流体力学
- 格式:pptx
- 大小:1.97 MB
- 文档页数:22
流体力学的基本概念流体力学是研究流体在运动和静止时的物理学科,广泛应用于工程、自然科学和医学领域。
流体力学的基本概念包括:流体、速度场、流线、通量、压力、连通性、黏度等。
下面将对这些基本概念进行介绍。
1. 流体流体是指能够流动的物质,包括气体和液体。
与固体不同的是,流体没有一定的形状,并且具有很强的流动性。
流体力学研究的是在流体中运动和转化的能量和物质。
2. 速度场在流体力学中,速度场指的是在空间中的任何一个点(x,y,z)处,流体在该点的速度向量V(x,y,z)。
速度场可以用向量场表示,它是一个三维矢量,表示流体在不同点的速度和方向。
3. 流线流线是指在流体中某个时刻从每个点出发的一条曲线,它的方向与该点的速度向量方向相同。
流线可用于描述流体在空间中的流动状态,它的密度越集中,表示流体流动越迅速。
4. 通量在流体力学中,通量是指通过一定面积的流体的质量或者体积。
它可以通过流体穿过该面积的速度与面积相乘来计算。
通量是流体力学中的重要概念,与流体的流动速度和流体的面积有关。
5. 压力压力是指单位面积受到的力的大小,以牛顿/平方米表示。
在流体力学中,压力是指垂直于流体流动方向的单位面积上的压力大小,它与流体的密度和流速有关。
6. 连通性流体力学中的连通性是指流体不可穿透的性质,即两个靠近的流体体积不能相互穿透。
在流体运动中,连通性是一条重要的限制条件。
连通性是流体力学中常常需要掌握的概念,尤其是在流体的运动与静止的过程中。
7. 黏度黏度是指流体阻力的大小,它是描述流体的粘性的物理量。
黏度可以用来描述流体在运动中的阻力大小,阻力越大,黏度也就越大。
黏度是流体力学中非常重要的物理量,它影响了流体的运动和可塑性。
流体力学(简介)流体力学是在人类与自然界相处和生产实践中逐步发展起来的。
对流体力学学科的形成做出卓越贡献的是古希腊哲学家阿基米德(《论浮体》,公元前250年)建立了包括浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。
流体力学原理主要指计算流体动力学中的数值方法的现状;运用基本的数学分析,详尽阐述数值计算的基本原理;讨论流域和非一致结构化边界适应网格的几何复杂性带来的困难等。
一、发展简史各物理量关系构成牛顿内摩擦定律,τ=μ*du/dy动压和总压。
显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。
飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。
据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。
在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。
在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1]。
图为验证伯努利方程的空气动力实验。
补充:p1+1/2ρv1^2+ρgh1=p2+1/2ρv2^2+ρgh2(1)p+ρgh+(1/2)*ρv^2=常量(2)均为伯努利方程其中ρv^2/2项与流速有关,称为动压强,而p和ρgh称为静压强。
伯努利方程揭示流体在重力场中流动时的能量守恒。
由伯努利方程可以看出,流速高处压力低,流速低处压力高。
后人在此基础上又导出适用于可压缩流体的N-S方程。
N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。
它是一个非线性偏微分方程,求解非常困难和复杂,目前只有在某些十分简单的流动问题上能求得精确解;但在有些情况下,可以简化方程而得到近似解。
例如当雷诺数Re1时,绕流物体边界层外,粘性力远小于惯性力,方程中粘性项可以忽略,N-S方程简化为理想流动中的欧拉方程(=-Ñp+ρF);而在边界层内,N-S方程又可简化为边界层方程,等等。
第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。
研究对象:流体,包括液体和气体。
2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。
4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。
•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。
•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。
流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。
5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。
这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。
6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。
这样的微团,称为流体质点。
流体微团:宏观上足够大,微观上足够小。
流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。
7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。
例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。
流体力学流速计算公式一、伯努利方程推导流速公式(理想不可压缩流体定常流动)1. 伯努利方程。
- 对于理想不可压缩流体作定常流动时,在同一条流线上有p+(1)/(2)ρ v^2+ρ gh = C(p是流体压强,ρ是流体密度,v是流速,h是高度,C是常量)。
- 假设水平流动(h_1 = h_2),则方程变为p_1+(1)/(2)ρ v_1^2=p_2+(1)/(2)ρ v_2^2。
- 由此可推导出流速公式v_2=√(v_1^2)+(2(p_1 - p_2))/(ρ)。
2. 适用条件。
- 理想流体(无粘性),实际流体在粘性较小时可近似使用。
- 不可压缩流体,像水在大多数情况下可视为不可压缩流体,气体在低速流动时也可近似为不可压缩流体。
- 定常流动,即流场中各点的流速等物理量不随时间变化。
3. 示例。
- 已知水管中某点1处的压强p_1 = 2×10^5Pa,流速v_1 = 1m/s,另一点2处的压强p_2 = 1.5×10^5Pa,水的密度ρ = 1000kg/m^3。
- 根据v_2=√(v_1^2)+(2(p_1 - p_2))/(ρ),将数值代入可得:- v_2=√(1^2)+frac{2×(2×10^{5-1.5×10^5)}{1000}}- 先计算括号内的值:2×(2×10^5-1.5×10^5)=2×5×10^4=10^5。
- 则v_2=√(1 + 100)= √(101)≈10.05m/s。
二、连续性方程推导流速公式(不可压缩流体定常流动)1. 连续性方程。
- 对于不可压缩流体的定常流动,有S_1v_1 = S_2v_2(S_1、S_2分别是流管中两个截面的面积,v_1、v_2是相应截面处的流速)。
- 由此可推导出流速公式v_2=(S_1)/(S_2)v_1。
2. 适用条件。
- 不可压缩流体,如液体或低速流动的气体。
流体力学名词解释
以下是一些重要的流体力学名词的简要解释:
流体力学(Fluid Mechanics)
流体力学是研究流体静力学和流体动力学的学科。
流体静力学研究静止流体的力学性质,包括压强、密度等。
流体动力学研究流体的运动,涉及速度场、加速度场、粘性等。
压强(Pressure)
压强是单位面积上的力,是描述流体静力学性质的重要参数。
它的公式为压力除以受力面积。
密度(Density)
密度是单位体积上的质量,是描述流体静力学性质的参数。
它的公式为物体的质量除以物体的体积。
流速(Flow Velocity)
流速是流体单元通过给定横截面的速度,是描述流体动力学性质的参数。
它可以用流体质点的速度表示。
黏性(Viscosity)
黏性是流体流动时内部发生阻力的程度。
黏性可分为动力黏性和运动黏性,动力黏性指的是剪切力与剪切速度之间的比例关系,运动黏性是指流体发生剪切流动时的阻力。
流量(Flow Rate)
流量是单位时间内通过给定横截面的流体的数量。
它是描述流体动力学性质的重要参数,可以通过流速和横截面积计算得到。
流态(Flow Regime)
流态是流体在输送过程中的运动状态。
常见的流态包括层流、过渡流和湍流,它们具有不同的流动特征和性质。
跃度(Head)
跃度是描述流体在管道或流动装置中转换势能与动能的能力。
它是流体动力学和工程设计中的一个重要概念。
以上是流体力学中常用的一些名词解释。
希望对您有所帮助。