括电路结构、工作原理、参数、应用等。
集成运算放大器(Integrated Operational Amplifier)是一种具有可替代性的多输入半导体电路,它可以提高任何一路输入信号的电压或电流,可以实现各种复杂的放大电路。
集成运算放大器的基本电路由一个或多个放大器组成,每个放大器由若干个部件组成,可以形成一个可调节复杂放大电路。
集成运算放大器可分为多晶片、单晶片和小规模集成电路3种类型,根据处理信号的种类和放大系数的大小,它可以分为分立电路、模拟电路和数字电路。
集成运算放大器的输出电压可以大大提高原始信号的电压,并且可以根据输入参数调节输出电压。
集成运算放大器的基本运算电路由放大器、输入端口和输出端口组成。
输入端口由两个端口组成,分别是正输入端口和负输入端口,这两个端口可以接收一个正电压信号和一个负电压信号。
输出端口可以接收较大的电压信号,输出信号与输入信号的相位一致。
此外,很多放大器还具有滞后环节,可以进一步延迟放大器的输出信号,使其同输入信号的相位更为一致。
集成运算放大器的特性取决于其器件和结构,主要特性有:抗干扰能力强、体积小、功耗低、可靠性高等。
此外,集成运算放大器还具有很多类型,如双路放大器、移相器、高通滤波器和低通滤波器等,每种器件都有其特定的应用。
集成运算放大器可用于实现各种电路,如低通滤波器、高通滤波器、移相器等,这些电路有助于提高电路系统的精度和灵敏度,从而实现精确的测量和控制。
此外,它还可以用于实现多种复杂电路,如高阻率电路、低阻率电路和串行/并行电路等。
实验四 集成运放组成的基本运算电路一. 实验目的1.掌握集成运算放大器的正确使用方法。
2.了解集成运算放大器在信号放大和模拟运算方面的应用。
二. 实验设备实验箱 1个实验电路板 1个数字万用表 1个三. 简述运算放大器是具有两个输入端和一个输出端的高增益、高输入阻抗的多级直接耦合电压放大器。
只要在集成运放的外部配以适当的电阻和电容等器件就可构成比例、加减、积分、微分等模拟运算电路。
在这些应用电路中,引入了深度负反馈,集成运放工作在线性放大区,属于运算放大器的线性应用范畴,因此分析时可将集成运放视为理想运放,运用虚断和虚短的原则。
虚断:即认为流入运放两个净输入端的电流近似为零。
虚短:即认为运放两个净输入端的电位近似相等(u +≈ u -)。
从而可方便地得出输入与输出之间的运算表达式。
使用集成运算放大器时,首先应根据运放的型号查阅参数表,了解其性能、指标等,然后根据管脚图连接外部接线(包括电源、调零电路、消振电路、外接反馈电阻等等)。
四. 设计实验要求1. 设计由双列直插通用集成运放μA741构成的基本运算电路,要求实现:反相比例运算,反相加法运算,同相比例运算,电压跟随器,差动运算(减法运算)等5种运算。
每一运算电路需要设计两种典型的输入信号。
2. 自己设计选择电路参数和放大倍数,画出电路图并标出各电阻的阻值(μA741的最大输出电流小于10mA ,因此阻值选取不能小于1KΩ)。
3. 自拟实验步骤。
4. 电源电压一律取12V ±。
本实验用直流信号源,自己选择输入信号源的取值,已知信号源(5i u V ≤)。
5. 设计举例:反相比例运算电路的设计反相比例放大器的运算功能为:1R R u u A F i o uf -==; 设,10-=uf A 负反馈电阻Ω=K R F 100;可以计算出110R K =Ω,平衡电阻100//109.1R K '=≈Ω。
max =9o u V,max max 90.910o i uf u u V A ∴≤==,即输入信号的设计值小于0.9V ±。
实验13 集成运放组成的基本运算电路一、实验目的:1.掌握集成运放组成的比例、加法和积分等基本运算电路的功能。
2.了解集成运算放大器在实际应用时应考虑的一些问题。
3.掌握在放大电路中引入负反馈的方法。
二、实验内容1.实现两个信号的反相加法运算。
2.实现同相比例运算。
3.用减法器实现两信号的减法运算。
4.实现积分运算。
5.用积分电路将方波转换为三角波。
三、实验准备1.复习教材中有关集成运放的线性应用部分。
2.拟定实验任务所要求的各个运算电路,列出各电路的运算表达式。
3.拟定每项实验任务的测试步骤,选定输入测试信号υS 的类型(直流或交流)、幅度和频率范围。
4.拟定实验中所需仪器和元件。
5.在图9.30所示积分运算电路中,当选择υI =0.2V 时,若用示波器观察υO (t )的变化轨迹,并假定扫速开关置于“1s/div ”,Y 轴灵敏度开关置于“2V/div ”,光点一开始位于屏幕左上角,当开关S 2由闭合转为打开后,电容即被充电。
试分析并画出υO 随时间变化的轨迹。
四、实验原理与说明由集成运放、电阻和电容等器件可构成比例、加减、积分、微分等模拟运算电路。
在这些应用中,须确保集成运放工作在线性放大区,分析时可将其视为理想器件,从而得出输入输出间的运算表达式。
下面介绍几种常用的运算电路:1.反相加法运算电路如图9.27所示,其输入与输出之间的函数关系为:)(2211I f I fO v R R v R R v +-=图9.27 反相加法运算电路 通过该电路可实现信号υI1和υI2的反相加法运算。
为了消除运放输入偏置电流及其漂移造成的运算误差,须在运放同相端接入平衡电阻R 3,其阻值应与运放反相端的外接等效电阻相等,即要求R 3= R l ∥R 2∥R f 。
实验时应注意:(1)为了提高运算精度,首先应对输出直流电位进行调零,即保证在零输入时运放输出为零。
(2)输入信号采用交流或直流均可,但在选取信号的频率和幅度时,应考虑运放的频率响应和输出幅度的限制。
集成运算放大器的基本运算电路集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
基本运算电路(1)反相比例运算电路电路如图1所示,对于理想运放,该电路的输出电压与输入电压之间的关系为uO=-ui图1 反相比例运算电路为了减小输入偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1||RF。
(2)同相比例运算电路图2是同相比例运算电路,它的输出电压与输入电压之间的关系为)ui当R1→∞时,uO=ui,即得到如图3所示的电压跟随器。
图中R2=RF,用以减小漂移和起保护作用。
一般RF取10KΩ,RF太小起不到保护作用,太大则影响跟随性。
图2 同相比例运算电路图3 电压跟随器(3)反相加法电路电路如图4所示。
图4 反相加法运算电路输出电压与输入电压之间的关系为uO=()R3=R1||R2||RF (4) 减法运算电路对于图5所示的减法运算电路,当R1=R2,R3=RF时,有如下关系式uO=(ui2-ui1)图5 减法运算电路(5)积分运算电路反相积分电路如图6所示。
在理想化条件下,输出电压uo等于uo(t)= —式中“—”号表示输出信号与输入信号反相。
uc(o)是t=0时刻电容C两端的电压值,即初始值。
图6 积分运算电路如果ui(t)是幅值为E的阶跃电压,并设uc(o)=0,则—即输出电压uo(t)随时间增长而线性下降。
显然时间常数R1C的数值大,达到给定的uo值所需的时间就长。
积分输出电压所能达到的最大值受集成运放最大输出范围的限制。
在进行积分运算之前,首先应对运放调零。
为了便于调节,将图中K1闭合,通过电阻R2的负反馈作用帮助实现调零。
但在完成调零后,应将K1打开,以免因R2的接入造成积分误差。
K2的设置一方面为积分电容放电提供通路,同时可实现积分电容初始电压uc(o)=0。