流体力学中的四大研究方法

  • 格式:pdf
  • 大小:94.53 KB
  • 文档页数:3

下载文档原格式

  / 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流体力学中的四大研究方法

多年前,我看过一篇杨振宁老先生谈学习和研究方法的文章,记忆深刻。很多人可能都知道,杨老先生大学毕业于西南联大,他总结我们中国学习自然科学的研究方法,主要是“演绎法”,往往直接从牛顿三大定律,热力学定律等基础出发,然后推演出一些结果。然而,对于这些定律如何产生的研究和了解不多,也就不容易产生有重大意义的原创性成果。他到美国学习后发现,世界著名物理学大学费米、泰勒等是从实际试验的结果中,运用归纳的原理,采用的是“归纳法”。这两种方法对杨老先生的研究工作,产生了很大的影响。

除了这两种基本研究方法外,还有很多方法,如量纲分析法、图解法、单一变量研究法、数值模拟法等。每个学科可能都有一些各自独特的研究方法。我是流体力学专业出身,就以流体力学为例。通常,开展流体力学的工作主要有4种研究方法:现场观测法、实验模拟法、理论分析法和数值计算法四个方面。

现场观测法

从流体力学的学科历史来看,流体力学始于人们对各种流动现象的观测。面对奔腾的河流,孔子发出了:“逝者如斯夫,不舍昼夜”的感叹,古希腊哲学家赫拉克利特说“人不能两次踏进同一条河流”。阿基米德在澡盆中,看到溢出的水,提出了流体静力学的一个重要原理——阿基米德原理。丹尼尔·伯努利通过观察发现流速与静压关系的伯努利原理。在流体力学史上还有很多这样的例子,发现自然界的各种流动现象,通过各种仪器进行观察,从而总结出流体运动的规律,再反过来预测流动现象的演变。但此方法有明显的局限性,最主要的体现在两个方面,一是一些流动现象受特定条件的影响,有时不能完成重复发生;二是成本比较大,需要花费大量的人财物。

实验模拟法

为了克服现场观测的缺点,人们制造了多种实验装置和设备,建立了多个专项和综合实验室。实验基本上能可控、重复流动现象,可以让人们仔细、反复地观测物理现象,直接测量相关物理量,从而揭示流动机理、发现流动规律,建立物理模型和理论,同时还能检验理论的正确性。

流体力学史上很多重要的发现都是通过实验发现或证实的,比如意大利物理学家伽俐略利用实验演示了在空气中物体运动所受到的阻力;托里拆利通过大气

压力测量实验,证明了恒定孔口出流的基本规律;牛顿用摆和垂直落球在水和空气中进行了绕流阻力实验;由法国工程师皮托发明、世界流体力学大师普朗特改进的风速管,可同时测量流体总压和静压。随着技术的进步,风洞和水洞成为实验流体力学中两种主要的实验设备。风洞是一种特殊的管道,通过产生可以调节的气流,使实验段中的模型流场能够模拟或部分模拟实际流场。水洞更容易实现流动显示和定量测量,对进行湍流和边界层等基础科学问题的研究以及一些实际工程问题具有重要价值。

理论分析法

理论分析法是在感性认识的基础上,在一定的理论指导下,综合运用归纳与演绎、比较与分类、分析与综合等逻辑方法,采用数学理论和方法,实现定量化分析,来认识事物的本质及其规律的一种科学分析方法,是流体力学分析研究的一种高级形式。尽管人们对流动的认识和探索进行了几千年,但只有到了欧拉方程和伯努利方程的建立,才是流体动力学作为一个分支学科建立的标志,开启了用微分方程和实验测量进行流体运动定量研究的新阶段。无数物理学家和力学家进行了大量的探索,例如:拉格朗日的无旋运动、亥姆霍兹的涡旋运动、达朗伯佯谬,一直到纳维-斯托克斯方程,即著名的NS方程,它是流体动力学的理论基础。

由于纳维-斯托克斯方程是一组非线性的偏微分方程,很难求出解析解。在流体力学理论分析中,常常根据特定的物理性质和具体环境,抓住主要因素、忽略次要因素进行抽象化、简化流体物理性质,减少自变量和减少未知函数,建立特定的力学理论模型,这样可以简化数学方程、克服数学上的困难,进一步深入地研究流体的平衡和运动性质。例如普朗特学派逐步将N-S方程作了简化,从推理、数学论证和实验测量等各个角度,建立了边界层理论,能实际计算简单情形下,边界层内流动状态和粘性力。

数值计算法

由于物体几何外形的复杂,以及非线性偏微分方程组求解的困难,早在20世纪初就有人提出用数值方法来解流体力学问题的思想。就是将流场区域离散化,分成许多个子区域,并确定每个区域中的节点,从而生成网格。将控制方程在网格上离散,就可以将偏微分格式的控制方程转化为各个节点上的代数方程组。求出方程组的近似解后,结合流场情况以及一些理论常识,解释这些计算值

的物理含义和流动机理。在正式计算之前,通常还要通过经典模型算例,将计算结果与实验结果进行比较,以验证计算方法和参数设置。由于网格点数量大,要求的计算资源比较高。只有电子计算机问世以来,数值模拟才成为现实。相对于实验来说,数值模拟具有廉价、全流场、三维复杂流动分析,不受实验设备的研制、流场无干扰等特点。

现场观测的现象和实验结果,只有在具备一定的理论基础时,才会有意识地从分散的、看似无联系的现象和数据中找到规律性的东西,甚至发现新理论。理论分析和数值计算也要依靠现场观测和实验模拟来校验力学数学模型。因此,在解决重大实际问题时,单一方法都是有缺点与不足的,必须综合运用这4种方法。