2.2 析取范式与合取范式
- 格式:ppt
- 大小:664.50 KB
- 文档页数:41
2.2 析取范式与合取范式1.简单析取式与简单合取式定义2.2: 命题变项及其否定统称为文字. 仅由有限个文字构成的析取式称作简单析取式. 仅由有限个文字构成的合取式称作简单合取式.*解释: 析取, 合取.例子: p, ┐q, p∨┐p, ┐p∨q, p∨┐q∨r, p∨┐p∨r都是简单析取式.┐p, q, p∧┐p, p∧┐q, p∧q∧┐r, ┐p∧p∧q都是简单合取式.定理2.1: (1) 一个简单析取式是重言式当且仅当它同时含某个命题变项及其的否定式; (2) 一个简单合取式是矛盾式当且仅当它同时含某个命题变项及其否定式.*举例说明: p∨┐p∨q∨r, p∨┐q∨rp∧┐p∧┐q∧r, ┐p∧q∧r2.合取范式与析取范式定义 2.3: 由有限个简单合取式的析取构成的命题公式称为析取范式. 由有限个简单析取式的合取构成的命题公式称为合取范式. 析取范式与合取范式统称为范式.*析取范式的一般形式为A1∨A2∨…∨A s, 其中, A i为简单合取式, i =1, 2, …,s.合取范式的一般形式为B1∧B2∧…∧B t, 其中, B j为简单析取式, j = 1, 2, …, t.例如: (p∧┐q)∨(┐q∧r)∨p是析取范式.(p∨q∨r)∧(┐p∨┐q)∧r∧(┐p∨┐r∨s)为合取范式.定理 2.2: (1)一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式; (2) 一个合取范式是重言式当且仅当它的每个简单析取式都是重言式;例如: (p∧┐p∧q)∨(q∧┐q∧p∧r)∨(p∧┐p∧┐r)是矛盾式;(p∨r∨q∨┐q)∧(p∨┐q∨r∨┐r)∧(┐p∨p∨q∨┐r)是重言式.3. 将合式公式转化为析取范式与合取范式命题公式有5个联结词{∧,∨,┐,→,↔}, 如何把包含这5个联结词的公式转化为合取范式或析取范式?(1) 蕴涵式与等值式A→B⇔┐A∨BA↔B⇔(A→B)∧(B→A)⇔(┐A∨B)∧(┐B∨A)(2) 公式中的否定┐┐A⇔A┐(A∧B)⇔┐A∨┐B┐(A∨B)⇔┐A∧┐B(3) 析取范式与合取范式互换A∧(B∨C)⇔(A∧B)∨(A∧C)A∨(B∧C)⇔(A∨B)∧(A∨C)定理 2.3: (范式存在定理) 任一命题公式都存在与之等值的析取范式与合取范式.求给定公式范式的步骤为:(1) 消去联结词→和↔;(2) 用双重否定律消去双重否定符, 用德∙摩根律内移否定符;(3) 使用分配律: 求析取范式时使用∧对∨的分配律; 求合取范式时, 使用∨对∧的分配律.例2.8: 求公式(p→q)↔r的合取范式与析取范式.解: (1) 先求合取范式:(p→q)↔r⇔(┐p∨q)↔r 消去→⇔((┐p∨q)→r)∧(r→(┐p∨q)) 消去↔⇔(┐(┐p∨q)∨r)∧(┐r∨(┐p∨q)) 消去→⇔((┐┐p∧┐q)∨r)∧(┐r∨┐p∨q) 否定符内移⇔((p∧┐q)∨r)∧(┐p∨q∨┐r) 消去双重否定⇔((p∨r)∧(┐q∨r))∧(┐p∨q∨┐r) ∨对∧的分配律⇔(p∨r)∧(┐q∨r)∧(┐p∨q∨┐r) 结合律(2)求析取范式(p→q)↔r⇔(┐p∨q)↔r 消去→⇔((┐p∨q)→r)∧(r→(┐p∨q)) 消去↔⇔(┐(┐p∨q)∨r)∧(┐r∨(┐p∨q)) 消去→⇔((┐┐p∧┐q)∨r)∧(┐r∨┐p∨q) 否定符内移⇔((p∧┐q)∨r)∧(┐p∨q∨┐r) 消去双重否定,交换律⇔(p∧┐q∧┐p)∨(p∧┐q∧q)∨(p∧┐q∧┐r)∨(┐p∧r)∨(q∧r)∨(r∧┐r)∧对∨的分配律⇔0∨0∨(p∧┐q∧┐r)∨(┐p∧r)∨(q∧r)∨0 矛盾律⇔(p∧┐q∧┐r)∨(┐p∧r)∨(q∧r) 同一律定义2.4: 在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项和它的否定式恰好出现一次且仅出现一次,而且命题变项或它的否定式按下标从小到大或按字典序排列, 称这样的简单合取式(简单析取式)为极小项(极大项).*由于每个命题变项在极小项中以原形式或否定形式出现且仅出现一次, 因而n个命题变项共产生2n个不同的极小项(或极大项). 每个极小项有且仅有一个成真赋值, 每个极大项有且仅有一个成假赋值. (见下表格)例如: 含p和q的极小项和极大项极小项极大项公式成真赋值名称公式成假赋值名称┐p∧┐q 0 0 m0p∨q 0 0 M0┐p∧q 0 1 m1p∨┐q 0 1 M1 p∧┐q 1 0 m2┐p∨q 1 0 M2 p∧q 1 1 m3┐p∨┐q 1 1 M3 例如: 含p, q, r的极小项与极大项极小项极大项成真名成假名公式赋值称公式赋值称┐p∧┐q∧┐r 0 0 0 m0p∨q∨r 0 0 0 M0 ┐p∧┐q∧r 0 0 1 m1p∨q∨┐r 0 0 1 M1 ┐p∧q∧┐r 0 1 0 m2p∨┐q∨r 0 1 0 M2┐p∧q∧r 0 1 1 m3p∨┐q∨┐r 0 1 1 M3 p∧┐q∧┐r 1 0 0 m4┐p∨q∨r 1 0 0 M4 p∧┐q∧r 1 0 1 m5┐p∨q∨┐r 1 0 1 M5 p∧q∧┐r 1 1 0 m6┐p∨┐q∨r 1 1 0 M6 p∧q∧r 1 1 1 m7┐p∨┐q∨┐r 1 1 1 M7*解释极小项与极大项的不同, 成真赋值与成假赋值.定理2.4: 设M i和m i是含命题变项p1, p2, …, p n的极大项和极小项, 则有┐m i⇔M i和┐M i⇔m i .定义 2.5: 所有简单合取式(简单析取式)都是极小项(极大项)的析取范式(合取范式)称为主析取范式(主合取范式).定理 2.5: 任何命题公式都存在与之等值的主析取范式和主合取范式, 并且是唯一的.证明: 这里只证主析取范式的存在性和唯一性.首先证明存在性. 设A是任一含n个命题变项的公式. 由定理2.3可知, 存在与A等值的析取范式A’, 即A⇔A’. 若A’的某个简单合取式A i中既不含命题变项p j, 也不含它的否定式┐p j, 则将A i展开成如下等值式:A i∧(p j∨┐p j)⇔(A i∧p j)∨(A i∧┐p j)继续这个过程, 直到所有的简单合取式都含有所有的命题变项或它的否定式.若在演算过程中出现的命题变项在极小项中出现矛盾式, 则应消去.如用p代替p∧p, m i代替m i∨m i,0代替矛盾式等. 最后, 就将A化为与之等值的主析取范式A”.下面再证明唯一性. 假设命题公式A等值于两个不同的主析取范式B和C, 那么必有B⇔C. 由于B和C是不同的主析取范式, 不妨设极小项m i只出现在B中, 而不出现在C中. 于是,角标i的二进制表示为B的成真赋值, 而为C的成假赋值, 这与B⇔C矛盾.主合取范式的存在性和唯一性可类似证明.例2.9: 求公式(p→q)↔r的主析取范式和主合取范式.解: (1) 求主析取范式在例2.8中已求出(p→q)↔r⇔(p∧┐q∧┐r)∨(┐p∧r)∨(q∧r), 因此(p→q)↔r⇔(p∧┐q∧┐r)∨(┐p∧r)∨(q∧r)⇔(p∧┐q∧┐r)∨(┐p∧r∧(q∨┐q))∨(q∧r∧(p∨┐p))⇔(p∧┐q∧┐r)∨(┐p∧r∧q)∨(┐p∧r∧┐q)∨(q∧r∧p)∨(q∧r∧┐p)⇔(┐p∧┐q∧r)∨(┐p∧q∧r)∨(p∧┐q∧┐r)∨(p∧q∧r) ⇔m1∨m3∨m4∨m7(2) 求主合取范式在例2.8中, 已求出(p→q)↔r⇔(p∨r)∧(┐q∨r)∧(┐p∨q∨┐r), 因此,(p→q)↔r⇔(p∨r)∧(┐q∨r)∧(┐p∨q∨┐r)⇔(p∨r∨(q∧┐q))∧(┐q∨r∨(p∧┐p))∧(┐p∨q∨┐r)⇔(p∨r∨q)∧(p∨r∨┐q)∧(┐q∨r∨p)∧(┐q∨r∨┐p)∧(┐p∨q∨┐r)⇔(p∨q∨r)∧(p∨┐q∨r)∧(┐p∨q∨┐r)∧(┐p∨┐q∨r) ⇔M0∧M2∧M5∧M64.主析取范式和主合取范式与真值表的一一对应关系例2.10: 给出合式公式: (p→q)↔r.它的真值表见下图.p q r p→q (p→q)↔r0 0 0 1 00 0 1 1 10 1 0 1 00 1 1 1 11 0 0 0 11 0 1 0 01 1 0 1 01 1 1 1 1主析取范式:(p→q)↔r⇔(┐p∧┐q∧r)∨(┐p∧q∧r)∨(p∧┐q∧┐r)∨(p∧q∧r) ⇔m1∨m3∨m4∨m7主合取范式(p→q)↔r⇔(p∨q∨r)∧(p∨┐q∨r)∧(┐p∨q∨┐r)∧(┐p∨┐q∨r) ⇔M0∧M2∧M5∧M6*从主析取范式求主合取范式(或从主合取范式求主析取范式)*判断公式的类型:重言式或矛盾式的主析取范式和主合取范式是什么样的?设公式A中含n个命题变项, 容易看出:(1)A为重言式当且仅当A的主析取范式含全部2n个极小项.(2)A为矛盾式当且仅当A的主析取范式不含任何极小项,此时, 记A的主析取范式为0.(3)A为可满足式当且仅当A的主析取范式至少含一个极小项.例2.11: 用公式的主析取范式判断下列公式的类型.(1) ┐(p→q)∧q(2) p→(p∨q)(3) (p∨q)→r解: 公式(1), (2)只含两个命题变项, 而(3)中含3个命题变项.(1) ┐(p→q)∧q⇔┐(┐p∨q)∧q⇔(┐┐p∧┐q)∧q⇔p∧┐q∧q⇔0, 故(1)式是矛盾式.*矛盾式的主析取范式与主合取范式(2) p→(p∨q)⇔┐p∨(p∨q)⇔(┐p∧(q∨┐q))∨(p∧(q∨┐q))∨(q∧(p∨┐p))⇔(┐p∧q)∨(┐p∧┐q)∨(p∧q)∨(p∧┐q)∨(q∧p)∨(q∧┐p)⇔(┐p∧┐q)∨(┐p∧q)∨(p∧┐q)∨(p∧q)⇔m0∨m1∨m2∨m3故(2)式是重言式.也可以按如下方式:p→(p∨q)⇔┐p∨(p∨q)⇔┐p∨p∨q⇔1∨q⇔1⇔m0∨m1∨m2∨m3*重言式的主析取范式与主合取范式.(3) (p∨q)→r⇔┐(p∨q)∨r⇔(┐p∧┐q)∨r⇔(┐p∧┐q∧(r∨┐r))∨(r∧(p∨┐p))⇔(┐p∧┐q∧r)∨(┐p∧┐q∧┐r)∨(r∧p)∨(r∧┐p)⇔(┐p∧┐q∧r)∨(┐p∧┐q∧┐r)∨(p∧r∧(q∨┐q))∨(┐p∧r∧(q∨┐q))⇔(┐p∧┐q∧r)∨(┐p∧┐q∧┐r)∨(p∧r∧q)∨(p∧r∧┐q)∨(┐p∧r∧q)∨(┐p∧r∧┐q)⇔(┐p∧┐q∧┐r)∨(┐p∧┐q∧r)∨(┐p∧q∧r)∨(p∧┐q ∧r)∨(p∧q∧r)⇔m0∨m1∨m3∨m5∨m7故(3)式是可满足式.*判定两个合式公式是否等值.两个合式公式等值当且仅当它们有相同的主析取范式(主合取范式).例2.12: 某科研所要从3名科研骨干A, B, C中挑选1至2名出国进修. 由于工作需要, 选派时要满足以下条件:(1)若A去, 则C同去.(2)若B去, 则C不能去.(3)若C不去, 则A或B可以去.问所里有哪些选派方案?解: 设p: 派A去; q: 派B去; r: 派C去.由已知条件可得公式: (p→r)∧(q→┐r)∧(┐r→(p∨q))该公式的成真赋值即为可行的选派方案. 经演算得到(p→r)∧(q→┐r)∧(┐r→(p∨q))⇔(┐p∧┐q∧r)∨(┐p∧q∧┐r)∨(p∧┐q∧r)⇔m1∨m2∨m5故有三种选派方案:(1)C去, A和B都不去; (2) B去, A和C都不去;(3) A和C同去, B不去.作业:1.用等值演算求下列公式的主析取范式, 并求成真赋值.(1) (┐p→q)→(┐q∨p)(2) (┐p→q)∧(q∧r)(3) (p∨(q∧r))→(p∨q∨r)2.用等值演算求下列公式的主合取范式, 并求成假赋值.(1) (p→(p∨q))∨r(2) ┐(q→┐p)∧┐p3.求下列公式的主析取范式, 再用主析取范式求主合取范式.(1) (p→q)∧(q→r)4.用真值表求下列公式的主析取范式与主合取范式.(1) (p q)→r(2) ┐(q→┐p)∧┐p。
1析取范式与合取范式这是命题公式的两种特殊的简明形式。
一个重要的结论是,任何命题公式都可以等价地转化为这两种形式。
我们将学习这种转化方法及其应用。
1. 析取范式定义1.1 命题变元及其否定统称为文字(literal )。
由有限个文字组成的合取式称为简单合取式。
由有限个简单合取式组成的析取式称为析取范式(disjunction normal form ),简称DNF 。
例1.2 求下列公式的析取范式。
(1) ()(2) () ()p q pp q p q →∧⌝∨∧⌝∧方法小结:(1) 将蕴含联结词→与等价联结词↔都转化为析取与合取联结词。
(2) 用德摩根律将所有否定词转移到括号内,并用双重否定律消除双重否定词。
(3) 用分配律将析取联结词移到括号之外。
(4) 最后化简,即消除简单合取式中重复出现的变元(用幂等律、矛盾律、零律)练习1.3定理1.4 任何命题公式都有等值的析取范式。
2. 合取范式定义2.1由有限个文字组成的析取式称为简单析取式,也称为子句(clause )。
由有限个简单析取式组成的合取式称为合取范式(conjunction normal form ),简称CNF 。
例2.2 求下列公式的合取范式。
(1) ()(2) () ()p q pp q p q ⌝→∨∧∨⌝∨方法小结:(1)将蕴含联结词→与等价联结词↔都转化为析取与合取联结词。
(2)用德摩根律将所有否定词转移到括号内,并用双重否定律消除双重否定词。
(3)用分配律将合取联结词移到括号之外。
(4)最后化简,即消除简单析取式中重复出现的变元(用幂等律、排中律、同一律)练习2.3定理2.4 任何命题公式都有等值的合取范式。
3.极小项为了进一步规范析取范式与合取范式,我们引入极小项与极大项这一对概念。
符号的次序:在符号表中,符号是有先后次序的。
在一个命题逻辑语言中,所有的命题变元来自于一个符号表,称为命题变元符号表。
我们约定:命题公式中所使用的英文字母在命题变元符号表中的次序与其在英文字母表中的次序相同。
2.2析取范式与合取范式一、析取范式与合取范式定义2.2 命题变项及其否定统称作文字。
仅由有限个文字构成的析取式称为简单析取式。
仅由有限个文字构成的合取式称为简单合取式。
例如,文字:p,┐q,r,q.简单析取式: p,q,p∨q,p∨┐p∨r,┐p∨q∨┐r.简单合取式: p,┐r,┐p∧r,┐p∧q∧r,p∧q∧┐q.定理2.1(1)一个简单析取式是重言式当且仅当它同时含某个命题变项及它的否定。
(2)一个简单合取式是矛盾式当且仅当它同时含某个命题变项及它的否定。
定义2.3(1)由有限个简单合取式构成的析取式称为析取范式。
(2)由有限个简单析取式构成的合取式称为合取范式。
(3)析取范式与合取范式统称为范式。
例如,析取范式:(p┐∧q)∨r, ┐p∧q∧r, p∨┐q∨r.合取范式:(p∨q∨r)∧(┐q∨r), ┐p∧q∧r, p∨┐q∨r.定理2.2(1)一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式。
(2)一个合取范式是重言式当且仅当它的每个简单析取式都是重言式。
范式的特点:(1)范式中不出现联结词→、↔,求范式时可消去:A→B⇔┐A∨BA↔B⇔(┐A∨B)∧(A∨┐B)(2)范式中不出现如下形式的公式:┐┐A, ┐(A∧B), ┐(A∨B)因为:┐┐A⇔A┐(A∧B)⇔┐A∨┐B┐(A∨B)⇔┐A∧┐B(3)在析取范式中不出现如下形式的公式:A∧(B∨C)在合取范式中不出现如下形式的公式:A∨(B∧C)因为:A∧(B∨C)⇔(A∧B)∨(A∧C)A∨(B∧C)⇔(A∨B)∧(A∨C)定理2.3 (范式存在定理)任一命题公式都存在着与之等值的析取范式与合取范式。
求范式的步骤:1.消去联结词→、↔;2.消去否定号┐;3.利用分配律。
命题公式的析取范式与合取范式都不是唯一的。
例2.7 求公式(p→q)↔r的析取范式与合取范式。
解: (1)合取范式:(p→q)↔r ⇔(┐p∨q)↔ r⇔((┐p∨q)→ r)∧(r→(┐p∨q))⇔(┐(┐p∨q)∨r)∧(┐r∨(┐p∨q))⇔ ((p∧┐q)∨r)∧(┐p∨q∨┐r)⇔ (p∨r)∧(┐q∨r)∧(┐p∨q∨┐r)(2) 析取范式(p→q)↔r ⇔ ((p∧┐q)∨r)∧(┐p∨q∨┐r)⇔ (p∧┐q∧┐p)∨(p∧┐q∧q)∨(p∧┐q∧┐r)∨(r∧┐p)∨(r∧q)∨(r∧┐r)⇔ (p∧┐q∧┐r)∨(┐p∧r)∨(q∧r)下面介绍命题公式的唯一规范化形式的范式:主析取范式与主合取范式。
主合取范式和主析取范式求法在我们日常生活中,逻辑就像是一根无形的线,把一切串联在一起。
你知道的,逻辑不仅仅是那些严肃的数学公式,也可以是我们日常交流中潜移默化的存在。
说到逻辑,就不得不提到主合取范式和主析取范式了。
听起来有点复杂,其实说白了就是把逻辑表达得更清晰。
别急,咱们慢慢聊聊。
主合取范式,嗯,这个名字一听就觉得有点拗口。
其实呢,就是把逻辑表达成“与”的形式。
想象一下,你在一场聚会上,大家都在聊着自己的事儿。
这时候,你决定说:“好吧,我们来聊聊谁最喜欢吃披萨、喝啤酒、看电影。
”这个时候,你就把几个条件结合起来了,听起来就像是一道很酷的逻辑公式。
在主合取范式中,你只要把这些条件都用“与”连接起来,比如“我喜欢披萨与我喜欢啤酒与我喜欢看电影”,这就是个典型的主合取范式。
主析取范式又是个啥呢?就像个派对上不同的人选择不同的食物一样,主析取范式强调的是“或”的关系。
比如说你在问大家:“你们想吃披萨还是汉堡,还是炸鸡?”这个时候,大家的选择就成了不同的选项。
每个选项都可以单独成一个句子,比如“我喜欢披萨或我喜欢汉堡或我喜欢炸鸡”。
听起来是不是很简单呢?这就是主析取范式,简单明了,直来直去。
怎么从一个复杂的逻辑表达转化成这两种形式呢?咱们可以把这些条件一个一个拆开,慢慢分析。
你得搞清楚逻辑中的每一个命题,像是在解一个拼图。
然后,把这些命题用“与”或者“或”连接起来。
别担心,这个过程就像在做美食,先把材料准备好,然后根据自己的喜好来搭配。
你可以把条件拿出来,像一个厨师一样,看看哪些可以一起炒,哪些可以单独炖。
假设你有几个命题,比如“天气很好”、“有时间去公园”、“带了零食”。
你想把它们转成主合取范式。
简单,直接把它们用“与”连起来,变成“天气很好与有时间去公园与带了零食”。
嘿,这样就完成了!换成主析取范式,只需把每个命题用“或”连接,就可以得到“天气很好或有时间去公园或带了零食”。
这样一来,逻辑就变得清晰又简单了。
离散数学主析取范式主合取范式实验⼆实验题⽬:⽣成主析取范式和主合取范式实验⽬的:1.熟悉地掌握计算机科学技术常⽤的离散数学中的概念、性质和运算;通过实验提⾼学⽣编写实验报告、总结实验结果的能⼒;使学⽣具备程序设计的思想,能够独⽴完成简单的算法设计和分析。
2.掌握命题逻辑中的联接词、真值表、主范式等,进⼀步能⽤它们来解决实际问题。
实验内容:利⽤计算机构造真值表来建⽴主析取范式和主合取范式实验原理:1.合取:⼆元命题联结词。
将两个命题P、Q联结起来,构成⼀个新的命题P ∧Q。
这个新命题的真值与构成它的命题P、Q的真值间的关系为只有当两个命题变项P 为真, Q为真时⽅可P∧Q为真, ⽽P、Q只要有⼀为假则P∧Q 为假。
2.析取:⼆元命题联结词。
将两个命题P、Q联结起来,构成⼀个新的命题P ∨Q。
这个新命题的真值与构成它的命题P、Q的真值间的关系为只有当两个命题变项P为假, Q为假时⽅可P∨Q为假, ⽽P、Q只要有⼀为真则P∨Q为真。
3.真值表:表征逻辑事件输⼊和输出之间全部可能状态的表格。
列出命题公式真假值的表。
通常以1表⽰真,0 表⽰假。
命题公式的取值由组成命题公式的命题变元的取值和命题联结词决定,命题联结词的真值表给出了真假值的算法。
真值表是在逻辑中使⽤的⼀类数学表,⽤来确定⼀个表达式是否为真或有效。
4.主析取范式:在含有n个命题变元的简单合取式中,若每个命题变元与其否定不同时存在,⽽两者之⼀出现⼀次且仅出现⼀次,称该简单合取式为⼩项。
由若⼲个不同的⼩项组成的析取式称为主析取范式;与A等价的主析取范式称为A的主析取范式。
任意含n个命题变元的⾮永假命题公式A都存在与其等价的主析取范式,并且是惟⼀的。
5.主合取范式:在含有n个命题变元的简单析取式中,若每个命题变元与其否定不同时存在,⽽两者之⼀出现⼀次且仅出现⼀次,称该简单析取式为⼤项。
由若⼲个不同的⼤项组成的合取式称为主合取范式;与A等价的主合取范式称为A 的主合取范式。
理解析取范式与合取范式的转换在逻辑学中,析取范式和合取范式是用于描述命题逻辑中的复合命题的标准形式。
同一个逻辑命题可以通过逻辑等价的方法转换为析取范式或合取范式,这种转换可以简化逻辑表达式,便于进行推理和计算。
本文将从概念解释、转换规则和例子三个方面来详细介绍析取范式和合取范式的转换。
1. 概念解释1.1 析取范式析取范式(Disjunctive Normal Form,简称DNF)是一种命题逻辑中复合命题的标准形式。
它由多个子句构成,每个子句中包含多个逻辑变量或它们的否定,并且这些子句通过逻辑或(∨)连接起来。
一个命题逻辑公式可以通过消去合取和分配律等逻辑等价的规则转换为析取范式。
1.2 合取范式合取范式(Conjunctive Normal Form,简称CNF)是命题逻辑中的另一种标准形式。
它由多个析取项(合取子句)构成,每个析取项中包含多个逻辑变量或它们的否定,并且这些析取项通过逻辑与(∧)连接起来。
与析取范式类似,一个命题逻辑公式也可以通过消去析取和分配律等逻辑等价的规则转换为合取范式。
2. 转换规则2.1 析取范式转换为合取范式要将一个命题逻辑公式转换为合取范式,可以按照以下步骤进行:1.对公式中的逻辑非(¬)进行推进,直到只剩下原子命题或它们的否定形式。
2.对于所有子句(通过逻辑或连接的字句),将每个子句转换为析取项。
即,将逻辑或转换为逻辑与。
3.将所有析取项通过逻辑与连接起来。
以下是一个示例演示:原命题逻辑公式:(p ∨ q) ∧ (¬p ∨ r)第一步:推进逻辑非(p ∨ q) ∧ (¬p ∨ r) → (p ∨ q) ∧ (r ∨ p)第二步:转换子句为析取项(p ∨ q) ∧ (r ∨ p) → (p ∧ r) ∨ (q ∧ p)第三步:通过逻辑与连接所有析取项(p ∧ r) ∨ (q ∧ p) → (p ∧ r ∧ q)∨ (p ∧ p)最终转换为合取范式:(p ∧ r ∧ q) ∨ (p ∧ p)2.2 合取范式转换为析取范式要将一个命题逻辑公式转换为析取范式,可以按照以下步骤进行:1.对公式中的逻辑非(¬)进行推进,直到只剩下原子命题或它们的否定形式。
既是合取范式又是析取范式的式子既是合取范式又是析取范式的式子在逻辑学中,合取范式(Conjunctive Normal Form,简称CNF)和析取范式(Disjunctive Normal Form,简称DNF)是两种常见的命题逻辑表达方式。
合取范式是由多个“或”的项组成,而析取范式则由多个“与”的项组成。
通常,这两种范式都有各自的特点和应用场景。
然而,有时候会出现一些特殊的式子,既是合取范式,又是析取范式。
这意味着这些式子既能用多个“与”的项表示,又能用多个“或”的项表示。
这种特殊的式子不仅在逻辑学中具有重要意义,也在计算机科学和人工智能领域中发挥着重要作用。
在逻辑学中,这样的式子被称为双重条件式(Biconditional)。
双重条件式是一种联结词,用符号“⇔”或“↔”表示,它表示两个命题之间的等价关系。
具体来说,一个双重条件式是两个条件式的合取和析取,即P⇔Q等价于(P→Q)∧(Q→P)或(P↔Q)。
假设P表示“这个动物是狗”,Q表示“这个动物有四条腿”。
我们可以通过双重条件式来表示“这个动物是狗当且仅当它有四条腿”,即“这个动物是狗⇔它有四条腿”。
双重条件式既是合取范式又是析取范式的特点使得它在逻辑推理和知识表示中具有重要价值。
对于逻辑推理来说,双重条件式可以被用于判断两个条件是否完全等价,从而确定它们的真值。
在推理中,如果我们已知双重条件式的两个条件一个为真,那么可以推出另一个条件也为真。
这种推理方法被称为双向推理。
在知识表示中,双重条件式也常用于表示概念之间的等价关系。
当我们希望表达“正方形的四个边相等当且仅当它的四个角为直角”时,可以使用双重条件式来表示这个等价关系。
另外,双重条件式还能够通过将其转化为合取范式和析取范式来进行逻辑运算。
在这个过程中,我们可以使用逻辑等价关系,如德摩根定律和分配律,将双重条件式转化为更简单的形式。
这种逻辑运算的过程在计算机科学和人工智能中具有重要的应用,如知识表示与推理系统中的规则推导和逻辑证明等。
析取范式与合取范式析取范式与合取范式合同协议书合同基本信息合同名称:析取范式与合取范式合同协议书合同编号:____________________________签署日期:____________________________合同生效日期:____________________________合同标的:析取范式与合取范式应用及其相关服务合同方信息合同方甲(服务提供方):名称:____________________________地址:____________________________联系电话:____________________________电子邮箱:____________________________合同方乙(服务接受方):姓名:____________________________地址:____________________________联系电话:____________________________电子邮箱:____________________________服务内容服务项目1:析取范式的理论讲解与应用服务项目2:合取范式的理论讲解与应用服务项目3:相关案例分析与实际应用服务项目4:提供相关资料及文献支持服务标准服务标准1:服务内容应涵盖析取范式与合取范式的基本概念、计算方法及应用实例。
服务标准2:提供的材料应为最新的研究成果及学术资料,确保准确性与前瞻性。
服务标准3:服务应包括理论讲解、问题解答及案例分析,确保服务效果。
服务时间与地点服务开始日期:____________________________服务结束日期:____________________________服务地点:____________________________服务时间安排:____________________________费用及支付方式服务费用总额:____________________________费用明细:明细1:____________________________明细2:____________________________支付方式:____________________________支付时间安排:____________________________第一次支付:____________________________第二次支付:____________________________双方责任合同方甲(服务提供方)负责按合同约定提供服务,确保服务质量,并在规定时间内完成服务内容。
第四节 主析取范式与主合取范式n 个命题变项虽然可以构成无穷多个形式各异的命题公式,但就其真值而言,只有22n种。
对应每种真值情况虽然又有无穷多个等值的公式,但这些公式却有相同的标准形式。
本节将给出规范公式的概念,这种规范的公式能表达真值表所能给出的一切信息。
定义4.1 命题变项及其否定统称为文字。
如p ,q ,¬p ,¬q ,L 都是文字,即每个命题变项产生两个文字。
(1)仅由有限个文字构成的合取式称为简单合取式。
(2)仅由有限个文字构成的析取式称为简单析取式。
例如,p ∧q ,p ∧¬q ∧r ,L 都是简单合取式。
p ∨q , ¬p ∨q ∨r ,L 都是简单析取式。
单个文字既是简单析取式,又是简单合取式。
定义4.2 (1)仅由有限个简单合取式构成的析取式称为析取范式; (2)仅由有限个简单析取式构成的合取式称为合取式。
例如,p ,¬q ,p ∧q ,(p ∧¬q )∨(p ∧q ),L 都是析取范式。
p ,¬r ,p ∨q ,(p ∨q )∧(q ∨¬r ),L 都是合取范式。
注意,两个文字构成的简单合取式与析取式都既是析取范式又是合取范式。
例如,p ∨q 是析取范式,它是由两个简单的合取式p 与q 析取而成。
同时它也是合取范式,看成是一个简单析取式构成的合取范式。
定义 4.3 (1)n 个命题变项1p ,2p ,L ,n p (1n ≥)构成的简单合取式中,若每个i p (1,2,,i n =L )都以文字的形式出现一次且仅出现一次,而且出现在左起的第i 位上,则称它为极小项。
(2)n 个命题变项1p ,2p ,L ,n p (1n ≥)构成的简单析取式中,若每个ip (1,2,,i n =L )以文字的形式出现一次且仅出现一次,而且出现在左起的第i 位上,则称它为极大项。
两个命题变项p ,q 共可形成4个极小项:¬p ∧¬q ,¬p ∧q ,p ∧¬q ,p ∧q 。
求命题公式非(p→q)v非r的主析取范式与
合析取范式
析取范式与合取范式是逻辑学中非常重要的概念,它们用于表达
人类逻辑思维的架构。
析取范式简称为P,合取范式则称为Q。
其中,
析取范式是一种简单的逻辑关系,通常采取“否定前提即断言”的原则,表达“如果P不成立,则Q必成立”的定义。
而合取范式则是一
种复杂的逻辑关系,用于表达“P和Q同时成立,则R必成立”的定义。
非(p→q)v非r是一种析取范式导出的结论,表示“非(p→q)与
非r同时为真”。
这一命题公式可以由一个简单的逻辑演绎推导出来:由已知条件p→q,及q为假,得到p为假,即非p为真;由已知条件
r,及r为假,得到非r为真;根据析取范式的定义,得出非(p→q)
与非r同时为真的结论。
此外,对于非(p→q)v非r的命题公式,也可以采取合取范式
的推导方式来证明,即:如果p→q为真且r为真,则非(p→q)v非
r也必然为真。
由此可以得出,非(p→q)v非r的合取范式也可以用
来表明它与相应的已知条件都具有合乎逻辑的关系。
综上所述,析取范式与合取范式是逻辑学中重要的概念,它们可
以用来推导非(p→q)v非r的命题公式,既可以用析取范式证明,也可以用合取范式证明。
通过认真分析,就可以很好地了解这种混合逻
辑的思路。
因此,深入研究这些基本的逻辑思维模式和构造有利有弊,有其非常重要的意义。