中考专题1(由动点形生成的特殊三角形问题)
- 格式:doc
- 大小:1.03 MB
- 文档页数:8
由动点形生成的特殊三角形问题例题1【2010重庆綦江县答案】解:(1)方法一:∵抛物线过点C (0,-6) ∴c =-6,即y =ax 2+bx -6由2,21441260ba ab ⎧-=⎪⎨⎪+-=⎩解得:116a =,14b =-∴该抛物线的解析式为2116164y x x =--方法二:∵A 、B 关于x =2对称∴A (-8,0) 设(8)(12)y a x x =+-C 在抛物线上,∴-6=a ³8³(12)-,即a =116∴该抛物线解析式为:2116164y x x =--(2)存在,设直线CD 垂直平分PQ , 在Rt △AOC 中,AC=10=AD ∴点D 在抛物线的对称轴上,连结DQ ,如图:显然∠PDC =∠QDC , 由已知∠PDC =∠ACD ∴∠QDC =∠ACD ,∴DQ ∥ACDB =AB -AD =20-10=10 ∴DQ 为△ABC 的中位线∴DQ =12AC =5AP =AD -PD =AD -DQ =10-5=5∴t =5÷1=5(秒)∴存在t =5(秒)时,线段PQ 被直线CD 垂直平分在Rt △BOC 中,BC== ∴CQ=∴点Q(3)存在.如图,过点Q作QH⊥x轴于H,则QH=3,PH=9在Rt△PQH中,PQ①当MP=MQ,即M为顶点,设直线CD的直线方程为y=kx+b(k≠0),则:6 02bk b-=⎧⎨=+⎩,解得:36kb=⎧⎨=-⎩∴y=3x-6当x=1时,y=-3 ∴M1(1,-3)②当PQ为等腰△MPQ的腰时,且P为顶点,设直线x=1上存在点M(1,y),由勾股定理得:42+y2=90,即y∴M2(1,;M3(1③当PQ为等腰△MPQ的腰时,且Q为顶点.过点Q作QE⊥y轴于E,交直线x=1于F,则F(1,-3)设直线x=1存在点M(1,y)由勾股定理得:22(3)590y++=,即y=-3∴M4(1,-3;M5(1,-3综上所述,存在这样的五个点:M1(1,-3);M2(1;M3(1;M4(1,-3;M5(1,-3-例题2【2010四川 巴中答案】(1)∵∠ACB =90°,CO ⊥AB ,△ACO ∽△CBO ,∴COAO OBCO =,CO=2,则C (0,2);(2)抛物线2y ax bx c =++过△ABC 的三个顶点,则⎪⎩⎪⎨⎧==++=+-204160c c b a c b a ,∴2,23,21==-=c b a ,抛物线的解析式为223212++-=x x y ;(3)点D ( 1,m )在抛物线上,3=m ,∴D (1,3),把直线y=-x -1与抛物线223212++-=x x y 联立成方程组⎪⎩⎪⎨⎧++-=--=2232112x x y x y ∴⎩⎨⎧-==⎩⎨⎧=-=65,012211y x y x , ∴E (5,-6),过点D 作DH 垂直于x 轴,过点E 作EG 垂直于x 轴,DH=BH=3,∴∠DBH=45°, BD=23,AG=EG=6, ∴∠EAG=45°,AE=26,当P 在B 的右侧时,∠DBP=135°≠∠ABE,两个三角形不相似,所以P 点不存在; 当P 在B 的左侧时 ⅰ) △DPB ∽△EBA 时,26235,==BP AE DB BA BP ,25=BP ,∴P 的坐标为(23,0),ⅱ) △DPB ∽△BEA 时,52326,==PB BADB EAPB ,536=BP ,∴P 的坐标为(516-,0),所以点P 的坐标为(23,0)或(516-,0)。
2020中考数学压轴专题二次函数动点成特殊三角形问题(含答案)1.如图,在平面直角坐标系中,二次函数y=-13x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(-3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=________,c=________;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)在x轴下方的二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由.第1题图解:(1)134;【解法提示】∵二次函数y=-13x2+bx+c与x轴交于A(-3,0),B(4,0),∴b c=b c=--+⎧⎪⎨-++⎪⎩33016403,解得b=c=⎧⎪⎨⎪⎩134,(2)可能是,理由如下:∵点P在AC上以每秒1个单位的速度运动,∴AP=t,∵点Q在OB上以每秒1个单位的速度运动,∴OQ=t,∴AQ=t+3,∵∠P AQ<90°,∠PQA<90°,∴若要使△APQ是直角三角形,则∠APQ=90°,在Rt△AOC中,OA=3,OC=4,∴AC=5,如解图①,设PQ与y轴交于点D,第1题解图①∵∠ODQ=∠CDP,∠DOQ=∠DPC=90°,∴∠DQO=∠DCP,∴tan ∠DQO =AP PQ =tan ∠DCP =AO CO =34, ∵AP =t,∴PQ =43t , 由勾股定理得:AQ 2=AP 2+PQ 2,即(t +3)2=t 2+(43t )2, 解得t =92或t =- 98(舍去), 根据题意,点Q 在线段OB 上,∴0≤t ≤4,∴不存在这样的t 值满足题意,即△APQ 不可能是直角三角形;(3)假设存在点M 使得△PMQ 是以点P 为直角顶点的等腰直角三角形,如解图②,过P 作PE ⊥x 轴于E ,过M 作MN ⊥PE 交PE 的延长线于点N ,第1题解图②∵∠MPN +∠PMN =90°,∠MPN +∠QPE =90°,∴∠PMN =∠QPE ,在△PMN 和△QPE 中,∠∠⎧⎪∠∠⎨⎪⎩PMN=QPE PNM=PEQ MP=PQ ,∴△PMN ≌△QPE (AAS),∴PN =EQ ,MN =PE ,∵AP =t ,cos ∠CAO =AO AC =35, sin ∠CAO =OC AC =45, ∴AE =35t ,PE =45t , ∴MN =45t ,EN =EQ -PE =AQ -AE -PE =3+t -35t -45t =3- 25t , ∴x M =x E -MN =35t -3-45t =-15t -3, ∴点M 的坐标为(-15t -3,25t -3),在x 轴下方, ∵点M 在抛物线上,∴-13(-15t -3)2-13(15t +3)+4=25t -3, 整理得t 2+65t =225,解得t =-65+52052或t =-65-52052(舍), 综上,存在满足条件的点M ,此时运动时间t 为-65+52052秒.2. 如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .(1)若直线y =mx +n 经过B ,C 两点,求抛物线和直线BC 的解析式;(2)在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;(3)设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.第2题图解:(1)由题意得⎩⎪⎨⎪⎧-b2a=-1a +b +c =0c =3,解得⎩⎪⎨⎪⎧a =-1b =-2c =3,∴抛物线的解析式为y =-x 2-2x +3.∵对称轴为直线x =-1,抛物线经过A (1,0),∴B (-3,0).设直线BC 的解析式y =mx +n ,把B (-3,0),C (0,3)分别代入y =mx +n 得⎩⎪⎨⎪⎧-3m +n =0n =3,解得⎩⎪⎨⎪⎧m =1n =3, ∴直线BC 的解析式为y =x +3; (2)如解图,连接MA ,第2题解图∵MA =MB ,∴MA +MC =MB +MC .∴使MA +MC 最小的点M 应为直线BC 与对称轴x =-1的交点.设直线BC 与对称轴x =-1的交点为M ,把x =-1代入直线y =x +3,得y =2.∴M (-1,2);(3)设P (-1,t ),∵B (-3,0),C (0,3),∴BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10,解得t =-2;②若C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2,解得t =4;③若P 为直角顶点,则PB 2+PC 2=BC 2,即:4+t 2+t 2-6t +10=18,解得t 1=3+172,t 2=3-172. 综上所述,满足条件的点P 共有四个,分别为:P 1(-1,-2),P 2(-1,4),P 3(-1,3+172),P 4(-1,3-172). 3. 如图,在平面直角坐标系中,抛物线y =x 2+bx +c 经过点A (0,-6)和点C (6,0).(1)求抛物线的解析式;(2)若抛物线与x 轴的负半轴交于点B ,试判断△ABC 的形状;(钝角三角形、直角三角形、锐角三角形)(3)在抛物线上是否存在点P ,使得△P AC 是以AC 为底的等腰三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.第3题图解:(1)将C 、A 两点坐标代入y =x 2+bx +c ,可得⎩⎪⎨⎪⎧36+6b +c =0c =-6, 解得⎩⎪⎨⎪⎧b =-5c =-6, ∴抛物线的解析式为y =x 2-5x -6;(2)当y =0时,则有:x 2-5x -6=0,即(x +1)(x -6)=0,∴解得x 1=-1,x 2=6(舍),∴B (-1,0).由两点之间的距离公式可得:BC 2=2=49,AC 2=(6-0)2+2=72,AB 2=(-1-0)2+2=37,∵AB 2+BC 2>AC 2,∴△ABC 为锐角三角形.(3)存在满足条件的点P ,使得△P AC 是以AC 为底的等腰三角形理由:如解图,过线段AC 的中点M ,作AC 的垂线交抛物线于点P ,第3题解图直线MP 与抛物线必有两个满足条件的交点P ,∵A (0,-6),C (6,0),∴点M 的坐标为(3,-3),且OA =OC ,∴直线MP 过点O ,设直线MP 的解析式为y =kx ,将点M (3,-3)代入得,k =-1,即直线MP 的解析式为y =-x ,联立⎩⎪⎨⎪⎧y =-x y =x 2-5x -6, 解得⎩⎪⎨⎪⎧x 1=2-10y 1=10-2或⎩⎪⎨⎪⎧x 2=2+10y 2=-2-10, ∴点P 的坐标为(2-10,10-2)或(2+10,-2-10).4. 如图,在平面直角坐标系中,直线y =-2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动,同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒.当t 为何值时,P A =QA?(3)在抛物线的对称轴上,是否存在点M ,使以A ,B ,M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.第4题图 解:(1)∵直线y=-2x +10与x 轴、y 轴相交于A 、B 两点,∴A (5,0),B (0,10),设过O 、A 、C 三点的抛物线的解析式为y =ax 2+bx (a ≠0),把点A (5,0)和C (8,4)代入可得⎩⎪⎨⎪⎧25a +5b =064a +8b =4, 解得⎩⎨⎧a =16b =-56, ∴抛物线的解析式为y =16x 2-56x ; ∵A (5,0),B (0,10),C (8,4),∴AB 2=125,AC 2=25,BC 2=100,∵AB 2=AC 2+BC 2,∴△ABC 是直角三角形.(2)如解图,连接AP ,AQ ,当P ,Q 运动t 秒,即OP =2t ,CQ =10-t ,第4题解图在Rt △AOP 和Rt △ACQ 中,⎩⎪⎨⎪⎧AC =OA P A =QA, ∴Rt △AOP ≌Rt △ACQ ,∴OP =CQ ,∴2t =10-t ,∴t =103, ∵t <5,∴当运动时间为103秒时,P A =QA ; (3)存在.由题可得,抛物线的对称轴直线为x =52, 设点M 的坐标为( 52,b ), 利用点的坐标可求得AB 2=102+52=125,MB 2=(52)2+(b -10)2, MA 2=(52)2+b 2, ∵△MAB 是等腰三角形,∴可分以下三种情况讨论:①当AB =MA 时,即125=(52)2+b 2, 解得b =±5192, 即点M 的坐标为(52,5192)或(52,-5192);②当AB =BM 时,即125=(52)2+(b -10)2,解得b =10±5192,即点M 的坐标为(52,10+5192)或(52,10-5192);③当MB =MA 时,即(52)2+(b -10)2=(52)2+b 2,解得b =5,此时点A 、M 、B 共线,故这样的点M 不存在.综上所述,存在点M ,使以点A 、B 、M 为顶点的三角形是等腰三角形,点M 的坐标为(52,5192)或(52,-5192)或(52,10+5192)或(52,10-5192). 5. 如图,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)点P 在x 轴下方的抛物线上,过点P 的直线y =x +m 与直线BC 交于点E ,与y 轴交于点F ,求PE +EF 的最大值;(3)点D 为抛物线对称轴上一点,当△BCD 是以BC 为直角边的直角三角形时,求点D 的坐标.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0c =3,解得⎩⎪⎨⎪⎧b =-4c =3,∴抛物线的解析式为y =x 2-4x +3;(2)如解图①,过点P作PG∥CF交CB与点G,第5题解图①由题可知,直线BC的解析式为y=-x+3,OC=OB=3,∴∠OCB=45°.同理可知∠OFE=45°,∴△CEF为等腰直角三角形,∵PG∥CF,∴△GPE为等腰直角三角形,∵F(0,m),C(0,3),∴CF=3-m,∵△CEF∽△GEP∴EF=22CF=22(3-m), PE=22PG,设P(t,t2-4t+3)(1<t<3), 则G(t,-t+3)PE=22PG=22(-t+3-t-m)=22(-m-2t+3),∵点P是直线y=x+m与抛物线的交点,∴t2-4t+3=t+m,∴PE+EF=22(3-m)+22(-m-2t+3)=22(-2t-2m+6)=-2(t+m-3)=-2(t2-4t)=-2(t-2)2+42,∴当t=2时,PE+EF最大,最大值为42;(3)由(1)知对称轴x=2,设点D(2,n),如解图②.第5题解图②当△BCD是以BC为直角边的直角三角形时,分两种情况讨论:(ⅰ)D在C上方D1位置时,由勾股定理得CD21+BC2=BD21,即(2-0)2+(n-3)2+(32)2=(3-2)2+(0-n)2 ,解得n=5;(ⅱ)D在C下方D2位置时,由勾股定理得BD22+BC2=CD22,即(2-3)2+(n-0)2+(32)2=(2-0)2+(n-3)2 ,解得n=-1,综上所述,当△BCD是以BC为直角边的直角三角形时,D为(2,5)或(2,-1).6.如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN的值最小,求出此时点K的坐标;(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.第6题图解:(1)∵抛物线经过点C (0,4),A (4,0),∴c=a a c=⎧⎨-+⎩41680,解得a=c=⎧-⎪⎨⎪⎩124, ∴抛物线的解析式为y =-12x 2+x +4;(2)由y =-12x 2+x +4=-12(x -1)2+92可得抛物线的顶点坐标为N (1,92),如解图①,作点C 关于x 轴的对称点C ′,则C ′(0,-4),连接C′N 交x 轴于点K ,则K 点即为所求点,第6题解图①设直线C′N 的解析式为y =kx +b (k ≠0),把N ,C′两点坐标代入可得:k b=b=⎧+⎪⎨⎪-⎩924,解得k=b=⎧⎪⎨⎪-⎩1724, ∴直线C′N 的解析式为y =172x -4, 令y =0,解得x =817,∴点K的坐标为(817,0);(3)存在.要使△ODF是等腰三角形,需分以下三种情况讨论:①DO=DF,∵A(4,0),D(2,0),∴AD=OD=DF=2,在Rt△AOC中,OA=OC=4,∴∠OAC=45°,∴∠DF A=∠OAC=45°,∴∠ADF=90°.此时,点F的坐标为(2,2);由-12x2+x+4=2得,x1=1+5,x2=1- 5.此时,点P的坐标为(1+5,2)或(1-5,2);②FO=FD,如解图②,过点F作FM⊥x轴于点M.第6题解图②由等腰三角形的性质得:OM =12OD =1,∴AM =3,∴在等腰直角△AMF 中,MF =AM =3, ∴F (1,3).由-12x 2+x +4=3得,x 1=1+3,x 2=1- 3.此时,点P 的坐标为(1+3,3)或(1-3,3); ③OD =OF ,∵OA =OC =4,且∠AOC =90°, ∴AC =42,∴点O 到AC 的距离为2 2. 而OF =OD =2<22,∴在AC 上不存在点F 使得OF =OD =2.此时,不存在这样的直线l ,使得△ODF 是等腰三角形.综上所述,存在这样的直线l ,使得△ODF 是等腰三角形,所求点P 的坐标为(1+5,2)或 (1-5,2)或(1+3,3)或(1-3,3).7. 如图①,抛物线y =-13x 2+bx +8与x 轴交于点A (-6,0),点B (点A 在点B 左侧),与y 轴交于点C ,点P 为线段AO 上的一个动点,过点P 作x 轴的垂线l 与抛物线交于点E ,连接AE 、EC .(1)求抛物线的表达式及点C 的坐标;(2)连接AC 交直线l 于点D ,则在点P 运动过程中,当点D 为EP 中点时,求S △ADP ∶S △CDE ;(3)如图②,当EC ∥x 轴时,点P 停止运动,此时,在抛物线上是否存在点G ,使△AEG 是以AE 为直角边的直角三角形?若存在,请求出点G 的坐标;若不存在,说明理由.第7题图解:(1)∵点A (-6,0)在抛物线y =-13x 2+bx +8上,∴0=-13×(-6)2+(-6b )+8,解得b =-23,∴抛物线的表达式为y =-13x 2-23x +8,令x =0,得y =8, ∴C (0,8);(2)设点E (t ,-13t 2-23t +8),∴P (t ,0),∵点D 为EP 的中点,∴DP =DE ,D (t ,-16t 2-13t +4),设直线AC 的解析式为y =kx +b (k ≠0),将A (-6,0),C (0,8),代入得:k b=b=-+⎧⎨⎩608,解得k=b=⎧⎪⎨⎪⎩438,∴直线AC 的解析式为y =43x +8,∵点D 在直线AC 上, ∴43t +8=-16t 2-13t +4, 解得t 1=-6(舍去),t 2=-4, ∴P (-4,0), ∴AP =2,OP =4,∴S △ADP S △CDE =1212g g DP APDE OP =AP OP =12; (3)存在.如解图①,连接EG ,AG ,过点G 作GM ⊥l ,GN ⊥x 轴,垂足分别为M ,N ,第7题解图①∵EC ∥x 轴, ∴EP =CO =8,把y =8代入y =-13x 2-23x +8,则8=-13x 2-23x +8,解得x =0(舍去)或x =-2, ∴P (-2,0), ∴AP =AO -PO =4,(ⅰ)如解图①,当∠AEG =90°时, ∵∠MEG +∠AEP =90°, ∠AEP +∠EAP =90°, ∴∠MEG =∠EAP , 又∵∠APE =∠EMG =90°, ∴△EMG ∽△APE , ∴EM AP =MG EP, 设点G (m ,-13m 2-23m +8)(m >0),则GN =MP =-13m 2-23m +8,∴EM =EP -MP =8-(-13m 2-23m +8)=13m 2+23m ,MG =PN =PO +ON =2+m , ∴13m 2+23m 4=2+m 8,∴m =-2(舍去)或m =32,∴G (32,254);(ⅱ)如解图②,当∠EAG =90°时,第7题解图②∵∠NAG +∠EAP =90°, ∠AEP +∠EAP =90°, ∴∠NAG =∠AEP , ∵∠APE =∠GNA =90°, ∴△GNA ∽△APE , ∴GN AP =ANEP, 设点G (n ,-13n 2-23n +8)(n >4),∴GN =13n 2+23n -8,AN =AO +ON =6+n ,∴2128 334+-n n=68+n,∴n=-6(舍去)或n=112,∴G(112,-234),综上,符合条件的G点的坐标为(32,254)或(112,-234).8.如图,在平面直角坐标系中,已知抛物线y=ax2+bx-8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE.已知点A,D的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式;(2)分别求出点B和点E的坐标;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m 为何值时,△OPQ是等腰三角形.第8题图解:(1)∵抛物线y=ax2+bx-8经过点A(-2,0),D(6,-8),∴将A 、D 两点的坐标代入得⎩⎪⎨⎪⎧4a -2b -8=036a +6b -8=-8, 解得⎩⎪⎨⎪⎧a =12b =-3, ∴抛物线的函数表达式为y =12x 2-3x -8; (2)∵y =12x 2-3x -8=12(x -3)2-252, ∴抛物线的对称轴为直线x =3,又∵抛物线与x 轴交于A ,B 两点,点A 的坐标为(-2,0),∴点B 的坐标为(8,0).设直线l 的函数表达式为y =kx ,∵点D (6,-8)在直线l 上,代入得6k =-8,解得k =-43, ∴直线l 的函数表达式为y =-43x , ∵点E 为直线l 和抛物线对称轴的交点,∴点E 的横坐标为3,纵坐标为-43×3=-4,即点E 的坐标为(3,-4); (3)需分两种情况进行讨论:①当OP =OQ 时,△OPQ 是等腰三角形,如解图①,第8题解图①∵点E 的坐标为(3,-4),∴OE =32+42=5,过点E 作直线ME ∥PB ,交y 轴于点M ,交x 轴于点H ,则OM OP =OE OQ , ∴OM =OE =5,∴点M 的坐标为(0,-5),设直线ME 的函数表达式为y =k 1x -5,E (3,-4)在直线ME 上,∴3k 1-5=-4,解得k 1=13, ∴直线ME 的函数表达式为y =13x -5, 令y =0,解得x =15,∴点H 的坐标为(15,0).又∵MH ∥PB ,∴OP OM =OB OH ,即-m 5=815, ∴m =-83;②当QO =QP 时,△OPQ 是等腰三角形,如解图②,第8题解图②∵当x =0时,y =12x 2-3x -8=-8, ∴点C 的坐标为(0,-8),∴CE =32+(8-4)2=5,∴OE =CE ,∴∠1=∠2,又∵QO =QP ,∴∠1=∠3,∴∠2=∠3,∴CE ∥PB .设直线CE 交x 轴于点N ,其函数表达式为y =k 2x -8,E (3,-4)在直线CE 上,∴3k 2-8=-4,解得k 2=43, ∴直线CE 的函数表达式为y =43x -8,令y =0,得43x -8=0, ∴x =6,∴点N 的坐标为(6,0).∵CN ∥PB .∴OP OC =OB ON, ∴-m 8=86,解得m =-323. 综上所述,当m 的值为-83或-323时,△OPQ 是等腰三角形. 9. 如图,抛物线y =13x 2+bx +c 与x 轴交于A (3,0),B (-1,0)两点,过点B 作直线BC ⊥x 轴,交直线y =-2x 于点C.(1)求该抛物线的解析式;(2)求该抛物线的顶点D 的坐标,并判断顶点D 是否在直线y =-2x 上;(3)点P 是抛物线上一动点,是否存在这样的点P (点A 除外),使△PBC 是以BC 为直角边的直角三角形?若存在,求出所有满足条件的点P 的坐标;若不存在,请说明理由.第9题图解:(1)∵y =13x 2+bx +c 与x 轴交于A (3,0),B (-1,0)两点,∴⎩⎨⎧13×32+3b +c =013×(-1)2-b +c =0, 解得⎩⎪⎨⎪⎧b =-23c =-1, ∴抛物线的解析式为y =13x 2-23x -1; (2)∵a =13,b =-23,c =-1, 抛物线的顶点D 的坐标为(-b 2a ,4ac -b 24a), ∴x D =--232×13=1, y D =4×13×(-1)-(-23)24×13=-43, ∴D (1,-43). 把x =1代入y =-2x 中得y =-2,∵-43≠-2, ∴顶点D 不在直线y =-2x 上;(3)存在.理由如下:如解图,过点C 作x 轴的平行线,与该抛物线交于点P 1,P 2,连接BP 1,BP 2.第9题解图∵直线BC ⊥x 轴,∴△P 1BC 、△P 2BC 都是直角三角形.把x =-1代入y =-2x 中得:y =-2×(-1)=2,∴C (-1,2).∴把y =2代入y =13x 2-23x -1中得13x 2-23x -1=2, 解得x 1=10+1,x 2=-10+1.∴P 1(10+1,2),P 2(-10+1,2).10. 如图,抛物线y =-12x 2+bx +c 与x 轴交于A (-1,0)、B 两点,与y 轴交于点C (0,2),抛物线的对称轴交x 轴于点D.(1)求抛物线的解析式;(2)求sin ∠ABC 的值;(3)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形,如果存在,直接写出点P 的坐标;如果不存在,请说明理由.第10题图解:(1)将点A (-1,0),C (0,2)代入抛物线y =-12x 2+bx +c 中得, ⎩⎪⎨⎪⎧-12-b +c =0c =2,解得⎩⎪⎨⎪⎧b =32c =2, ∴抛物线的解析式为y =-12x 2+32x +2; (2)令y =-12x 2+32x +2=0, 解得x 1=-1,x 2=4,∴点B 的坐标为(4,0),在Rt △BOC 中,BC =OC 2+OB 2=22+42=25,∴sin ∠ABC =OC BC =225=55; (3)存在,点P 坐标为(32,52)或(32,-52)或(32,4). 【解法提示】由抛物线y =-12x 2+32x +2得对称轴为直线x =32, ∴点D 的坐标为(32,0). ∴CD =OC 2+OD 2=22+(32)2=52. ∵点P 在对称轴x =32上,且△PCD 是以CD 为腰的等腰三角形, ∴当点D 为顶点时,有DP =CD =52,此时点P 的坐标为(32,52)或(32,-52); 当点C 为顶点时,如解图,连接CP ,则CP =CD ,过点C 作CG ⊥DP 于点G ,则DG =PG ,第10题解图∵DG =2,∴PG =2,PD =4,∴点P 的坐标为(32,4). 综上,存在点P 使△PCD 是以CD 为腰的等腰三角形,点P 的坐标为(32,52)或(32,-52)或(32,4).。
抛物线与直线形(1)——由动点生成的特殊三角形问题知识纵横抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能够成某些特殊三角形,有以下常见的基本形式:(1)抛物线上的点能否构成等腰三角形;(2)抛物线上的点能否构成直角三角形;(3)抛物线上的点能否构成相似三角形;解这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。
例题求解【例1】如图,抛物线y =ax2 -5ax - 4经过.'ABC的三个顶点,已知BC // x轴,点A在x轴上,点C在y轴上,且AC =BC •(1)求抛物线的对称轴;(2)写出代B,C三点的坐标并求抛物线的解析式;(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在■ PAB是等腰三角形?(龙岩市中考题)思路点拨对于(3)只需求出P点纵坐标,将问题转化为相关线段长。
解题的关键是分情况讨论并正确画图。
【例2】已知抛物线y = kx2 - 2kx _ 3k ,交x轴于A, B两点(A在B的左边),交y轴于C点,且y有最大值4.(1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使PBC是直角三角形?若存在,求出P点坐标;若不存在,说明理由.(包头市中考题)思路点拨对于(2),设P点坐标为(a,b ),寻找相似三角形,建立a、b的另一关系式,解联立而得到的方程组,可求出a、b的值。
【例3】抛物线y = —l(x-i f十3与y轴交于点A,顶点为B,对称轴BC与x轴交于点4C .(1)如图1 .求点A的坐标及线段0C的长;(2 )点P在抛物线上,直线PQ // BC交x轴于点Q,连接BQ .①若含45角的直角三角板如图2所示放置.其中,一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上•求直线BQ的函数解析式;②若含30角的直角三角板一个顶点与点C重合,直角顶点D在直线BQ上,另一个顶点E在PQ上,求点P的坐标.S 1 2 2(2011年绍兴市中考题) 思路点拨对于(2),解题的关键是求出CQ的长。
例析动点问题在中考中与三角形有关的常见题型二次函数与几何综合题已成为近几年各省市、地区中考数学压轴题。
命题老师对这道题的问题设置,常常会设置动点问题作为考查考生对整个初中数学知识学习的综合运用能力。
本文就动点问题在中考中与三角形有关的常见题型作了归纳整理,希望与同行共鸣。
一、由因动点产生的相似三角形问题例:如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图1思路点拨1.第(2)题把求∠AOM 的大小,转化为求∠BOM 的大小.2.因为∠BOM =∠ABO =30°,因此点C 在点B 的右侧时,恰好有∠ABC =∠AOM .3.根据夹角相等对应边成比例,分两种情况讨论△ABC 与△AOM 相似. 满分解答(1)如图2,过点A 作AH ⊥y 轴,垂足为H .在Rt △AOH 中,AO =2,∠AOH =30°, 所以AH =1,OH =3.所以A (1,3)-.因为抛物线与x 轴交于O 、B (2,0)两点,设y =ax (x -2),代入点A (1,3)-,可得33a =. 图2 所以抛物线的表达式为23323(2)333y x x x x =-=-. (2)由2232333(1)3333y x x x =-=--, 得抛物线的顶点M 的坐标为3(1,)3-.所以3tan 3BOM ∠=. 所以∠BOM =30°.所以∠AOM =150°.(3)由A(1,3)-、B(2,0)、M3 (1,)3 -,得3tan3ABO∠=,23AB=,233OM=.所以∠ABO=30°,3OAOM=.因此当点C在点B右侧时,∠ABC=∠AOM=150°.△ABC与△AOM相似,存在两种情况:①如图3,当3BA OABC OM==时,23233BABC===.此时C(4,0).②如图4,当3BC OABA OM==时,33236BC BA==⨯=.此时C(8,0).图3 图4考点伸展在本题情境下,如果△ABC与△BOM相似,求点C的坐标.如图5,因为△BOM是30°底角的等腰三角形,∠ABO=30°,因此△ABC也是底角为30°的等腰三角形,AB=AC,根据对称性,点C的坐标为(-4,0).图5二、由动点产生的等腰三角形问题例:如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1思路点拨1.第(2)题是典型的“牛喝水”问题,点P 在线段BC 上时△PAC 的周长最小.2.第(3)题分三种情况列方程讨论等腰三角形的存在性.满分解答(1)因为抛物线与x 轴交于A (-1,0)、B (3, 0)两点,设y =a (x +1)(x -3),代入点C (0 ,3),得-3a =3.解得a =-1.所以抛物线的函数关系式是y =-(x +1)(x -3)=-x2+2x +3.(2)如图2,抛物线的对称轴是直线x =1.当点P 落在线段BC 上时,PA +PC 最小,△PAC 的周长最小.设抛物线的对称轴与x 轴的交点为H . 由BH PH BO CO =,BO =CO ,得PH =BH =2. 所以点P 的坐标为(1, 2).图2(3)点M 的坐标为(1, 1)、(1,6)、(1,6-)或(1,0).考点伸展第(3)题的解题过程是这样的:设点M 的坐标为(1,m ).在△MAC 中,AC 2=10,MC 2=1+(m -3)2,MA 2=4+m 2.①如图3,当MA =MC 时,MA 2=MC 2.解方程4+m 2=1+(m -3)2,得m =1. 此时点M 的坐标为(1, 1).②如图4,当AM =AC 时,AM 2=AC 2.解方程4+m 2=10,得6m =±. 此时点M 的坐标为(1,6)或(1,6-).③如图5,当CM =CA 时,CM 2=CA 2.解方程1+(m -3)2=10,得m =0或6. 当M (1, 6)时,M 、A 、C 三点共线,所以此时符合条件的点M 的坐标为(1,0).图3 图4 图5三、由动点产生的直角三角形问题例:如图1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.图1思路点拨1.根据同底等高的三角形面积相等,平行线间的距离处处相等,可以知道符合条件的点D 有两个.2.当直线l 与以AB 为直径的圆相交时,符合∠AMB =90°的点M 有2个;当直线l 与圆相切时,符合∠AMB =90°的点M 只有1个.3.灵活应用相似比解题比较简便.满分解答(1)由23333(4)(2)848y x x x x =--+=-+-, 得抛物线与x 轴的交点坐标为A (-4, 0)、B (2, 0).对称轴是直线x =-1.(2)△ACD 与△ACB 有公共的底边AC ,当△ACD 的面积等于△ACB 的面积时,点B 、D 到直线AC 的距离相等.过点B 作AC 的平行线交抛物线的对称轴于点D ,在AC 的另一侧有对应的点D ′.设抛物线的对称轴与x 轴的交点为G ,与AC 交于点H .由BD //AC ,得∠DBG =∠CAO .所以34DG CO BG AO ==. 所以3944DG BG ==,点D 的坐标为9(1,)4-. 因为AC //BD ,AG =BG ,所以HG =DG .而D ′H =DH ,所以D ′G =3DG 274=.所以D ′的坐标为27(1,)4.图2 图3(3)过点A 、B 分别作x 轴的垂线,这两条垂线与直线l 总是有交点的,即2个点M .以AB 为直径的⊙G 如果与直线l 相交,那么就有2个点M ;如果圆与直线l 相切,就只有1个点M 了.联结GM ,那么GM ⊥l .在Rt △EGM 中,GM =3,GE =5,所以EM =4.在Rt △EM 1A 中,AE =8,113tan 4M A M EA AE ∠==,所以M 1A =6. 所以点M 1的坐标为(-4, 6),过M 1、E 的直线l 为334y x =-+. 根据对称性,直线l 还可以是334y x =+. 考点伸展第(3)题中的直线l 恰好经过点C ,因此可以过点C 、E 求直线l 的解析式. 在Rt △EGM 中,GM =3,GE =5,所以EM =4.在Rt △ECO 中,CO =3,EO =4,所以CE =5.因此三角形△EGM ≌△ECO ,∠GEM =∠CEO .所以直线CM 过点C .总之,动点问题是新课改后中考的的一个热点问题,解这类题目的一般技巧是抓住变化中的“不变量”,以不变应万变,首先根据题意理清题目中两个变量变化情况并找出相关常量;第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表达出来,然后再根据题目的要求,依据几何、代数知识解出;第三,确定自变量的取值范围,画出相应的图象。
2020中考数学 二次函数培优专题:动点成特殊三角形问题(含答案)1. 在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于(3,0)A -,(1,0)B 两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)在平面直角坐标系中,是否存在点Q ,使BCQ △是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;(1)由抛物线22y ax bx =++过点(3,0)A -,(1,0)B , 则0932,0 2.a b a b =-+⎧⎨=++⎩ 解得2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩.∴二次函数的关系表达式为224233y x x =--+.(2)点1(2,1)Q -,2(1,1)Q --,3(2,3)Q ,4(3,1)Q .2. 在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点(0,2)A ,点(1,0)C -,如图所示,抛物线22y ax ax =+-经过点B .(1)求点B 的坐标; (2)求抛物线的解析式;(3)在抛物线上是否还存在点P (点B 除外),使ACP △仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.(1)过点作轴,垂足为,∵ ; ∴;又∵;,∴ ∴,; ∴点的坐标为(3,1)-;(2)抛物线经过点(3,1)B -,则得到,解得, ∴抛物线解析式为; (3)方法一:①若以为直角边,点为直角顶点;则可以设直线交抛物线于点,由题意,直线的解析式为:1122y x =--,解得舍 ∴1(1,1)P -. 过点作轴于点,在中,∴,∴为等腰直角三角形.②若以AC 为直角边,点A 为直角顶点;则过点A 作,交抛物线于点,由题意,直线AF 的解析式为212,2.11222y x y x x ⎧=-+⎪⎪⎨⎪=++⎪⎩解得114,4.x y =-⎧⎨=⎩(舍)222,1.x y =⎧⎨=⎩ 过点2P 作2P N y ⊥轴于点N ,在2Rt AP △中,2AP =yxA (0,2)C (-1,0)BOB BD x ⊥D 90,BCD ACO ∠+∠=︒90ACO OAC ∠+∠=︒BCD CAO ∠=∠90BDC COA ∠=∠=︒CB AC =BCD CAO △≌△1BD OC ==2CD OA ==B 22y ax ax =+-1932a a =--12a =211222y x x =+-AC C BC 211222y x x =+-1P BC 211,2211 2.22y x y x x ⎧=--⎪⎪∴⎨⎪=+-⎪⎩113,1.x y =-⎧⎨=⎩221,1x y =⎧⎨=-⎩1P 1PM x ⊥M 1Rt PMC △1CP =1CP AC =1ACP △AF BC ∥211222y x x =+-2P 12,2y x =-+2AP AC ∴=. 2ACP ∴△为等腰直角三角形.综上所述,在抛物线上存在点使是以为直角边的等腰直角三角形.方法二:①若以AC 为直角边,点C 为直角顶点;则延长至点,使得,得到等腰直角三角形1ACP △,过点作,∵1=,,;∴1MPC DBC △≌△ ∴==2,∴==1,可求得点1(1,1)P -;经检验点1(1,1)P -在抛物线使得1ACP △是等腰直角三角形;②若以AC 为直角边,点A 为直角顶点;则过点A 作,且使得,得到等腰直角三角形2A C P △,过点作,同理可证2AP N △≌CAO △;∴==2,==1,可求得点(2, 1)经检验点(2, 1)也在抛物线上,使得2ACP △也是等腰直角三角形.3. 抛物线223y x x =--+与y 轴交于点C ,与x 轴交于点A 、B (点B 在点A的左侧),设J 为y 轴正半轴上的一个动点,请在抛物线223y x x =--+上求一点K ,使得OKJ △为等腰直角三角形.(1)当OJ 为直角边时,90KJO ∠=︒或90KOJ ∠=︒.若90KOJ ∠=︒,则K 与A 或B 重合, ∴1(3,0)K -,2(1,0)K .若90KJO ∠=︒,则45KOJ ∠=︒, 分别作COB ∠与COA ∠的角平分线交抛物线于两点,即为3K ,4K ,直线3OK 与直线4OK 解析式分别为y x =-、y x =分别与抛物线解析式联立,12(1,1)(2,1).P P -ACP △AC BC 1P 1PC BC =1P 1PM x ⊥轴CP BC 1MCP BCD ∠=∠190PMC BDC ∠=∠=︒CM CD 1PM BD 211222y x x =+-2AP CA ⊥2AP AC =2P 2P N y ⊥轴2NP OA AN OC 2P 2P 211222y x x =+-可得3K坐标为⎝⎭,4K坐标为⎝⎭. (2)当OJ 为斜边时,45KOJ ∠=︒,K 点坐标同上34K K ,. 综上所述,所求的点K 坐标为1(3,0)K -,2(1,0)K ,3K ⎝⎭,4K ⎝⎭. 线段OJ 可以充当“斜边”和“直角边”的角色.当OJ 为直角边时,又存在两种情况:90KJO ∠=︒或90KOJ ∠=︒.因此,共有6种情况.4. 在平面直角坐标系中,已知抛物线212y x bx c =-++(b ,c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . 若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M 、P 、Q 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标.NN备用图(1)21212y x x =-+-;(2)M的坐标是(12)-、(12)+、(4,1)-、(2,3)-、(2,7)--.5. 已知:抛物线2(2)2y x a x a =+--(a 为常数,且0a >).(1)求证:抛物线与x 轴有两个交点;(2)设抛物线与x 轴的两个交点分别为A 、B (A 在B 左侧),与y 轴的交点为C .①当AC =②将①中的抛物线沿x 轴正方向平移t 个单位(0t >),同时将直线:3l y x =沿y 轴正方向平移t 个单位.平移后的直线为'l ,移动后A 、B 的对应点分别为'A 、'B .当t 为何值时,在直线'l 上存在点P ,使得''A B P △为以''A B 为直角边的等腰直角三角形?(1)证明:令,则.22=(2)8(2)a a a -+=+△. ∵,∴.∴>0△. ∴方程有两个不相等的实数根.∴抛物线与x 轴有两个交点.(2)①令,则,解方程,得. ∵A 在B 左侧,且,∴抛物线与x 轴的两个交点为(,0)A a -,(2,0)B .∵抛物线与y 轴的交点为,∴(0,2)C a -. ∴.在中,,.可得.∵,∴. ∴抛物线的解析式为.②依题意,可得直线的解析式为,'(2,0)A t -,'(2,0)B t +,.∵为以为直角边的等腰直角三角形,∴当时,点的坐标为(2,4)t -或(2,4)t --.∴.解得或.当时,点的坐标为(2,4)t +或(2,4)t +-.∴.解得或(不合题意,舍去).综上所述,或.0y =2(2)20x a x a +--=0a >20a +>2(2)20x a x a +--=0y =2(2)20x a x a +--=122x x a ==-,0a >C 2AO a CO a ==,Rt AOC△222AO CO +=22(2)20a a +=2a =±0a >2a =24y x =-l '3y x t =+4A B AB ''==A B P ''△A B ''90PA B ''∠=°P 3(2)4t t -+=52t =12t =90PB A ''∠=°P 3(2)4t t ++=52t =-12t =-52t =12t =6. 如图,抛物线2424455y x x =-+-与x 轴相交于点A 、B ,与y 轴相交于点C ,抛物线的对称轴与x 轴相交于点M .P 是抛物线在x 轴上方的一个动点(点P 、M 、C 不在同一条直线上).分别过点A 、B 作直线CP 的垂线,垂足分别为D 、E ,连接点MD 、ME . (1)求点A ,B 的坐标(直接写出结果),并证明MDE △是等腰三角形;(2)MDE △能否为等腰直角三角形?若能,求此时点P 的坐标;若不能,说明理由; (3)若将“P 是抛物线在x 轴上方的一个动点(点P 、M 、C 不在同一条直线上)”改为“P 是抛物线在x 轴下方的一个动点”,其他条件不变,MDE △能否为等腰直角三角形?若能,求此时点P 的坐标(直接写出结果);若不能,说明理由.(1)抛物线解析式为2424455y x x =-+-,令0y =,即24244055x x -+-=,解得1x =或5x =,∴A (1, 0),B (5, 0).如答图1所示,分别延长AD 与EM ,交于点F . ∵AD ⊥PC ,BE ⊥PC ,∴AD ∥BE , ∴∠MAF =∠MBE .在AMF △与BME △中, MAF MBE MA MB AMF BME ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴(ASA)AMF BME △≌△,备用图∴ME MF =,即点M 为Rt EDF △斜边EF 的中点, ∴MD ME =,即MDE △是等腰三角形. (2)答:能.抛物线解析式为224244164(3)5555y x x x =-+-=--+,∴对称轴是直线3x =,M (3, 0); 令0x =,得4y =-,∴(0,4)C -.MDE △为等腰直角三角形,有3种可能的情形: ①若DE ⊥EM ,由DE ⊥BE ,可知点E 、M 、B 在一条直线上, 而点B 、M 在x 轴上,因此点E 必然在x 轴上,由DE ⊥BE ,可知点E 只能与点O 重合,即直线PC 与y 轴重合, 不符合题意,故此种情况不存在;②若DE ⊥DM ,与①同理可知,此种情况不存在; ③若EM ⊥DM ,如答图2所示: 设直线PC 与对称轴交于点N ,∵EM ⊥DM ,MN ⊥AM ,∴∠EMN =∠DMA . 在ADM △与NEM △中,135EMN DMA EM DM ADM NEM ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴(ASA)ADM NEM △≌△, ∴MN MA =.抛物线解析式为224244164(3)5555y x x x =-+-=--+,故对称轴是直线3x =,∴M (3, 0),2MN MA ==,∴N (3, 2).设直线PC 解析式为y kx b =+,∵点N (3, 2),(0,4)C -在抛物线上, ∴324k b b +=⎧⎨=-⎩,解得2k =,4b =-,∴24y x =-.将24y x =-代入抛物线解析式得:242424455x x x -=-+-,解得:0x =或72x =,当0x =时,交点为点C ;当72x =时,243y x =-=.∴7,32P ⎛⎫ ⎪⎝⎭.综上所述,MDE △能成为等腰直角三角形,此时点P 坐标为7,32⎛⎫⎪⎝⎭.(3)答:能.如答题3所示,设对称轴与直线PC 交于点N .与(2)同理,可知若MDE △为等腰直角三角形,直角顶点只能是点M . ∵MD ⊥ME ,MA ⊥MN ,∴∠DMN =∠EMB . 在DMN △与EMB △中, 45DMN EMB MD MB MDN MEB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴(ASA)DMN EMB △≌△, ∴MN MB =. ∴(3,2)N -.设直线PC 解析式为y kx b =+,∵点(3,2)N -,(0,4)C -在抛物线上,∴324k b b +=-⎧⎨=-⎩,解得23k =,4b =-,∴243y x =-.将243y x =-代入抛物线解析式得:2242444355x x x -=-+-,解得:0x =或316x =,当0x =时,交点为点C ;当316x =时,25439y x =-=-,∴315,69P ⎛⎫- ⎪⎝⎭.综上所述,MDE △能成为等腰直角三角形,此时点P 坐标为315,69⎛⎫- ⎪⎝⎭.7. 在如图的直角坐标系中,已知点(1,0)A ,(0,2)B -,将线段AB 绕点A 按逆时针方向旋转90︒至AC . (1)求点C 的坐标;(2)若抛物线2122y x ax =-++经过点C .①求抛物线的解析式;②在抛物线上是否存在点P (点C 除外),使ABP △是以AB 为直角边的等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(1)过点C 作CD x ⊥轴,垂足为D ,在ACD △和BAO △中,由已知有90CAD BAO ∠+∠=︒, 而90ABO BAO ∠+∠=︒,∴CAD ABO ∠=∠,又∵90CDA AOB ∠=∠=︒,且由已知有CA AB =,∴ACD BAO △≌△,∴1CD OA ==,2AD BO ==,∴点C 的坐标为(3,1)-(2)①∵抛物线2122y x ax =-++经过点(3,1)C -,∴2113322a -=-⨯++,解得12a =∴抛物线的解析式为211222y x x =-++.②i )当A 为直角顶点时,延长CA 至点1P ,使1AP AC AB ==, 则1ABP △是以AB 为直角边的等腰直角三角形,如果点1P 在抛物线上,则1P 满足条件,过点1P 作1PE x ⊥轴, ∵1AP AC =,1EAP DAC ∠=∠,190PEA CDA ∠=∠=︒ ∴1EP A DCA △≌△,∴2AE AD ==,11EP CD ==,∴可求得1P 的坐标为(1,1)-,经检验1P 点在抛物线上,因此存在点1P 满足条件;ii )当B 点为直角顶点时,过点B 作直线L BA ⊥,在直线L 上分别取23BP BP AB ==,得到以AB 为直角边的等腰直角2ABP △和等腰直角3ABP △,作2P F y ⊥轴于点F ,同理可证2BP F ABO △≌△ ∴22P F BO ==,1BF OA ==,可得点2P 的坐标为(2,1)--,经检验2P 点在抛物线上,因此存在点2P 满足条件. 同理可得点3P 的坐标为(2,3)-,经检验3P 点不在抛物线上.综上:抛物线上存在点1(1,1)P -,2(2,1)P --两点,使得1ABP △和2ABP △是以AB 为直角边的等腰直角三角形.8. 如图,一次函数44y x =--的图象与x 轴、y 轴分别交于A 、C 两点,抛物线243y x bx c =++的图象经过A 、C 两点,且与x 轴交于点B .(1)求抛物线的函数表达式;(2)作直线MN 平行于x 轴,分别交线段AC 、BC 于点M 、N .问在x 轴上是否存在点P ,使得PMN △是等腰直角三角形?如果存在,求出所有满足条件的P 点的坐标;如果不存在,请说明理由.(1)∵一次函数44y x =--的图象与x 轴、y 轴分别交于A 、C 两点, ∴(1,0)A -、(0,4)C -把(1,0)A -、(0,4)C -代入243y x bx c =++得∴,解得 xyCAB O4034b c c ⎧-=⎪⎨⎪=⎩834b c ⎧=⎪⎨⎪=⎩∴ (2)设M 、N 的纵坐标为a ,由B 和C 点的坐标可知BC 所在直线的解析式为:443y x =-,则4,4a M a --⎛⎫⎪⎝⎭,312,4a N a +⎛⎫⎪⎝⎭, ①当90PMN ∠=︒,4MN a =+,PM a =-,因为PMN △是等腰直角三角形,则4a a -=+,则2a =-,即P 点坐标为1,02⎛⎫- ⎪⎝⎭;②当90PNM ∠=︒,PN MN =,同上,2a =-,即P 点坐标为3,02⎛⎫⎪⎝⎭;③当90MPN ∠=︒,作MN 的中点Q ,连接PQ ,则PQ a =-,又PM PN =, ∴PQ MN ⊥,则2MN PQ =,即:42a a +=-,解得:34a =-,即P 点的坐标为(23, 0).248433y x x =--9. 如果抛物线1C 的顶点在抛物线2C 上,同时,抛物线2C 的顶点在抛物线1C 上,那么,我们称抛物线1C 与2C 关联. (1)已知抛物线①221y x x =+-,判断下列抛物线②221y x x =-++;③221y x x =++与已知抛物线①是否关联,并说明理由.(2)A 为抛物线211:(1)28C y x =+-的顶点,B 为与抛物线1C 关联的抛物线顶点,是否存在以AB 为斜边的等腰直角ABC △,使其顶点C 在y 轴上?若存在,求出C 点的坐标;若不存在,请说明理由.(1)∵抛物线2221(1)2y x x x =+-=+-的顶点坐标为(1,2)M --,∴②当1x =-时,2211212y x x =-++=--+=-, ∴点M 在抛物线②上;∵③当1x =时,2211212y x x =-++=-++=, ∴点M 不在抛物线③上;∴抛物线①与抛物线②有关联;∵抛物线②2221(1)2y x x x =-++=--+,其顶点坐标为(1,2),经验算:(1,2)在抛物线①上,∴抛物线①、②有关联; (2)点C 是y 轴上的一动点,以AC 为腰作等腰直角ABC △,令C 的坐标为(0,)c ,则点B 的坐标分两类:①当A ,B ,C 逆时针分布时,如图中的B 点,过点A ,B 作y 轴的垂线,垂足分别为H ,F ,则BCF CAH △≌△,∴,,点的坐标为(2,1c c +-,当点在抛物线211:(1)28C yx =+-上时,211(21)28c c -=++-,解得:.②当A ,B ,C 顺时针分布时,如图中点,过点作轴的垂线,垂足为,同理可得:点的坐标为(2,1)c c --+,当点在抛物线211:(1)28C y x =+-上Oyx1CF AH ==2BF CH c ==+B B 1c ='B 'B y D 'B 'B时,211(21)28c c +=--+-,解得:.综上所述,存在三个符合条件的等腰直角三角形,其中点的坐标分别为:1(0,1)C,2(0,3C +,3(0,3C -.10. 如图,抛物线223y x x =--+与y 轴交于点C ,与x 轴交于点A 、B (点B在点A 的左侧),抛物线223y x x =--+的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使CMP △为等腰三角形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.存在符合条件的P 点,由(0,3)C ,(1,0)M -,∴CM①当CM CP =时,1(1,6)P -;②当MC MP =时,2(P-,4(1,P -;③当PC PM =时,连接3CP ,过C 作对称轴的垂线,由勾股定理可得3513P ⎛⎫- ⎪⎝⎭,.综上所述,符合条件的点P 的坐标为1(1,6)P -,2(1,P -,3513P ⎛⎫- ⎪⎝⎭,,4(1,P -.11. 已知:Rt ABC △的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB 与x 轴重合(其中OA OB <),直角顶点C 落在y 轴正半轴上.(1)请直接写出A 、B 的坐标:A 、B ;并求经过A 、B 、C 三点的抛物线解析式; (2)如图,点D 的坐标为(2,0),点(,)P mn 是该抛物线上的一个动点(其中0m >,0n >),连接DP 交BC 于点E . 3c =+3c =-C①当BDE △是等腰三角形时,直接写出此时点E 的坐标.②又连接CD 、CP ,CDP △是否有最大面积?若有,求出CDP △的最大面的最大面积和此时点P 的坐标;若没有,请说明理由.()由,易知,2()CO OA OB OA AB OA =⋅=⋅-, 2()OC OA AB OA =-,可求, ∴(1,0)A -,(4,0)B ,(0,2)C可设解析式为(1)(4)y a x x =+-,将点(00)C ,代入,可求. ∴.(2)①,, 提示:直线的解析式为设(,)E x y ,利用勾股定理和点(,)E x y 在直线BC 上,可得两个方程组分别可求和. ②过作x 轴的垂线,交于,易求的解析式为,且,故故,当时,,.x1OA =4OB =12a =-213222y x x =-++1132E ⎛⎫ ⎪⎝⎭,24855E ⎛⎫ ⎪⎝⎭,34E ⎛-⎝BC 122y x =-+()22212222y x x y ⎧=-+⎪⎨⎪-+=⎩()22212242y x x y ⎧=-+⎪⎨⎪-+=⎩2E 3E D PC M PC 22n y x m -=+2422n M m -⎛⎫+ ⎪⎝⎭,()()12CDP CDM DMP P C M D S S S x x y y =+=--△△△11242222P M n x y m m n m -⎛⎫=⋅=+=+- ⎪⎝⎭2132222m m m ⎛⎫=+-++- ⎪⎝⎭21522m m =-+52m =25=8CDP S 最大值△52128P ⎛⎫⎪⎝⎭,12. 已知抛物线2()y a x m n =-+与y 轴交于点A ,它的顶点为B ,点A 、B 关于原点O 的对称点分别是点C 、D . 若点A 、B 、C 、D 中任何三点都不在一直线上,则称四边形ABCD 为抛物线的伴随四边形,直线AB 为抛物线的伴随直线. 如图,若抛物线2()y a x m n =-+的伴随直线是2(0)y x b b =-+>,且伴随四边形ABCD 是矩形.(1)用含b 的代数式表示m ,n 的值;(2)在抛物线的对称轴上是否存在点P ,使得PBD △是一个等腰三角形?若存在,请直接写出点P 的坐标(用含b 的代数式);若不存在,请说明理由.(1)如图,作BE x ⊥轴,由题意可得(0,)A b ,,)(0b C - ∵抛物线的顶点(,)B m n 在2(0)y x b b =-+>上, ∴2n m b =-+,(,2)B m m b -+在矩形ABCD 中,OC OB =,∴22OC OB = 即:222(2)b m m b =+-+ ∴(54)0m m b -=∴10m =(舍去),245m b =∴325n m b b =-+=-∴45m b =,35n b =-;(2)存在,有4个点:47,55b b ⎛⎫ ⎪⎝⎭,49,55b b ⎛⎫ ⎪⎝⎭,416,515b b ⎛⎫ ⎪⎝⎭,413,55b b ⎛⎫- ⎪⎝⎭.13. 抛物线223y x x =--+与y 轴交于点C ,与x 轴交于点A 、B (点B 在点A的左侧),在抛物线223y x x =--+上是否存在一点Q ,使得BCQ △为直角三角形?存在符合条件的Q 点,所有符合条件的点Q 如图所示: 由(1,4)D -,(0,3)C 可知,DC CB ⊥, ∴1Q 坐标为(1,4)-由(3,0)B -,(0,3)C 易得,2BQ 的解析式为3y x =--,联立可得 2233y x x y x ⎧=--+⎨=--⎩解得25x y =⎧⎨=-⎩或30x y =-⎧⎨=⎩(舍) 可得2Q 坐标为(2,5)-;设23(,23)Q a a a --+,所以22(1)(2)1BQ CQ k k a a ⋅=-+--=-,解得3Q,4Q 综上所述,Q 的坐标为1Q (1,4)-,2Q (2,5)-3Q ,4Q .14. 抛物线333842y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y轴交于点C .(1)求点A 、B 的坐标;(2)当直线l 过点(4,0)E ,M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.y CABxO(1)由23333(4)(2)848y x x x x =--+=-+-,得抛物线与x 轴的交点坐标为(4,0)20A B -、(,). (2)过点A 、B 分别作x 轴的垂线,这两条垂线与直线l 总是有交点的,即两个点M ;以AB 为直径的圆如果与直线l 相交,那么就有两个点M ; 如果圆与直线l 相切,就只有1个点M 了. 连结GM ,那么GM ⊥l , 在Rt EGM △中,3GM =,3GE =,∴4EM = 在1Rt EM A △中,AE =8,113tan 4M A M EA AE ∠==,∴16M A =∴点1M 的坐标为(4,6)-,过1M 、E 的直线l 为334y x =-+根据对称性,直线l 还可以为334y x =+.15. 如图,经过x 轴上(1,0)A -、(3,0)B 两点的抛物线2(0)y ax bx c a =++≠交y轴的正半轴于点C ,设抛物线的顶点为D .(1)用含a 的代数式表示出点C 、D 的坐标;(2)若90BCD =︒,请确定抛物线的解析式; (3)在(2)的条件下,能否在抛物线上找到另外的点Q ,使BDQ △为直角三角形?如果能,请求出Q 点坐标;如果不能,请说明理由.(1)设抛物线的解析式为(1)(3)y a x x =+-. 则2223)(1)4(x a x a y a x --=--=.则点D 的坐标为(1,4)D a -,点C 的坐标为(0,3)C a -.(2)过点D 作轴于,如图1所示,则有.∴.∴. ∴,(舍去).∴.抛物线的解析式为.DE y ⊥E DEC COB △∽△DE ECCO OB=1|||3|3a a =-21a =1a =±1a =1a =-223y x x =-++(3)①如图2,若为,作轴于,轴于.可证. 有, 点坐标2(,23)k k k -++,. 化简得,即(3)(23)0k k -+=.解之得或.检验略.舍去.由得点坐标:. ②如图3,若为.延长交轴于,可证明.即. 则. 得,点的坐标为. DM 所在的直线方程为.则与的解为(舍),,得交点的坐标为.③若90BQD ∠=︒,容易证明此种情况不成立所以满足题意的点另有两个:.图2图2图1DBQ ∠90︒QF x ⊥F DH x ⊥H Rt Rt DHB BFQ △∽△DH HBBF FQ =Q 242323k k k =---22390k k --=3k =32k =-3k =32k =-Q 3924Q ⎛⎫-- ⎪⎝⎭,BDQ ∠90︒DQ y M DEM DHB △∽△DE EM DH HB =142EM =12EM =M 702⎛⎫ ⎪⎝⎭,1722y x =+1722y x =+223y x x =-++1x =12x =Q 11524⎛⎫⎪⎝⎭,Q 391152424⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,,。
抛物线与直线形(1)——由动点生成的特殊三角形问题知识点归纳抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能够成某些特殊三角形,有以下常见的基本形式:(1) 抛物线上的点能否构成等腰三角形;(2) 抛物线上的点能否构成直角三角形;(3) 抛物线上的点能否构成相似三角形;解这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。
经典例题【例如图,抛物线y =处2-5做+ 4经过AABC的三个顶点,已知BC 〃兀轴,点A在x轴上,点C在y轴上,且AC = BC .(1) 求抛物线的对称轴;(2) 写出A,B,C三点的坐标并求抛物线的解析式;(3) 探究:若点P是抛物线对称轴上且在兀轴下方的动点,是否存在APAB是等腰三角形?思路点拨对于(3)只需求出P点纵坐标,将问题转化为相关线段长。
解题的关键是分情况讨论并正确画图。
【例2】已知抛物线y = kx1 +2kx-3k ,交兀轴于A,B两点(A在3的左边),交y轴于C点,且丿有最大值4.(1) 求抛物线的解析式;(2) 在抛物线上是否存在点P,使APBC是直角三角形?若存在,求出P点坐标;若不存在,说明理由.思路点拨对于(2),设P点坐标为(a,b),寻找相似三角形,建立b的另一关系式,解联立而得到的方程组,可求出b的值。
【例3】抛物线3; = --(x-l)2 +3与y轴交于点A,顶点为B,对称轴BC与兀轴交于点C •(1) 如图1.求点A的坐标及线段0C的长;(2) 点P在抛物线上,直线PQ// BC交兀轴于点Q,连接BQ.①若含45。
角的直角三角板如图2所示放置.其中,一个顶点与点C重合,直角顶点£>在BQ上,另一个顶点E在P0上.求直线的函数解析式;②若含30。
角的直角三角板一个顶点与点C重合,直角顶点D在直线BQ上,另一个顶点E 在PQ 上,求点P的坐标.思路点拨对于(2),解题的关键是求出CQ的长。
中考数学因动点产生的等腰三角形问题详解近年来,中考数学中因动点产生的图象问题,因其能较好地考查学生的空间想象能力和实际操作能力而备受
命题者的青睐。
思路点拨
1.证明△DCE∽△EBF,根据相似三角形的对应边成比例可以得到y关于x的函数关系式.
2.第(2)题的本质是先代入,再配方求二次函数的最值.
3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF为等腰三角形,那么得到x=y;一段是计算,化简消去m,得到关于x的一元二次方程,解出x的值;第三段是把前两段结合,代入求出对应的m的值.
满分解答
第 1 页。
一、动点产生的相似三角形问题1、 满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM,x AM -=4.如果2==CO AOPM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意.如果21==COAOPM AM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM,4-=x AM . 解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6,2、 满分解答(1)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m =-⨯-.解得m =4. (2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4, 0),E (0, 2).所以S △BCE =1162622BC OE ⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小. 设对称轴与x 轴的交点为P ,那么HP EOCP CO=. 因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2. (4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′.由于∠BCE =∠FBC ,所以当CE BC CB BF=,即2BC CE BF =⋅时,△BCE ∽△FBC . 设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+.解得x =m +2.所以F ′(m +2, 0).由'CO BF CE BF =4m BF +=.所以BF =. 由2BC CE BF =⋅,得2(2)m +=整理,得0=16.此方程无解.图2 图3 图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,所以BE BC BC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC . 在Rt △BFF ′中,由FF ′=BF ′,得1(2)()2x x m x m+-=+.解得x =2m .所以F ′(2,0)m .所以BF ′=2m +2,2)BF m =+.由2BCBE BF =⋅,得2(2)2)m m +=+.解得2m =±综合①、②,符合题意的m为2+考点伸展第(4)题也可以这样求BF 的长:在求得点F ′、F 的坐标后,根据两点间的距离公式求BF 的长.二、因动点产生的等腰三角形问题 满分解答(1)因为抛物线与x 轴交于A (-1,0)、B (3, 0)两点,设y =a (x +1)(x -3), 代入点C (0 ,3),得-3a =3.解得a =-1.所以抛物线的函数关系式是y =-(x +1)(x -3)=-x 2+2x +3. (2)如图2,抛物线的对称轴是直线x =1.当点P 落在线段BC 上时,P A +PC 最小,△P AC 的周长最小. 设抛物线的对称轴与x 轴的交点为H . 由BH PHBO CO=,BO =CO ,得PH =BH =2. 所以点P 的坐标为(1, 2).(3)点M 的坐标为(1, 1)、、(1,)或(1,0).设点M 的坐标为(1,m ).在△MAC 中,AC 2=10,MC 2=1+(m -3)2,MA 2=4+m 2.①如图3,当MA =MC 时,MA 2=MC 2.解方程4+m 2=1+(m -3)2,得m =1. 此时点M 的坐标为(1, 1).②如图4,当AM =AC 时,AM 2=AC 2.解方程4+m 2=10,得m =此时点M 的坐标为或(1,.③如图5,当CM =CA 时,CM 2=CA 2.解方程1+(m -3)2=10,得m =0或6. 当M (1, 6)时,M 、A 、C 三点共线,所以此时符合条件的点M 的坐标为(1,0).图3 图4 图54.思路点拨1.用含m 的代数式表示表示△APD 的三边长,为解等腰三角形做好准备. 2.探求△APD 是等腰三角形,分三种情况列方程求解.3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C . 满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3).②当P A =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H . 三、①因动点产生的直角三角形问题5、满分解答(1)设抛物线的函数表达式为2(1)y x n =-+,代入点C (0,-3),得4n =-.所以抛物线的函数表达式为22(1)423y x x x =--=--.(2)由223(1)(3)y x x x x =--=+-,知A (-1,0),B (3,0).设直线BC 的函数表达式为y kx b =+,代入点B (3,0)和点C (0,-3),得30,3.k b b +=⎧⎨=-⎩ 解得1k =,3b =-.所以直线BC 的函数表达式为3y x =-.(3)①因为AB =4,所以334PQ AB ==.因为P 、Q 关于直线x =1对称,所以点P 的横坐标为12-.于是得到点P 的坐标为17,24⎛⎫-- ⎪⎝⎭,点F 的坐标为70,4⎛⎫- ⎪⎝⎭.所以75344FC OC OF =-=-=,522EC FC ==.进而得到51322OE OC EC =-=-=,点E 的坐标为10,2⎛⎫- ⎪⎝⎭.直线BC:3y x =-与抛物线的对称轴x =1的交点D 的坐标为(1,-2).过点D 作DH ⊥y 轴,垂足为H .在Rt △EDH 中,DH =1,13222EH OH OE =-=-=,所以tan ∠CED 23DH EH ==.②1(12)P -,25(1)2P -.图2 图3 图4②动点产生的平行四边形问题 2 满分解答(1) 因为抛物线与x 轴交于A (-4,0)、C (2,0)两点,设y =a (x +4)(x -2).代入点B (0,-4),求得12a =.所以抛物线的解析式为211(4)(2)422y x x x x =+-=+-. (2)如图2,直线AB 的解析式为y =-x -4.过点M 作x 轴的垂线交AB 于D ,那么2211(4)(4)222MD m m m m m =---+-=--.所以2142MDA MDB S S S MD OA m m ∆∆=+=⋅=--2(2)4m =-++.因此当2m =-时,S 取得最大值,最大值为4.(3) 如果以点P 、Q 、B 、O 为顶点的四边形是平行四边形,那么PQ //OB ,PQ =OB =4. 设点Q 的坐标为(,)x x -,点P 的坐标为21(,4)2x x x +-.①当点P 在点Q 上方时,21(4)()42x x x +---=.解得2x =-±此时点Q 的坐标为(2-+-(如图3),或(2--+(如图4). ②当点Q 在点P 上方时,21()(4)42x x x --+-=. 解得4x=-或0x =(与点O 重合,舍去).此时点Q 的坐标为(-4,4) (如图5).。
备战2020中考数学之解密压轴解答题命题规律专题01因动点产生的等腰三角形问题【类型综述】数学因运动而充满活力,数学因变化而精彩纷呈,动态几何问题是近年来中考的热点问题,以运动的观点来探究几何图形的变化规律问题,动态问题的解答,一般要将动态问题转化为静态问题,抓住运动过程中的不变量,利用不变的关系和几何性质建立关于方程(组)、函数关系问题,将几何问题转化为代数问题。
在动态问题中,动点形成的等腰三角形问题是常见的一类题型,可以与旋转、平移、对称等几何变化相结合,也可以与一次函数、反比例函数、二次函数的图象相结合,从而产生数与形的完美结合.解决动点产生的等腰三角形问题的重点和难点在于应用分类讨论思想和数形结合思想进行准确的分类.【方法揭秘】我们先回顾两个画图问题:1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C.已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么12AC=AB cos∠A;③如图3,如果CA=CB,那么12AB=AC cos∠A.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.【例1】抛物线y=-x2+bx+c与x轴交于A-1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,(A BP,求出直线C E的表达式为y=x+2-⎪⋅⋅⋅②,联立①②并解得:3m,求出F 2-,0⎪,利用V PCF的面积为5,求出m即可;3图1图2图3【典例分析】29点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当V PCF的面积为5时,求点P的坐标;(3)△当PCF为等腰三角形时,请直接写出点P的坐标.思路点拨(1)把(-1,0),(5,0)代入函数,利用交点式求解即可.(2)先求出点C,设点(2,m),然后得函数PB的表达式为:y=-1mx+5m⋯①,,根据CE⊥PE,33得故直线C E表达式中的k值为3⎛6⎫m⎝m⎭x=2-2m⎛2m⎫3⎝⎭( ) y = - (x + 1)(x-5) = - x 2 - 4 x - 5 = - x 2 + x + .2 2 2 , 2( A B 故抛物线解析式为 y =- x 2 + x + C 2 P , x + 2 - ⎪ ⋅⋅⋅ ② 故点 F 2 - ,0 ⎪ = ⨯ PC ⨯ DF = (2 - m ) 2 - - 2 ⎪ = 5, 2m 3 (3) P ⎛ 2, 3 ⎫⎪ 或 (2, -2 ). P(3)由点 F 的坐标得: C P 2=(2 - m ),CF 2=( 2m ) + 4, PF 2=( 2m ) + m 2 分别算出 C P =CF ,33CP =PF , CF =PF 时的 m 即可.满分解答(1) 将抛物线化为交点式: y = - 2 x 2 + bx + c = - (x + h )x + k ) 9 9将 (-1,0),(5,0)代入可得2 2 2 8 10 9 9 9 9 92 8 109 9 9.(2)抛物线的对称轴为 x = 1 ,则点 (2,),设点 (2,m ), 将点 P , B 的坐标代入一次函数表达式: y = sx + t 并解得:1 函数 PB 的表达式为: y = - mx +35m 3⋯①,Q CE ⊥ PE 故直线 CE 表达式中的 k 值为将点 C 的坐标代入一次函数表达式,3 m,同理可得直线 C E 的表达式为: y =2m 联立①②并解得: x = 2 -32m ⎫⎛3⎭⎝3 m ⎛ 6 ⎫ ⎝ m ⎭S VPCF 1 1 ⎛ ⎫2 2 ⎝ ⎭解得: m = 5 或 -3 (舍去 5 ),故点 (2, -3);⎝ 2 ⎭考点伸展CP2=(2-m)2,CF2=(2m)2+4,PF2=()2+m2,CP=CF时,即:(2-m)=⎛⎪+4,解得CP=PF时,(2-m)2=⎛⎪+mP 2,⎪或(2,-2).第(3)问的解题过程是这样的:由(2)确定的点F的坐标得:2m33①当2m⎫2⎝3⎭m=0:或365(均舍去),②当2m⎫2⎝3⎭2,解得:m=32或3(舍去3),③当CF=PF时,同理可得:m=±2(舍去2),故点⎛3⎫⎝2⎭【例2】如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点△M,使MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1思路点拨1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△P AC的周长最小.2.第(3)题分三种情况列方程讨论等腰三角形的存在性.满分解答所以点P的坐标为(1,2).图2(3)点M的坐标为(1,1)、(1,6)、(1,-6)或(1,0).考点伸展第(3)题的解题过程是这样的:设点M的坐标为(1,m).在△MAC中,AC2=10,MC2=1+(m-3)2,MA2=4+m2.①如图3,当MA=MC时,MA2=MC2.解方程4+m2=1+(m-3)2,得m=1.此时点M的坐标为(1,1).②如图4,当AM=AC时,AM2=AC2.解方程4+m2=10,得m=±6.此时点M的坐标为(1,6)或(1,-6).③如图5,当CM=CA时,CM2=CA2.解方程1+(m-3)2=10,得m=0或6.当M(1,6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0).图3图4图5【例3】如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.图1思路点拨1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.2.本题中等腰三角形的角度特殊,三种情况的点P重合在一起.满分解答由y=-3x(x-4)=-(x-2)2+).,得抛物线的顶点为D(2,(3)抛物线的对称轴是直线x=2,设点P的坐标为(2,y).①当OP=OB=4时,OP2=16.所以4+y2=16.解得y=±23.当P在(2,23)时,B、O、P三点共线(如图2).②当BP=BO=4时,BP2=16.所以42+(y+23)2=16.解得y=y=-23.12③当PB=PO时,PB2=PO2.所以42+(y+23)2=22+y2.解得y=-23.综合①、②、③,点P的坐标为(2,-23),如图2所示.图2图3考点伸展如图3,在本题中,设抛物线的顶点为D,那么△DOA与△OAB是两个相似的等腰三角形.323236633因此tan∠DOA=233.所以∠DOA=30°,∠ODA=120°.【例4】在平面直角坐标系xOy中,已知A(0,2),动点P在y=接AP,过点P作PQ⊥AP,交x轴于点Q,连接AQ.33x的图像上运动(不与O重合),连(1)求线段AP长度的取值范围;(2)试问:点P运动过程中,∠QAP是否问定值?如果是,求出该值;如果不是,请说明理由.(3)当∆OPQ为等腰三角形时,求点Q的坐标.思路点拨(1)作AH⊥OP,由点P在y=3x的图像上知:∠HOQ=30︒,求出AH,即可得解;3(2)①当点P在第三象限时,②当点P在第一象的线段O H上时,③当点P在第一象限的线段O H的延长线上时,分别证明Q、P、O、A四点共圆,即可求得∠QAP=30°;(3)分OP=OQ,PO=PQ,QO=QP三种情况,分别求解即可.满分解答(1)作AH⊥OP,则AP≥AH∵点P在y=3x的图像上3∴∠HOQ=30︒,∠HOA=60︒∵A(0,2),∴AH=A Ogsin60︒=3∴AP≥3(2)①当点P在第三象限时,由∠QP A=∠QOA=90︒,可得Q、P、O、A四点共圆,∴∠P AQ=∠POQ=30︒②当点P在第一象的线段O H上时,(3)设P(m,33m-6 m),则lAP:y=+22-∴l P Q:y=3m421621644242162164②当PO=PQ时,则4242由∠QP A=∠QOA=90︒,可得Q、P、O、A四点共圆,∴∠P AQ+∠POQ=180︒,又此时∠POQ=150︒∴∠P AQ=180︒-∠POQ=30︒③当点P在第一象限的线段O H的延长线上时,由∠QP A=∠QOA=90︒,可得∠APQ+∠AOQ=180︒,∴Q、P、O、A四点共圆,∴∠P AQ=∠POQ=30︒33m∵PQ⊥AP,∴k PQ=3m m23-m∴Q(4m-23,0)33(x-m)+m3∴OP2=m,OQ2=m-3m+399344PQ2=m-3m+993①当OP=OQ时,则m=m-3m+3993整理得:m2-43m+3=0解得:m=23±3∴Q(23+4,0),Q(23-4,0)1244m=m-3m+3993整理得:2m2+3m-3=0解得:m=3或m=-3 2当m=3时,Q点与O重合,舍去,2∴m=-3,∴Q(-23,0)则16216442∴Q(23,0)33③当QO=QP时,44m-3m+=m-3m+993993整理得:m2-3m=0解得:m=34【例5】如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点M,使V DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.思路点拨(1)由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8-x.在RtVECF中,利用勾股定理构建方程即可解决问题.(2)①证明V ADM∽V GMN,可得ADMG=AMGN,由此即可解决问题.②有两种情形:如图3-1中,当M N=MD时.如图3-2中,当M N=DN时,作M H⊥DG于H.分别求解即可解决问题.满分解答(1)如图1中,∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=8,∴∠B=∠BCD=90︒,由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8-x.∴AD∴10在RtVABF中,BF=AF2-AB2=6,∴CF=BC-BF=10-6=4,在RtVEFC中,则有:(8-x)2=x2+42,∴x=3,∴EC=3.(2)①如图2中,∵AD∥CG,∴∴AD DE=,CG CE105=,CG3∴CG=6,∴BG=BC+CG=16,在RtVABG中,AG=82+162=85,在RtVDCG中,DG=62+82=10,∵AD=DG=10,∴∠DAG=∠AGD,∵∠DMG=∠DMN+∠NMG=∠DAM+∠ADM,∠DMN=∠DAM,∴∠ADM=∠NMG,∴V ADM∽V GMN,AM=,MG GNx=,85-x10-y∴y=1∴DM45x2-x+10.105当x=45时,y有最小值,最小值=2.②存在.有两种情形:如图3-1中,当MN=MD时,∵∠MDN=∠GMD,∠DMN=∠DGM,∴VDMN∽VDGM,MN=,DG GM∵MN=DM,∴DG=GM=10,∴x=AM=85-10.如图3-2中,当MN=DN时,作MH⊥DG于H.∵MN=DN,∴∠MDN=∠DMN,∵∠DMN=∠DGM,∴∠MDG=∠MGD,∴MD=MG,∵BH⊥DG,由VGHM∽VGBA,可得GH∴5(∴DH=GH=5,MG=,GB AGMG=,1685∴MG=552,∴x=AM=85-55115=22.综上所述,满足条件的x的值为85-10或1152.【例6】如图1,已知△Rt ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P、Q运动的时间为t秒.(1)在运动过程中,求P、Q两点间距离的最大值;(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;(3)P,Q两点在运动过程中,是否存在时间△t,使得PQC为等腰三角形.若存在,求出此时的t值,若不存在,请说明理由.5≈2.24,结果保留一位小数)图1思路点拨1.过点B作QP的平行线交AC于D,那么BD的长就是PQ的最大值.2.线段PQ扫过的面积S要分两种情况讨论,点Q分别在AB、BC上.3.等腰三角形PQC分三种情况讨论,先罗列三边长.满分解答)2 .所以 S =△S AQP =15 ⨯ ( )2 = t 2 . 因为 △S CQP = CQ ⋅ CP = (16 - 2t )(8 - t ) = (t - 8)2,= = .所以 Q P =QP AP QP t如图4,作QH ⊥AC 于H .在Rt △AQH 中,QH =AQ sin ∠A = t ,AH = t .6在△Rt CQH 中,由勾股定理,得CQ = QH 2 + CH 2 = ( t )2 + (8 - t )2 .6图 2图 3 图 4(2)①如图 2,当点 Q 在 AB 上时,0<t ≤5,S △ABD =15.由△AQP ∽△ABD ,得 △SAQP △SABD= ( AP ADt 3 5 5②如图 3,当点 Q 在 BC 上时,5<t ≤8,△S ABC =24. 1 1 22所以 S =△S ABC -△S CQP =24-(t -8)2=-t 2+16t -40.(3)如图3,当点Q 在BC 上时,CQ =2CP ,∠C =△90°,所以 PQC 不可能成为等腰三角形.当点Q 在AB 上时,我们先用△t 表示 PQC 的三边长:易知CP =8-t .如图2,由QP //BD ,得 ,即 BD AD 3 5 5 3 5 5 t .855855①如图8,当点Q在AB上时,PQ=QH2+PH2=(t)2+(t-t)2=6图5图6图7考点伸展第(1)题求P、Q两点间距离的最大值,可以用代数计算说理的方法:855355t.当Q与B重合时,PQ最大,此时t=5,PQ的最大值为35.②如图9,当点Q在BC上时,PQ=CQ2+CP2=(2CP)2+CP2=5(8-t).当Q与B重合时,PQ最大,此时t=5,PQ的最大值为35.综上所述,PQ的最大值为35.定值;④当△ODP 为等腰三角形时,点 D 的坐标为 ,0 ⎪⎪ .其中正确结论的个数是( + 2 2 BE =图 8图 9【变式训练】1.矩形 OABC 在平面直角坐标系中的位置如图所示,已知 B(2 3, 2) ,点 A 在 x 轴上,点 C 在 y 轴上,P是对角线 OB 上一动点(不与原点重合),连接 PC ,过点 P 作 PD ⊥ PC ,交 x 轴于点 D .下列结论:①OA = BC = 2 3 ;②当点 D 运动到 OA 的中点处时, PC 2 + PD 2 = 7 ;③在运动过程中,∠CDP 是一个⎛ 2 3 ⎫⎝ 3⎭)A .1 个B .2 个C .3 个D .4 个【答案】D【详解】解:①∵四边形 OABC 是矩形, B(2 3, 2) ,∴ O A = BC = 2 3 ;故①正确;②∵点 D 为 OA 的中点,1∴ O D = OA = 3 ,2∴ PC 2 + PD 2=CD 2=OC 2 + OD 2=22 ( 3)=7 ,故②正确;③如图,过点 P 作 PF ⊥ OA A 于 F ,FP 的延长线交 BC 于 E ,∴ PE ⊥ BC ,四边形 OFEC 是矩形,∴ E F =OC =2 ,设 PE =a ,则 PF =EF ﹣PE =﹣a ,在 Rt ∆BEP 中, tan ∠CBO =PE∴ BE = 3PE = 3a ,OC 3BC =3 ,Q tan∠AOB=AB∴O D=3∴C E=BC-BE=23-3a=3(2-a),Q PD⊥PC,∴∠CPE∠FPD=90︒,Q∠CPE+∠PCE=90︒,∴∠FPD=∠ECP,,Q∠CEP=∠PFD=90︒,∴∆CEP∽∆PFD,∴∴PE CP=,FD PDa3(2-a)=FD2-a,∴FD=a 3,∴tan∠PDC=PCPDa==3a,3∴∠PDC=60︒,故③正确;④Q B(23,2),四边形OABC是矩形,∴O A=23,AB=2,3=OA3,∴∠A OB=30︒,当∆ODP为等腰三角形时,Ⅰ、OD=PD,∴∠DOP=∠DPO=30o,∴∠ODP=60o,∴∠ODC=60o,23OC=33⎝3,0⎭Ⅱ、OP=OD∴∠ODP=∠OPD=75o,Q∠COD=∠CPD=90o,∴∠O CP=105o>90o,故不合题意舍去;Ⅲ、OP=PD,∴∠POD=∠PDO=30o,∴∠OCP=150o>90o故不合题意舍去,⎛23⎫∴当∆ODP为等腰三角形时,点D的坐标为 ⎪⎪.故④正确,故选:D.2.如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当VPEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<42-2时,P点最多有9个③当P点有8个时,x=22﹣2④当VPEF是等边三角形时,P点有4个A.①③【答案】B【详解】B.①④C.②④D.②③①当x=0(即E、A两点重合)时,如图1,分别以A、F为圆心,2为半径画圆,各2个点P,以AF为直径作圆,有2个P点,共6个,所以,①正确;②当0<x<42﹣2时,如图2、图3所示,此时P点最多有8个,故②错误;③当点P有8个时,如图2、图3所示,此时0<x<42﹣2,故③错误;④如图△4,当PEF是等边三角形时,有两个P点关于BD对称的位置,共有4个,故④正确;综上,不正确的是②③,一定正确的是①④,故选B.3.如图,在矩形ABCD中,AD=3A B=310,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若∆PMN是等腰三角形且底角与∠DEC相等,则MN=_____.【答案】6或158【详解】分两种情况:①MN为等腰△PMN的底边时,作PF⊥MN于F,如图所示:则∠PFM=∠PFN=90︒,Q四边形ABCD是矩形,∴AB=CD,BC=AD=3A B=310,∠A=∠C=90︒,∴AB=CD=10,BD=Q点P是AD的中点,AB2+AD2=10,PF PD∴=,即PF2,∴NFRtVPNF中,⎛ ⎫⎪+(3-x)2=x2,∴PD=1AD=31022,Q∠PDF=∠BDA,∴∆PDF:∆BDA,310AB BD=1010解得:PF=32,Q CE=2BE,∴BC=AD=3BE,∴BE=CD,∴CE=2CD,Q∆PMN是等腰三角形且底角与∠DEC相等,PF⊥MN,∴MF=NF,∠PNF=∠DEC,Q∠PFN=∠C=90︒,∴∆PNF:∆DEC,CE==2,PF CD∴NF=2PF=3,∴MN=2NF=6;②MN为等腰△PMN的腰时,作PF⊥BD于F,如图所示,由①得:PF=3,MF=3,2设MN=PN=x,则FN=3-x,在32⎝2⎭解得:x=1515,即MN=,88,)或(-4,326∴PE综上所述,MN的长为6或158.4.如图,平面直角坐标系中,矩形ABOC的边BO,CO分别在x轴,y轴上,A点的坐标为(-8,6),点P 在矩形ABOC的内部,点E在BO边上,满足∆PBE∽∆CBO,当∆APC是等腰三角形时,P点坐标为_____.【答案】(-553)【详解】解:∵点P在矩形ABOC的内部,且∆APC是等腰三角形,∴P点在AC的垂直平分线上或在以点C为圆心AC为半径的圆弧上;①当P点在AC的垂直平分线上时,点P同时在BC上,AC的垂直平分线与BO的交点即是E,如图1所示:∵PE⊥BO,CO⊥BO,∴PE//CO,∴∆PBE∽∆CBO,∵四边形ABOC是矩形,A点的坐标为(-8,6),∴点P横坐标为﹣4,OC=6,BO=8,BE=4,∵∆PBE∽∆CBO,BE PE4=,即=,CO BO68解得:PE=3,∴点P(-4,3);②P点在以点C为圆心AC为半径的圆弧上,圆弧与BC的交点为P,过点P作PE⊥BO于E,如图2所示:∴点 P(- , ) ;综上所述:点 P 的坐标为: (- , ) 或 (-4, ;32 6 故答案为: (- , ) 或 (-4, .32 6 )∵ CO ⊥ BO ,∴ PE / /CO ,∴ ∆PBE ∽ ∆CBO ,∵四边形 ABOC 是矩形, A 点的坐标为 (-8,6) ,∴ AC = BO = 8 , CP = 8 , AB = OC = 6 ,∴ BC = BO 2 + 0C 2 = 82 + 62 = 10 ,∴ BP = 2 ,∵ ∆PBE ∽ ∆CBO ,∴ PE BE BP PE BE 2= =,即: = = , CO BO BC 6 8 106 8 解得: PE = , BE = ,5 58 32∴ OE = 8 - = ,5 5 32 65 53) 5 5 3)5 55.在平面直角坐标系 xOy 中,已知点 A (0,3),点 B (5,0 ,有一动点 P 在直线 AB 上,△APO 是等腰三角形,则满足条件的点 P 共有( )A ﹒2 个B ﹒3 个C ﹒4 个D ﹒5 个【答案】C【详解】如图,(1)AP 1=AO ;(2)AP 2=AO ;(3)OA=OP 3;(4)AP 4=OP 4.。
第一节动点产生的等腰三角形问题讲方法一、两定点一动在平面中找点P,使得点P与已知点A、B构成等腰三角形第一类点,以AB为腰:如图,分别以A、B为圆心,AB的长为半径画圆,则两圆上的点(除去与A、B重合或共线的点)都能与A、B构成等腰三角形。
第二类点,以AB为底:如图,连接两圆的交点P1P2,可证直线P1P2是线段AB生垂直平分线,则P1P2所在直线上的点(除去与直线AB共线的点)都能与A、B构成等腰三角形。
总结:就是“两圆一中垂去五点”模型。
注:去除与直线AB共线的点的方法:求直线AB的解析式,再验证P点是否在直线AB上,在则共线,不在,则不共线;或用几何方法证。
二、动点个数不止在平面内使构成等腰三角形的三个点中,动点个数大于或等于两个解决问题的方法:让三个点轮流做顶角顶点,进行分类讨论。
三、计算点坐标的方法在具体题目中有时不仅要找出符合题意的点,还要计算出此点的坐标,计算点坐标的方参考以下几种:1.全等或相似(找相等线段或成比例线段);2.勾股定理;3.锐三角函数;4.面积法;5.方程或方程组学思路铺垫如图所示,在梯形ABCD中,AB∥CD,AD=DC=CB=2,AD⊥DB,AB=4,DO垂直于AB.若点P在梯形的对称轴l上,那么使APDB为等腰三角形的点P有_____个,坐标分别是________思路:①平行+等腰出角平分线②垂直要想到:1.两锐角互余;2.可用勾股定理;3.锐角三角函数③两定一动模型压轴题(重庆中考)如图,在平面直角坐标系中,抛物线y=3332332--x x 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C,对称轴与x 轴交于点D,点E(4,n)在抛物线上(1)直线AE 的解析式为________2)点G 是线段CE 的中点,将抛物线y=3332332--x x 沿x 轴正方向平移得到新抛物线y ‘,y ’经过点D, y ’的顶点为点F.在新抛物线y ’的对称轴上,是否存在一点Q,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由。
二次函数——由动点生成的特殊三角形问题在数学中,二次函数是一类特殊的函数,其数学表达式为y = ax² + bx + c,其中a、b、c为实数,且a≠0。
二次函数在数学中被广泛运用于解决各种问题,其中包括由动点生成的特殊三角形问题。
这个问题是通过将动点移动而生成的三角形,而且有一些特殊性质。
在本文中,我们将探讨这个问题,并研究其中的数学原理和应用。
首先,让我们考虑一个动点M(x, y)在平面直角坐标系上的移动。
该动点的运动路径取决于二次函数y = ax² + bx + c的具体形式。
我们可以通过设置一些特定的条件,来确定动点的运动路径。
例如,如果我们设置动点在y轴上移动,即x始终为常数,那么我们可以得到一条直线y = bx + c,其中b、c为常数。
这条直线称为二次函数的纵轴截距。
同样地,如果我们设置动点在x轴上移动,即y始终为常数,那么我们可以得到y轴上的一条直线y=c。
这条直线称为二次函数的横轴截距。
通过改变a的值,我们可以改变二次函数的开口方向。
当a>0时,二次函数的图像是一个开口向上的抛物线;当a<0时,二次函数的图像是一个开口向下的抛物线。
有了这些基本概念后,我们可以引出动点生成的特殊三角形问题。
该问题是通过动点在平面上的移动生成一个特殊的三角形。
设有一个二次函数y = ax² + bx + c。
我们将动点M(x, y)沿着该函数的图像移动。
当动点到达二次函数的两个零点时,即该二次函数与x轴的交点时,我们可以得到一个特殊的三角形。
令二次函数与x轴的交点为A(x₁,0)和B(x₂,0)。
那么三角形OAB的面积可以通过计算底边OA和OB之间的面积来得到。
对于这个特殊的三角形,我们可以发现一些有趣的性质。
首先,由于三角形的底边OA和OB的长度是确定的,因此三角形的面积也是确定的。
这意味着不论动点如何移动,三角形的面积是恒定的。
其次,由于底边OA和OB的长度也是确定的,所以这个特殊三角形的形状也是固定的。
中考数学压轴题因动点产生的相似三角形问题专项练习1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45° 后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q 为顶点的三角形与△PAT相似时,求所有满足条件的t的值.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC 交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB 时,求k1的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE时,请直接写出满足条件的所有k2的值.4.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB 于点G.(1)当点E是BD的中点时,求tan∠AFB的值;(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;(3)当△BGE和△BAF相似时,求线段AF的长参考答案一.解答题(共36小题)【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠ PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.【解答】解:(1)如图①,设直线AB与x轴的交点为M.∵∠OPA=45°,∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得解得.,故直线AB的解析式为y=x+2;22(2)如图①,过点Q 作x 轴的垂线QC ,交AB 于点C ,再过点Q 作直线AB 的垂线,垂足为D ,根据条件可知△QDC 为等腰直角三角形,则QD=QC .设Q (m ,m 2),则C (m ,m+2).∴QC=m+2﹣m 2=﹣(m﹣ )+ ,QD= QC= [﹣(m﹣ )+ ].故当m= 时,点Q 到直线AB的距离最大,最大值为;(3)∵∠APT=45°,∴△PBQ 中必有一个内角为45°,由图知,∠BPQ=45°不合题意.①如图②,若∠PBQ=45°,过点B 作x 轴的平行线,与抛物线和y 轴分别交于点Q′、F .此时满足∠PBQ′=45°.∵Q′(﹣2,4),F (0,4),∴此时△BPQ′是等腰直角三角形,由题意知△PAT 也是等腰直角三角形.(i )当∠PTA=90°时,得到:PT=AT=1,此时t=1;(ii )当∠PAT=90°时,得到:PT=2,此时t=0.②如图③,若∠PQB=45°,①中是情况之一,答案同上;先以点F 为圆心,FB 为半径作圆,则P 、B 、Q′都在圆F 上,设圆F 与y 轴左侧的抛物线交于另一点Q″.则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.设Q″(n ,n 2)(﹣2<n <0),由FQ″=2,得n 2+(4﹣n 2)2=22,即n 4﹣7n 2+12=0.解得n 2=3或n 2=4,而﹣2<n <0,故n=﹣,即Q″(﹣,3).可证△PFQ″为等边三角形,所以∠PFQ″=60°,又PQ″=PQ″,所以∠PBQ″=∠PFQ″=30°.则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.则ET= AE= ,OE=1,所以OT=﹣1,解得t=1﹣;(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.设TG=a,则PG=TG=a,AG= TG= a,AP=,∴ a+a= ,解得PT= a=﹣1,∴OT=OP﹣PT=3﹣,∴t=3﹣.综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣.2.【分析】(1)由AD⊥BC,BH⊥AO,利用垂直的定义得到一对直角相等,再由一对公共角,且半径相等,利用AAS得到三角形ADO与三角形BHO全等,利用全等三角形对应边相等得到OH=OD,利用等式的性质化简即可得证;(2)连接AB,AF,如图1所示,利用HL得到直角三角形ADB与直角三角形BHA全等,利用全等三角形对应角相等得到一对角相等,再由公共角相等得到三角形ABE与三角形AFB相似,由相似得比例即可确定出y与x的函数解析式;(3)连接OF,如图2所示,利用两对角相等的三角形相似得到三角形AFO与三角形FOG相似,由相似得比例求出BD的长即可.【解答】(1)证明:∵AD⊥BC,BH⊥AO,∴∠ADO=∠BHO=90°,在△ADO与△BHO中,,∴△ADO≌△BHO(AAS),∴OH=OD,又∵OA=OB,∴AH=BD;(2)解:连接AB、AF,如图1所示,∵AO是半径,AO⊥弦BF,∴∴AB=AF,∴∠ABF=∠AFB,在Rt△ADB与Rt△BHA中,,∴Rt△ADB≌Rt△BHA(HL),∴∠ABF=∠BAD,∴∠BAD=∠AFB,又∵∠ABF=∠EBA,∴△BEA∽△BAF,∴= ,∴BA2=BE•BF,∵BE•BF=y,∴y=BA2,∵∠ADO=∠ADB=90°,∴AD2=AO2﹣DO2,AD2=AB2﹣BD2,∴AO2﹣DO2=AB2﹣BD2,∵直径BC=8,BD=x,∴AB2=8x,则y=8x(0<x<4);方法二:∵BE•BF=y,BF=2BH,∴BE•BH=y,∵△BED∽△BOH,∴= ,∴OB•BD=BE•BH,∴4x=y,∴y=8x(0<x<4);(3)解:连接OF,如图2所示,∵∠GFB是公共角,∠FAE>∠G,∴当△FAE∽△FBG时,∠AEF=∠G,∵∠BHA=∠ADO=90°,∴∠AEF+∠DAO=90°,∠AOD+∠DAO=90°,∴∠AEF=∠AOD,∴∠G=∠AOD,∴AG=AO=4,∵∴∠AOD=∠AOF,∴∠G=∠AOF,又∵∠GFO是公共角,∴△FAO∽△FOG,∴= ,∵AB 2=8x ,AB=AF ,∴,∴AF=2x,=解得:x=3±,∵3+>4,舍去,∴BD=3﹣.3.【分析】(1)先通过解直角三角形求得A 的坐标,然后根据待定系数法即可求得直线AB 的解析式;(2)作DE ∥OA ,根据题意得出= = ,求得DE ,即D 的横坐标,代入AB 的解析式求得纵坐标,然后根据反比例函数图象上点的坐标特征即可求得k 1;(3)根据勾股定理求得AB 、OE ,进一步求得BE ,然后根据相似三角形的性质求得EF 的长,从而求得FM 的长,得出F 的坐标,然后根据反比例函数图象上点的坐标特征即可求得k 2.【解答】解:(1)∵A (3,0)、B (0,m )(m >0),∴OA=3,OB=m ,∵tan ∠BAO==2,∴m=6,设直线AB 的解析式为y=kx+b ,代入A (3,0)、B (0,6)得:解得:b=6,k=﹣2∴直线AB的解析式为y=﹣2x+6;(2)如图1,∵AD=2DB,∴= ,作DE∥OA,∴==,∴DE=OA=1,∴D的横坐标为1,代入y=﹣2x+6得,y=4,∴D(1,4),∴k1=1×4=4;(3)如图2,∵A(3,0),B(0,6),∴E(,3),AB==3,∵OE是Rt△OAB斜边上的中线,∴OE= AB=,BE=,∵EM⊥x轴,∴F的横坐标为,∵△OEF∽△OBE,∴=,∴,∴EF=,∴FM=3﹣=.∴F(,),∴k2=×=.。
抛物线中由动点产生的特殊三角形的存在性问题解析二次函数的图像与三角形的结合是代数与平面几何生成的综合性问题的一种重要形式.其呈现方式多以抛物线为载体、探索满足某种条件的三角形的存在性.这类试题旨在全面考查学生分析问题、解决问题的能力和创新思维能力.由于其涉及的知识面广,内容丰富,综合性和灵活性以及解题技巧性都较强,因而对大多数考生来说常感到束手无策.解决这类问题的关键是,弄清函数与几何图形之间的关系,在解题过程中将函数问题几何化,几何问题数量化,数形统一.一般步骤是:先假设其存在,再画出相应的图形,然后根据所画的图形进行解答,得出某些结论;最后,如果结论符合题目要求或定义、定理,则假设成立;如果出现与题目要求或定义、定理相悖的情况,则假设错误,所设不存在.一.由抛物线上的动点产生的等腰三角形用代数方法探求等腰三角形问题一般分三步:按腰相等分三种情况,再根据两点间距离列方程,解之并检验.有些等腰三角形当角度特殊时,三种情况下的动点可能会重合在一起.例1.如图1,在平面直角坐标系中,直线y=﹣2x+10与x 轴,y 轴相交于A,B 两点,点C 的坐标是(8,4),连接AC,BC .(1)求过O,A,C 三点的抛物线的解析式,并判断△ABC的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动;同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,PA=QA ?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.【分析】(1)先确定出点A,B 坐标,再用待定系数法求出抛物线解析式;用勾股定理逆定理判断出△ABC 是直角三角形;(2)根据运动表示出OP=2t,CQ=10﹣t,判断出Rt△AOP ≌Rt△ACQ ,得到OP=CQ 即可;(3)分三种情况用平面坐标系内,两点间的距离公式计算即可.【解答】(1)∵直线y=﹣2x+10与x 轴,y 轴分别交于A,B 两点,∴A(5,0),B(0,10).∵抛物线过原点, ∴设抛物线解析式为y=ax 2+bx,∵抛物线过点B(0,10),C(8,4),∴2550,6484a b a b +=⎧⎨+=⎩ ∴16,56a b ⎧=⎪⎪⎨⎪=-⎪⎩图1∴抛物线解析式为y=16x 2﹣56x, ∵A(5,0),B(0,10),C(8,4),∴AB 2=52+102=125,BC 2=82+(8﹣5)2=100,AC 2=42+(8﹣5)2=25, ∴AC 2+BC 2=AB 2, ∴△ABC 是直角三角形.(2)如图2,当P,Q 运动t 秒,即OP=2t,CQ=10﹣t 时,由(1)得,AC=OA,∠ACQ=∠AOP=90°,在Rt△AOP 和Rt△ACQ 中,,AC OA PA QA=⎧⎨=⎩ ∴Rt△AOP ≌Rt△ACQ , ∴OP=CQ, ∴2t=10﹣t, ∴t=103, ∴当运动时间为103时,PA=QA ; (3)存在,∵y=16x 2﹣56x, ∴抛物线的对称轴为x=52, ∵A(5,0),B(0,10), ∴AB=55 如图3,设点M(52,m), 按边相等分为三种情况: ①当BM=BA 时, ∴(52)2+(m ﹣10)2=125, ∴m 1=205192+,m 2=205192-, ∴M 1(52,205192+),M 2(52,205192-). ②当AM=AB 时, ∴(52)2+m 2=125, ∴m 3=5192, m 4=﹣5192, ∴M 3(52,5192),M 4(52,﹣5192). ③当MA=MB 时,∴(52﹣5)2+m 2=(52)2+(10﹣m)2, ∴m=5, ∴M 5(52,5),此时点M 恰为线段AB 的中点,构不成三角形,舍去. x OA 2M 1M C3M 4M B y 图3 图2∴综合上所述点M 的坐标为:M 1(52,205192+),M 2(52,205192-),M 3(52,5192),M 4(52,﹣5192) 【点评】本题作为压轴题,立意新颖,具有较强的综合性.试题主要考查一次函数、二次函数的性质,待定系数法求函数解析式,三角形全等的性质和判定,等腰三角形、直角三角形的性质.解本题第三问的关键是分情况讨论,这也是本题的难点.二.由抛物线上的动点产生的直角三角形对于直角三角形问题,若用代数方法探求,也需先按直角分三种情况,再根据两点间的距离列方程,然后解方程并检验.但下面例题中已指明斜边,故不需讨论.例2.如图4,在平面直角坐标系中,点O 为坐标原点,直线l 与抛物线y=mx 2+nx 相交于A(1,33),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD 是以线段AB 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由;(3)点P 是线段AB 上一动点,(点P 不与点A 、B重合),过点P 作PM ∥OA,交第一象限内的抛物线于点M,过点M 作MC ⊥x 轴于点C,交AB 于点N,若△BCN 、△PMN 的面积S △BC N 、S △P MN 满足S △B C N =2S △PMN ,求出MN NC的值,并求出此时点M 的坐标. 【分析】(1)由A 、B 两点的坐标,利用待定系数法可求得抛物线解析式;(2)分D 在x 轴上和y 轴上,分别向不同的坐标轴坐垂线段.用点D 的坐标表示出AD 、BD ,列出关于d 的方程,即可求得D 点的坐标;(3)过P 作PF ⊥CM 于点F,利用Rt △ADO ∽Rt △MFP 以及三角函数,可用PF 分别表示出MF 和NF,从而可表示出MN,设BC=a,则可用a 表示出CN,再利用S △BC N =2S △PMN ,可用PF 表示出a 的值,从而可用PF 表示出CN,可求得MN NC的值;借助a 可表示出M 点的坐标,代入抛物线解析式可求得a 的值,从而可求出M 点的坐标.【解答】(1)∵A(1,33),B(4,0)在抛物线y=mx 2+nx 的图象上,∴33,1640m n m n ⎧+=⎪⎨+=⎪⎩ 解得3,43m n ⎧=-⎪⎨=⎪⎩ ∴抛物线解析式为y=﹣3x 2+43x ;图4(2)存在三个点满足题意,理由如下:①当点D 在x 轴上时,如图4,过点A 作AD ⊥x 轴于点D,∵A(1,33), ∴D 坐标为(1,0);②当点D 在y 轴上时(图略),设D(0,d),则AD 2=1+(33﹣d)2,BD 2=42+d 2,且AB 2=(4﹣1)2+(33)2=36,∵△ABD 是以AB 为斜边的直角三角形,∴AD 2+BD 2=AB 2, 即1+(33﹣d)2+42+d 2=36,解得d=33112±, ∴D 点坐标为(0, 33112+)或(0, 33112-); 综上可知存在满足条件的D 点,其坐标为(1,0)或(0,33112+) 或(0,33112-); (3)如图5,过P 作PF ⊥CM 于点F,∵PM ∥OA, ∴Rt △ADO ∽Rt △MFP,∴MF AD PF OA==33, ∴MF=33PF, 在Rt △ABD 中,BD=3,AD=33,∴tan ∠ABD=3,∴∠ABD=60°,设BC=a,则CN=3a,在Rt △PFN 中,∠PNF=∠BNC=30°,∴tan ∠PNF=33PF FN =, ∴FN=3PF, ∴MN=MF+FN=43PF,∵S △BC N =2S △P MN , ∴32a 2=2××43PF 2, 图5∴a=22PF,∴NC=3a=26PF,∴4326MN PF NC PF==2, ∴MN=2NC=2×3a=6a, ∴MC=MN+NC=(6+3)a, ∴M 点坐标为(4﹣a,(6+3)a),又M 点在抛物线上,代入可得﹣3(4﹣a)2+43(4﹣a)=(6+3)a, 解得a=3﹣2或a=0(舍去), OC=4﹣a=2+1,MC=26+3, ∴点M 的坐标为(2+1, 26+3).【点评】本题是二次函数综合题,主要考查待定系数法求函数解析式,相似三角形、全等三角形以及直角三角形的性质.本题已指明了直角三角形的斜边是线段AB,不需要讨论;但需按点D 的位置分类讨论,这是解本题(2)的关键,也是本题之难点所在.三.由抛物线上的动点产生的等腰直角三角形此类问题可仿问题一、二的方法讨论.例3.如图6,已知点A 的坐标为(﹣2,0),直线y=﹣x+3与x 轴、y 轴分别交于点B 和点C,连接AC,顶点为D 的抛物线y=ax 2+bx+c 过A 、B 、C 三点.(1)请直接写出B 、C 两点的坐标,抛物线的解析式及顶点D 的坐标;(2),设抛物线的对称轴DE 交线段BC 于点E,P 是第一象限内抛物线上一点,过点P 作x 轴的垂线,交线段BC 于点F,若四边形DEFP 为平行四边形,求点P 的坐标;(3)设点M 是线段BC 上的一动点,过点M 作MN ∥AB,交AC 于点N,点Q 从点B 出发,以每秒1个单位长度的速度沿线段BA 向点A 运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN 为等腰直角三角形?【分析】(1)由 y=﹣34x+3易得B 和C 的坐标,然后设抛物线的交点式为y=a(x+2)(x ﹣4),把C 的坐标代入抛物线解析式即可求出a 的值和顶点D 的坐标;(2)若四边形DEFP 为平行四边形,则DP ∥BC,设直线DP 的解析式为y=mx+n,则m=﹣34,求出直线DP 的解析式后,联立抛物线解析式和直线DP 的解析式即可求出P 的坐标;(3)由题意可知,0≤t≤6,若△QMN 为等腰直角三角形,则共有三种情况,①∠NMQ=90°;②∠MNQ=90°;③∠NQM=90°.【解答】(1)B(4,O),C(0,3).抛物线的解析式为233 3.84y x x =++顶点D 的坐标为)827,1( .(2)如图6,把x=1代入,49343=+-=y x y 得, 9(1,),4E ∴,8949827=-=∴DE 因点P 为第一象限内抛物线上一点,所以可设点P 坐标为),34383,(2++-x x m 点F 的坐标为(m,-43m+3). 若四边形DEFP 为平行四边形,则PF=DE. 即-83m 2+43m+3-(-43m+3)=89. 解之,得m 1=3,m 2=1(不合题意,舍去).∴当点P 坐标为(3,815)时,四边形DEFP 为平行四边形. (3)设点M 的坐标为(m,-343+m ),MN 交y 轴于点G . ,//AB MN ∴∆MNC ∽∆BAC, COCG AB MN =∴ ①如图图7-①,当∠QMN=90°,MN=MQ=OG 时,,336MN MN -=解之,MN=2. ,2343=+-∴m 解之,⋅=)2,34(,34M m ⋅=-=∴38344),0.34(t Q 即 ②如图7-②,当∠QNM=90°,MN=NQ=OG 时∵,336MN MN -=解之,MN=2. ,2343=+-∴m 解之,⋅=)2,34(,34M m ∴GM=43,NG=23, ⋅-)0,32(Q ⋅=--=∴314)32(4t ③如图7-③当∠MQN=90°,QM=QN 时,OG= QK= 21NM, ,32136MN MN -=∴解之,得MN=3.⋅=∴23OG ,23343=+-∴x 解之,得x=2,即).23.1(),23,2(-N M MN 的中点K 的坐标为⋅⋅)2321().0,21(Q ∴即.27214=-=t ∴当t 为38或314或27时,存在△QMN 为等腰直角三角形. 图7-① G 图7-② G 图7-③ K G【点评】本题考查待定系数法求函数的解析式,及一次函数中k 值和点的坐标的求法,抛物线的对称性,相似三角形、等腰直角三角形等知识. 是一道综合性较强的试题.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.由于本题未指明三角形的直角,故需按直角分类讨论.例4.如图8,抛物线y=﹣53[(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图9,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值;(3)如图10,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)易知抛物线的对称轴为直线x=2,由对称性得2﹣(m﹣2)=2m+3﹣2,解得m的值,即得A(﹣1,0),B(5,0),然后把A点坐标代入y=﹣35 [(x﹣2)2+n]可求n的值;(2)作ND∥y轴交BC于D,如图9,由抛物线解析式确定C(0,3),再利用待定系数法求出BC的解析式为y=﹣35x+3,设N(x,﹣35x2+125x+3),则D(x,﹣35x+3),根据三角形面积公式,利用S△NBC=S△NDC+S△NDB可得S△BCN=﹣32x2+152x,然后利用二次函数的性质求解;(3)先由勾股定理求出BC=34,再分类讨论:当∠PMB=90°,则∠PMC=90°,△PMC为等腰直角三角形,MP=MC,设PM=t,则CM=t,MB=34﹣t,证明△BMP∽△BOC,利用相似比可求出BP的长,再计算OP后可得到P点坐标;当∠MPB=90°,则MP=MC,设PM=t,则CM=t,MB=34﹣t,证明△BMP∽△BCO,利用相似比求出BP的长,再计算OP后可得P点坐标.【解答】解:(1)∵抛物线的解析式为y=﹣35[(x﹣2)2+n]=﹣35(x﹣2)2﹣35n,∴抛物线的对称轴为直线x=2,∵点A和点B为对称点, ∴2﹣(m﹣2)=2m+3﹣2,解得m=1, ∴A(﹣1,0),B(5,0),把A(﹣1,0)代入y=﹣35[(x﹣2)2+n]得9+n=0,解得n=﹣9;图8(2)作ND ∥y 轴交BC 于D,如图9,抛物线解析式为y=﹣35[(x ﹣2)2﹣9]=﹣35x 2+125x+3, 当x=0时,y=3,则C(0,3),设直线BC 的解析式为y=kx+b,把B(5,0),C(0,3)代入得 50,3k b b +=⎧⎨=⎩ 解得3,53k b ⎧=-⎪⎨⎪=⎩ ∴直线BC 的解析式为y=﹣35x+3, 设N(x,﹣35x 2+125x+3),则D(x,﹣35x+3), ∴ND=﹣35x 2+125x+3﹣(﹣35x+3)=﹣35x 2+3x, ∴S △NBC =S △NDC +S △NDB =12•5•ND=﹣32x 2+152x=﹣(x ﹣52)2+758, 当x=52时,△NBC 面积最大,最大值为758; (3)存在.∵B(5,0),C(0,3),∴BC=223534,+=①如图10,当∠PMB=90°时,亦有∠PMC=90°,而MP=M,故△PMC 为等腰三角形,∴△PMC 为等腰直角三角形,MP=MC,设PM=t,则CM=t,MB=34﹣t,∵∠MBP=∠OBC, ∴△BMP ∽△BOC ,∴,PM BM BP OC OB BC == 即 34,3534t t BP -== 解得 334,8t =17,4BP = ∴OP=OB ﹣BP=5﹣174=34, 此时P 点坐标为(34,0); ②如图11,当∠MPB=90°时,则MP=MC,设PM=t,则CM=t,MB=34﹣t,∵∠MBP=∠CBO, ∴△BMP ∽△BCO ,∴ ,MP BM BP OC BC BO == 即34,3534t t BP -== 图10 M 图11M解得10225t -= 345BP -=∴OP=OB ﹣BP=5 , 此时P 点坐标为,0). 综上所述,P 点坐标为(34,0)或 (34,0). 评析:本题中虽然有“△PCM 为等腰三角形”, 但结合”△PCM 为等腰三角形,△PMB 为直角三角形同时成立”进行分析, 故不需对“等腰”分类,只需对“直角”讨论,解题过程迅速得以简化.通过对以上例题的分析与解答,我们对这类问题有了新的认识与了解,对解决抛物线中的等腰三角形及直角三角形问题寻求到了有效的解题途径,为今后九年级师生解决同类问题起到了抛砖引玉的作用.。
压轴专题01:动点问题之特殊三角形与四边形方法点拨:解决动点与特殊三角形或四边形结合的问题,找到变的量与不变的量,设一个核心变量,然后用它表示其他线段,根据几何图形的性质列出方程,解之即可。
在这个过程中涉及两点:1分类讨论动点在不同种情况下的几何性质,由此可以列出不同的方程;2对解出的变量要注意检验,它是对否在分类讨论的前提下。
【考点1】动点之全等三角形问题【例1】如图,CA⊥BC,垂足为C,AC=2Cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动_______秒时,△BCA与点P、N、B为顶点的三角形全等.(2个全等三角形不重合)【答案】0;4;8;12【分析】此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC=BP 或AC=BN进行计算即可.【详解】解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6−2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为0或4或8或12.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式1-1】如图①,将长方形纸片沿对角线剪成两个全等的直角三角形ABC、EDF,其中AB=8cm,BC=6cm,AC=10cm.现将△ABC和△EDF按如图②的方式摆放(点A与点D、点B与点E分别重合).动点P从点A出发,沿AC以2cm/s的速度向点C匀速移动;同时,动点Q从点E出发,沿射线ED以acm/s(0<a<3)的速度匀速移动,连接PQ、CQ、FQ,设移动时间为ts(0≤t≤5).(1)当t=2时,S△AQF=3S△BQC,则a=;(2)当以P、C、Q为顶点的三角形与△BQC全等时,求a的值;(3)如图③,在动点P、Q出发的同时,△ABC也以3cm/s的速度沿射线ED匀速移动,当以A、P、Q为顶点的三角形与△EFQ全等时,求a与t的值.【分析】(1)由题意得∠BAF=∠ABC=90°,BQ=at=2a,AF=BC,由三角形面积得AQ=3BQ,则AB=4BQ=8,得BQ=2=2a,则a=1;(2)由题意得点P与B为对应顶点,PQ=BQ=at,PC=BC=6,∠CPQ=∠ABC=90°,则AP=AC﹣PC=4,PQ⊥AC,得t=2,则PQ=BQ=2a,再由三角形面积关系即可得出答案;(3)分两种情况:①AP与EQ为对应边,AQ与EF为对应边,则AP=EQ,AQ=EF=10,求出a=2,BQ=BE﹣EQ=t,则AQ=AB+BQ=8+t=10,解得t=2;②AP与EF为对应边,AQ与EQ为对应边,则AP=EF=10,AQ=EQ,求出t=5,则AQ =EQ=5a,得BQ=15﹣5a,或BQ=5a﹣15,再分别求出a的值即可.【详解】解:(1)由题意得:∠BAF=∠ABC=90°,BQ=at=2a,AF=BC,∵S△AQF=3S△BQC,S△AQF=12AF×AQ,S△BQC=12BC×BQ,∴AQ=3BQ,∴AB=4BQ=8,∴BQ=2=2a,∴a=1;故答案为:1;(2)∵以P、C、Q为顶点的三角形与△BQC全等,CQ是公共边,∴点P与B为对应顶点,PQ=BQ=at,PC=BC=6,∠CPQ=∠ABC=90°,∴AP=AC﹣PC=10﹣6=4,PQ⊥AC,∵AP=2t=4,∴t=2,∴PQ=BQ=2a,∵△ABC的面积=△ACQ的面积+△BCQ的面积,∴12×8×6=12×10×2a+12×2a×6,解得:a=32;(3)由题意得:∠A=∠E,∴∠A与∠E为对应角,分两种情况:①AP与EQ为对应边,AQ与EF为对应边,则AP=EQ,AQ=EF=10,∵EQ=at,∴at=2t,∴a=2,∴EQ=2t,∵BE =3t ,∴BQ =BE ﹣EQ =t ,∴AQ =AB +BQ =8+t =10,解得:t =2;②AP 与EF 为对应边,AQ 与EQ 为对应边,则AP =EF =10,AQ =EQ ,∴2t =10,∴t =5, ∴AQ =EQ =5a ,∵BE =3t =15,∴BQ =15﹣5a ,或BQ =5a ﹣15,当BQ =15﹣5a 时,AQ =15﹣5a +8=23﹣5a ,或AQ =8﹣(15﹣5a )=5a ﹣7,∴5a =23﹣5a ,或5a =5a ﹣7(无意义),解得:a =2.3;当BQ =5a ﹣15时,AQ =5a ﹣15+8=5a ﹣7,或AQ =8﹣(5a ﹣15)=7﹣5a ,∴5a =5a ﹣7(无意义),或5a =7﹣5a ,解得:a =0.7,不合题意,舍去;综上所述,a =2时,t =2;或a =2.3时,t =5.【点睛】本题主要考查全等三角形的综合问题及动点问题,关键是根据题意找到动点之间的联系,然后结合全等三角形的性质进行求解问题即可,注意分类讨论思想的运用.【考点2】动点之直角三角形问题【例2】如图,在四边形纸片ABCD 中,//AB CD ,60A ∠=︒,30B ∠=︒,2CD =,4BC =,点E 是AB 边上的动点,点F 是折线A D C --上的动点,将纸片ABCD 沿直线EF 折叠,使点A 的对应点A '落在AB 边上,连接A C ',若A BC '是直角三角形,则AE 的长为________.【分析】如图(见解析),先利用解直角三角形、勾股定理、矩形的判定与性质求出AB 的长,再分90A CB '∠=︒和90BA C '∠=︒两种情况,分别求出A B '的长,然后根据折叠的性质、线段的和差即可得.【详解】如图,过点C 作CM AB ⊥于点M ,过点D 作DN AB ⊥于点N ,//AB CD ,,CM CD DN CD ∴⊥⊥,∴四边形CDNM 是矩形,2,MN CD CM DN ∴===, 在Rt BCM △中,30,4B BC ∠=︒=,2212,232CM BC BM BC CM ∴===-=,2DN ∴=, 在Rt ADN △中,60,30,2A ADN DN ∠=︒∠=︒=,23tan 3AN DN ADN ∴=⋅∠=,2383223233AB AN MN BM ∴=++=++=+, 由折叠的性质得:AE A E '=,点A '在AB 边上,AE A E AA ''∴+=,即12AE AA '=, 由题意,分以下两种情况:(1)当90A CB '∠=︒时,A BC '是直角三角形,在Rt A BC '中,483cos cos303BC A B B '===︒, 83832233AA AB A B ''∴=-=+-=,112122AE AA '∴==⨯=; (2)当90BA C '∠=︒时,A BC '是直角三角形,在Rt A BC '中,cos 4cos3023A B BC B '=⋅=︒=,8323223233AA AB A B ''∴=-=+-=+,11233212233AE AA ⎛⎫'∴==⨯+=+ ⎪ ⎪⎝⎭; 综上,AE 的长为1或313+,【点睛】本题考查了解直角三角形、勾股定理、矩形的判定与性质、折叠的性质等知识点,依据题意,正确分两种情况讨论是解题关键.【变式2-1】如图,已知二次函数y=ax2+bx+4的图象与x轴交于点A(4,0)和点D(﹣1,0),与y轴交于点C,过点C作BC平行于x轴交抛物线于点B,连接AC(1)求这个二次函数的表达式;(2)点M从点O出发以每秒2个单位长度的速度向点A运动;点N从点B同时出发,以每秒1个单位长度的速度向点C运动,其中一个动点到达终点时,另一个动点也随之停动,过点N作NQ垂直于BC交AC于点Q,连结MQ.①求△AQM的面积S与运动时间t之间的函数关系式,写出自变量的取值范围;当t为何值时,S有最大值,并求出S的最大值;②是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.【分析】(1)由待定系数法将AD两点代入即可求解.(2)①分别用t表示出AM、PQ,由三角形面积公式直接写出含有t的二次函数关系式,由二次函数的最大值可得答案;②分类讨论直角三角形的直角顶点,然后解出t,求得M坐标.【详解】(1)∵二次函数的图象经过A(4,0)和点D(﹣1,0),∴1644040a ba b++=⎧⎨-+=⎩,解得13ab=-⎧⎨=⎩,所以,二次函数的解析式为y=﹣x2+3x+4.(2)①延长NQ交x轴于点P,∵BC平行于x轴,C(0,4)∴B(3,4),NP⊥OA.根据题意,经过t秒时,NB=t,OM=2t,则CN=3﹣t,AM=4﹣2t.∵∠BCA=∠MAQ=45°,∴QN=CN=3﹣t,∴PQ=NP﹣NQ=4﹣(1﹣t)=1+t,∴S△AMQ=12AM×PQ=12(4-2t)(1+t)=﹣t2+t+2.∴S=-t2+t+2=-(t-12)2+94.∵a=﹣1<0,且0≤t≤2,∴S有最大值.当t=12时,S最大值=94.②存在点M,使得△AQM为直角三角形.设经过t秒时,NB=t,OM=2t,则CN=3﹣t,AM=4﹣2t,∵∠BCA=∠MAQ=45°.Ⅰ.若∠AQM=90°,则PQ是等腰Rt△MQA底边MA上的高.∴PQ是底边MA的中线,∴PQ=AP=12MA,∴1+t=12(4﹣2t),解得,t=12,∴M的坐标为(1,0).Ⅱ.若∠QMA=90°,此时QM与QP重合.∴QM=QP=MA,∴1+t=4﹣2t,∴t=1,∴点M的坐标为(2,0).所以,使得△AQM为直角三角形的点M的坐标分别为(1,0)和(2,0).【点睛】此题考查了待定系数法求解析式,还考查了三角形的面积,要注意利用点的坐标的意义表示线段的长度,从而求出线段之间的关系还要注意求最大值可以借助于二次函数.【考点3】动点之等腰三角形问题【例3】如图,AB是⊙O的直径,BC是弦,10cmAB=,6cmBC=.若点P是直径AB上一动点,当PBC 是等腰三角形时,AP =__________cm .【解析】解:①B 为顶点即BC BP =时,11AP AB AP =-,106=-,4=.②C 为顶点即CP CB =时,Rt BAC 中:228AC AB BC =-=,1122ABC S AC BC AB CD =⋅=⋅⋅, 4.8CD =, 22 3.6BD BC CD =-=,∴222 2.8AP AB BP AB BD =-=-=.③P 为顶点即CP BP =时,P 与D 重合,∴35AP r ==.综上AP 为2.8,4或5cm .点睛:解答本题的关键分三种情况讨论:①BC =BP ;②CP =CB ,③CP =BP .【变式3-1】如图,抛物线y=ax 2+bx+3交y 轴于点A ,交x 轴于点B(-3,0)和点C(1,0),顶点为点M .(1)求抛物线的解析式;(2)如图,点E 为x 轴上一动点,若△AME 的周长最小,请求出点E 的坐标;(3)点F 为直线AB 上一个动点,点P 为抛物线上一个动点,若△BFP 为等腰直角三角形,请直接写出点P 的坐标.【答案】(1)223y x x =--+ ;(2)E(-37,0);(3)点P 的坐标为(2,-5)或(1,0). 【解析】【分析】(1)设抛物线的解析式为:y=a(x+3)(x-1),然后将点A 的坐标代入函数解析式即可求得此抛物线的解析式;(2)作A 关于x 轴的对称点A′(0,-3),连接MA′交x 轴于E ,此时△AME 的周长最小,求出直线MA'解析式即可求得E 的坐标;(3)如图2,先求直线AB 的解析式为:y=x+3,根据解析式表示点F 的坐标为(m ,m+3), 分三种情况进行讨论:①当∠PBF=90°时,由F 1P ⊥x 轴,得P(m ,-m-3),把点P 的坐标代入抛物线的解析式可得结论;②当∠BF 3P=90°时,如图3,点P 与C 重合,③当∠BPF 4=90°时,如图3,点P 与C 重合,从而得结论.【详解】(1)当x=0时,y=3,即A(0,3),设抛物线的解析式为:y=a(x+3)(x-1),把A(0,3)代入得:3=-3a ,a=-1,∴y=-(x+3)(x-1)=-x 2-2x+3,即抛物线的解析式为:y=-x 2-2x+3;(2)y=-x 2-2x+3=-(x+1)2+4,∴M(-1,4),如图1,作点A(0,3)关于x轴的对称点A'(0,-3),连接A'M交x轴于点E,则点E就是使得△AME的周长最小的点,设直线A′M的解析式为:y=kx+b,把A'(0,-3)和M(-1,4)代入得:43k bb==-+⎧⎨-⎩,解得:73kb-⎧⎨-⎩==∴直线A'M的解析式为:y=-7x-3,当y=0时,-7x-3=0,x=-37,∴点E(-37,0),(3)如图2,易得直线AB的解析式为:y=x+3,设点F的坐标为(m,m+3),①当∠PBF=90°时,过点B作BP⊥AB,交抛物线于点P,此时以BP为直角边的等腰直角三角形有两个,即△BPF1和△BPF2,∵OA=OB=3,∴△AOB和△A'OB是等腰直角三角形,∴∠F1BC=∠BF1P=45°,∴F1P⊥x轴,∴P(m,-m-3),把点P的坐标代入抛物线的解析式y=-x2-2x+3中得:-m-3=-m2-2m+3,解得:m 1=2,m 2=-3(舍),∴P(2,-5); ②当∠BF 3P=90°时,如图3,∵∠F 3BP=45°,且∠F 3BO=45°,∴点P 与C 重合,故P(1,0),③当∠BPF 4=90°时,如图3,∵∠F 4BP=45°,且∠F 4BO=45°,∴点P 与C 重合,故P(1,0), 综上所述,点P 的坐标为(2,-5)或(1,0). 【点睛】此题考查了待定系数法求函数的解析式,周长最短问题,等腰直角三角形的性质和判定等知识.此题综合性很强,解题的关键是注意数形结合和分类讨论思想的应用.【变式3-2】已知抛物线2y mx =和直线y x b =-+都经过点()2,4M -,点O 为坐标原点,点P 为抛物线上的动点,直线y x b =-+与x 轴、y 轴分别交于A B 、两点. (1)求m b 、的值;(2)当PAM ∆是以AM 为底边的等腰三角形时,求点P 的坐标; (3)满足(2)的条件时,求sin BOP ∠的值. 【分析】(1)根据点M 的坐标,利用待定系数法可求出,m b 的值;(2)由(1)可得出抛物线及直线AB 的解析式,继而可求出点A 的坐标,设点P 的坐标为2(,)x x ,结合点,A M 的坐标可得出22,PA PM 的值,再利用等腰三角形的性质可得出关于x 的方程,解之即可得出结论;(3)过点P 作PN y ⊥轴,垂足为点N ,由点P 的坐标可得出,PN PO 的长,再利用正弦的定义即可求出sin BOP ∠的值. 【详解】(1)将()2,4M -代入2y mx =,得:44m =,∴1m =; 将()2,4M -代入y x b =-+,得:42b =+,∴2b =; (2)由(1)得:抛物线的解析式为2yx ,直线AB 的解析式为2y x =-+,当0y =时,20x -+= ,解得:2x =, ∴点A 的坐标为()2,0,2OA =,设点P 的坐标为2(,)x x ,则()222242204()4PA x x x x x =-+-=+-+,()222242()247420PM x x x x x =--+-=-++,∵PAM ∆是以AM 为底边的等腰三角形,∴22PA PM =,即4242447420x x x x x x +-+=-++,整理,得:220x x --=, 解得:121,2x x =-=,∴点P 的坐标为()1,1-或()2,4; (3)过点P 作PN y ⊥轴,垂足为点N ,如图所示, 当点P 的坐标为()1,1-时,1PN =,22112PO =+=,∴2sin 2PN BOP PO ∠==; 当点P 的坐标为()2,4时,2PN =,222425PO =+=, ∴5sin 5PN BOP PO ∠==, ∴满足(2)的条件时,sin BOP ∠的值的值为22或55.【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出,m b的值;(2)利用勾股定理及等腰三角形的性质,找出关于x的方程;(3)通过解直角三角形,求出sin BOP的值.【考点4】动点之相似三角形问题【例4】如图,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,求AP的长.【答案】AP=247或AP=2或AP=6【分析】由AD//BC,∠B=90°,可证∠P AD=∠PBC=90°, 又由AB=8,AD=3,BC=4,设AP的长为x,则BP 长为8-x,然后分别从APD∽△BPC与△APD∽△BCP去分析,利用相似三角形的对应边成比例求解即可求得答案.【详解】解:∵AB⊥BC,∴∠B=90°,∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°,AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x,若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=24 7,若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),解得x=2或x=6,所以AP=247或AP=2或AP=6.【变式4-1】已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=34AC(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【分析】(1)先根据A(−3,1),C(1,0),求出AC进而得出BC=3求出B点坐标,利用待定系数法求出直线AB的解析式即可;(2)运用相似三角形的性质就可求出点D的坐标;(3)由于△APQ与△ADB已有一组公共角相等,只需分△APQ∽△ABD和△APQ∽△ADB 两种情况讨论,然后运用相似三角形的性质建立关于m的方程,就可解决问题.【详解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵BC=34AC,∴BC=34×4=3,∴B(1,3),设直线AB的解析式为y=kx+b,∴303k bk b-+=⎧⎨+=⎩,∴3494kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=3 4x+94;(2)若△ADB与△ABC相似,过点B作BD⊥AB交x轴于D,∴∠ABD=∠ACB=90°,如图1,此时ABAC=ADAB,即AB2=AC•AD.∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴25=4AD,∴AD=254,∴OD=AD﹣AO=254﹣3=134,∴点D的坐标为(134,0);(3)∵AP=DQ=m,∴AQ=AD﹣QD=254﹣m.Ⅰ、若△APQ∽△ABD,如图2,则有APAB=AQAD,∴AP•AD=AB•AQ,∴254m=5(254﹣m),解得m=259;Ⅱ、若△APQ∽△ADB,如图3,则有APAD=AQAB,∴AP•AB=AD•AQ,∴5m=254(254﹣m),解得:m=12536,综上所述:符合要求的m 的值为12536或259.【点睛】此题是相似形综合题,主要考查了是待定系数法,相似三角形的判定与性质、勾股定理等知识,也考查了分类讨论的数学思想,属于中档题,解本题的关键是根据相似建立方程求解.【变式4-2】如图,正方形ABCD ,点P 为射线DC 上的一个动点,点Q 为AB 的中点,连接PQ ,DQ ,过点P 作PE ⊥DQ 于点E . (1)请找出图中一对相似三角形,并证明;(2)若AB =4,以点P ,E ,Q 为顶点的三角形与△ADQ 相似,试求出DP 的长.【答案】(1)△DPE ∽△QDA ,证明见解析;(2)DP=2或5 【分析】(1)由∠ADC =∠DEP =∠A =90︒可证明△ADQ ∽△EPD ;(2)若以点P ,E ,Q 为顶点的三角形与△ADQ 相似,有两种情况,当△ADQ ∽△EPQ 时,设EQ =x ,则EP =2x ,则DE =5x ,由△ADQ ∽△EPD 可得EP DEAD AQ=,可求出x 的值,则DP 可求出;同理当△ADQ ∽△EQP 时,设EQ =2a ,则EP =a ,2522142a -==,可求出a 的值,则DP 可求. 【详解】(1)△ADQ ∽△EPD ,证明如下: ∵PE ⊥DQ ,∴∠DEP =∠A =90︒,∵∠ADC =90︒,∴∠ADQ +∠EDP =90︒,∠EDP +∠DPE =90︒, ∴∠ADQ =∠DPE ,∴△ADQ ∽△EPD ;(2)∵AB =4,点Q 为AB 的中点,∴AQ =BQ =2,∴DQ 22224225AD AQ +=+= ∵∠PEQ =∠A =90︒,∴若以点P ,E ,Q 为顶点的三角形与△ADQ 相似,有两种情况,①当△ADQ ∽△EPQ 时,2AD PEAQ EQ==,设EQ =x ,则EP =2x ,则DE =25−x , 由(1)知△ADQ ∽△EPD ,∴EP DE AD AQ =,∴22542x x -=,∴x =5∴DP =22DE EP +=5;②当△ADQ ∽△EQP 时,设EQ =2a ,则EP =a , 同理可得2522142a a -==,∴a =455, DP =22224525255DE EP ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.综合以上可得DP 长为2或5,使得以点P ,E ,Q 为顶点的三角形与△ADQ 相似. 【点睛】本题考查了相似三角形的判定与性质,勾股定理,正方形的性质,熟练掌握相似三角形的判定与性质是解题的关键.【考点5】动点之平行四边形问题(含特殊四边形)【例5】如图,抛物线23y ax bx =++与x 轴交于(3,0),(1,0)A B -两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 是抛物线上的动点,且满足2PAO PCO S S ∆∆=,求出P 点的坐标;(3)连接BC ,点E 是x 轴一动点,点F 是抛物线上一动点,若以B 、C 、E 、F 为顶点的四边形是平行四边形时,请直接写出点F 的坐标.备用图【分析】(1)由待定系数法求出解析式即可;(2)先求出点C 坐标,可得OA=OC=3,由面积关系列出方程即可求解; (3)分两种情况讨论,利用平行四边形的性质可求解; 【详解】解:(1)∵抛物线经过点A (-3,0),点B (1,0),∴933030a b a b -+=⎧⎨++=⎩,解得:12a b =-⎧⎨=-⎩,∴抛物线的解析式为:223y x x =--+,∵抛物线的解析式为与y 轴交于点C ,∴点C 坐标为(0,3),即OA=OC=3; (2)过点P 作PM ⊥AO 于点M ,PN ⊥CO 于点N ,设P (x ,223x x --+), ∵ 2PAO PCO S S ∆∆=,∴11222AO PM CO PN ⋅=⨯⨯, ∵AO =3,CO =3,∴PM =2PN ,即2232x x x --+=,当点P 在第一、三象限时,2232x x x --+=,解得,127x =-+,227x =--; ∴1(27,427)P -+-+,2(27,427)P ----, 当点P 在第二、四象限时,2232x x x --+=-,解得13x =-,23x =; ∴3(3,23)P -,4(3,23)P -;(3)若BC 为边,且四边形BCFE 是平行四边形,∴CF ∥BE ,∴点C 与点F 纵坐标相等, ∴23=23x x --+,解得12x =-,20x =(舍去),∴点F (-2,3), 若BC 为边,且四边形BCFE 是平行四边形,∴BE 与CF 互相平分, ∵BE 中点纵坐标为0,且点C 纵坐标为3,∴点F 的纵坐标为-3,∴23=23x x ---+,解得17x =-∴117x =--,217x =-+,∴(173)F ---,或(173)F -+-,, 若BC 为对角线,则四边形BECF 是平行四边形,∴BC 与EF 互相平分, ∴BC 中点纵坐标为32,且点E 的纵坐标为0, ∴点F 的纵坐标为3,∴点F (-2,3),综上所述,点F 坐标为:1(173)F ---,,2(173)F -+-,,3(23)F -,; 【点睛】本题主要考查了二次函数的应用,平行四边形的性质,掌握待定系数法,平行四边形的性质是解题的关键.【变式5-1】如图,二次函数213y x bx c =-++的图象过原点,与x 轴的另一个交点为()8,0(1)求该二次函数的解析式;(2)在x 轴上方作x 轴的平行线1y m =,交二次函数图象于A 、B 两点,过A 、B 两点分别作x 轴的垂线,垂足分别为点D 、点C .当矩形ABCD 为正方形时,求m 的值; (3)在(2)的条件下,动点P 从点A 出发沿射线AB 以每秒1个单位长度匀速运动,同时动点Q 以相同的速度从点A 出发沿线段AD 匀速运动,到达点D 时立即原速返回,当动点Q 返回到点A 时,P 、Q 两点同时停止运动,设运动时间为t 秒(0t >).过点P 向x 轴作垂线,交抛物线于点E ,交直线AC 于点F ,问:以A 、E 、F 、Q 四点为顶点构成的四边形能否是平行四边形.若能,请求出t 的值;若不能,请说明理由. 【答案】(1)21833y x x =-+;(2)当矩形ABCD 为正方形时,m 的值为4;(3)以A 、E 、F 、Q 四点为顶点构成的四边形能为平行四边形,t 的值为4或6. 【解析】【分析】(1)根据点的坐标,利用待定系数法即可求出二次函数的解析式;(2)利用二次函数图象上点的坐标特征求出点A ,B 的坐标,进而可得出点C ,D 的坐标,再利用正方形的性质可得出关于m 的方程,解之即可得出结论;(3)由(2)可得出点A ,B ,C ,D 的坐标,根据点A ,C 的坐标,利用待定系数法可求出直线AC 的解析式,利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可求出点E ,F 的坐标,由AQ EF //且以A 、E 、F 、Q 四点为顶点的四边形为平行四边形可得出AQ EF =,分0t 4<≤,4t 7<≤,7t 8<≤三种情况找出AQ ,EF 的长,由AQ EF =可得出关于t 的一元二次方程,解之取其合适的值即可得出结论. 【详解】(1)将()00,,()80,代入21y x bx c 3=-++,得:064803c b c =⎧⎪⎨-++=⎪⎩,解得830b c ⎧=⎪⎨⎪=⎩,∴该二次函数的解析式为218y x x 33=-+. (2)当y m = 时,218x x m 33-+=,解得:1x 4=2x 4=∴点a 的坐标为(4,m),点b 的坐标为(4+,m), ∴点d 的坐标为(4,0),点c 的坐标为(4,0). ∵矩形abcd 为正方形,∴(44m =, 解得:1m 16=-,(舍去),2m 4=. ∴当矩形ABCD 为正方形时,m 的值为4.(3)以A 、E 、F 、Q 四点为顶点构成的四边形能为平行四边形.由(2)可知:点A 的坐标为()24,,点B 的坐标为()64,,点C 的坐标为()60,,点D 的坐标为()20,. 设直线AC 的解析式为()y kx a k 0=+≠,将()a 24,,()c 60,代入y kx a =+,得2460k a k a +=⎧⎨+=⎩,解得16k a =-⎧⎨=⎩, ∴直线ac 的解析式为y x 6=-+.当x 2t =+时,221814y x x t t 43333=-+=-++ ,y x 6t 4=-+=-+ ∴点E 的坐标为(2t +,214t t 433-++),点F 的坐标为(2t +,t 4-+-t+4). ∵以A 、E 、F 、Q 四点为顶点构成的四边形为平行四边形,且AQ ΕF // ,∴AQ EF =,分三种情况考虑:①当0t 4<≤时,如图1所示,AQ t =,EF=()221417t t 4t 4t t 3333-++--+=-+, ∴217t t t 33=-+,解得:1t 0=(舍去),2t 4=;②当4t 7<≤时,如图2所示,AQ t 4=-,EF=()221417t t 4t 4t t 3333-++--+=-+, ∴217t 4t t 33-=-+, 解得:3t 2=-(舍去),4t 6=;7t 8<≤,AQ t 4=-, EF=()221417t t 4t 4t t 3333-++--+=--, 217t 4t t 33∴-=-, 解得5t 513=舍去),6t 513=舍去)综上所述,当以A 、E 、F 、Q 四点为顶点构成的四边形为平行四边形时,t 的值为4或6【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、正方形的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于m 的方程;(3)分0t 4<≤,4t 7<≤,7t 8<≤三种情况,利用平行四边形的性质找出关于t 的一元二次方程.。
因动点产生的直角三角形问题例1(2011年沈阳市中考第25题)如图1,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式; (2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段34P Q A B =时,求tan ∠CED 的值;②当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标. 温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.图1满分解答(1)设抛物线的函数表达式为2(1)y x n =-+,代入点C (0,-3),得4n =-.所以抛物线的函数表达式为22(1)423y x x x =--=--.(2)由223(1)(3)y x x x x =--=+-,知A (-1,0),B (3,0).设直线BC 的函数表达式为y kx b =+,代入点B (3,0)和点C (0,-3),得30,3.k b b +=⎧⎨=-⎩ 解得1k =,3b =-.所以直线BC 的函数表达式为3y x =-.(3)①因为AB =4,所以334P Q A B ==.因为P 、Q 关于直线x =1对称,所以点P 的横坐标为12-.于是得到点P的坐标为17,24⎛⎫-- ⎪⎝⎭,点F 的坐标为70,4⎛⎫- ⎪⎝⎭.所以75344F C O C O F =-=-=,522E CF C ==.进而得到51322O E O C E C =-=-=,点E 的坐标为10,2⎛⎫- ⎪⎝⎭. 直线BC:3y x =-与抛物线的对称轴x =1的交点D 的坐标为(1,-2).过点D 作DH ⊥y 轴,垂足为H .在Rt △EDH 中,DH =1,13222EH O H O E =-=-=,所以tan ∠CED 23D HE H==.②1(12,2)P --,265(1,)22P --.图2 图3 图4考点伸展第(3)题②求点P 的坐标的步骤是:如图3,图4,先分两种情况求出等腰直角三角形CDE 的顶点E 的坐标,再求出CE 的中点F 的坐标,把点F 的纵坐标代入抛物线的解析式,解得的x 的较小的一个值就是点P 的横坐标.例2(2011年浙江省中考第23题)设直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2,若l 1⊥l 2,垂足为H ,则称直线l 1与l 2是点H 的直角线.(1)已知直线①122y x =-+;②2y x =+;③22y x =+;④24y x =+和点C (0,2),则直线_______和_______是点C 的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC 的顶点A (3,0)、B (2,7)、C (0,7),P 为线段OC 上一点,设过B 、P 两点的直线为l 1,过A 、P 两点的直线为l 2,若l 1与l 2是点P 的直角线,求直线l 1与l 2的解析式.图1满分解答(1)直线①和③是点C 的直角线.(2)当∠APB =90°时,△BCP ∽△POA .那么B C P O C PO A=,即273P O P O=-.解得OP =6或OP =1.如图2,当OP =6时,l 1:162y x =+, l 2:y =-2x +6.如图3,当OP =1时,l 1:y =3x +1, l 2:113y x =-+.图2 图3例3(2010年北京市中考第24题)在平面直角坐标系xOy 中,抛物线22153244m m y x x m m -=-++-+与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上. (1)求点B 的坐标;(2)点P 在线段OA 上,从点O 出发向点A 运动,过点P 作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当点P 运动时,点C 、D 也随之运动).①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;②若点P 从点O 出发向点A 作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从点A 出发向点O 作匀速运动,速度为每秒2个单位(当点Q 到达点O 时停止运动,点P 也停止运动).过Q 作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当点Q 运动时,点M 、N 也随之运动).若点P 运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.图1满分解答(1) 因为抛物线22153244m m y x x m m -=-++-+经过原点,所以2320m m -+=. 解得12m =,21m =(舍去).因此21542y x x =-+.所以点B 的坐标为(2,4).(2) ①如图4,设OP 的长为t ,那么PE =2t ,EC =2t ,点C 的坐标为(3t , 2t ).当点C 落在抛物线上时,2152(3)342t t t =-⨯+⨯.解得229t O P ==.②如图1,当两条斜边PD 与QM 在同一条直线上时,点P 、Q 重合.此时3t =10.解得103t =.如图2,当两条直角边PC 与MN 在同一条直线上,△PQN 是等腰直角三角形,PQ =PE .此时1032t t -=.解得2t =. 如图3,当两条直角边DC 与QN 在同一条直线上,△PQC 是等腰直角三角形,PQ =PD .此时1034t t -=.解得107t =.图1 图2 图3考点伸展在本题情境下,如果以PD 为直径的圆E 与以QM 为直径的圆F 相切,求t 的值.如图5,当P 、Q 重合时,两圆内切,103t =.如图6,当两圆外切时,30202t =-.图4 图5 图6例4(2009年嘉兴市中考第24题)如图1,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =.(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?图1满分解答(1)在△ABC 中,1=AC ,x AB =,x BC -=3,所以⎩⎨⎧>-+->+.31,31x x x x 解得21<<x .(2)①若AC 为斜边,则22)3(1x x -+=,即0432=+-x x ,此方程无实根. ②若AB 为斜边,则1)3(22+-=x x ,解得35=x ,满足21<<x . ③若BC 为斜边,则221)3(x x +=-,解得34=x ,满足21<<x .因此当35=x 或34=x 时,△ABC 是直角三角形.(3)在△ABC 中,作AB CD ⊥于D ,设h CD =,△ABC 的面积为S ,则xhS 21=.①如图2,若点D 在线段AB 上,则x h x h =--+-222)3(1.移项,得2221)3(hx hx --=--.两边平方,得22222112)3(h h x x h x -+--=--.整理,得4312-=-x h x .两边平方,得16249)1(222+-=-x x h x .整理,得16248222-+-=x x h x所以462412222-+-==x xhx S 21)23(22+--=x (423x <≤).当23=x 时(满足423x <≤),2S 取最大值21,从而S 取最大值22.图2 图3②如图3,若点D 在线段MA 上,则x h h x =----2221)3(. 同理可得,462412222-+-==x xhx S 21)23(22+--=x (413x <≤).易知此时22<S .综合①②得,△ABC 的最大面积为22.考点伸展第(3)题解无理方程比较烦琐,迂回一下可以避免烦琐的运算:设a AD =, 例如在图2中,由2222BD BCADAC -=-列方程222)()3(1a x x a---=-.整理,得xx a 43-=.所以21a -22216248431x x x x x -+-=⎪⎭⎫⎝⎛--=. 因此462)1(412222-+-=-=x x a x S.例5(2008年河南省中考第23题)如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由; ③在运动过程中,当△MON 为直角三角形时,求t 的值.图1满分解答(1)直线434+-=x y 与x 轴的交点为B (3,0)、与y 轴的交点C (0,4).Rt △BOC 中,OB =3,OC =4,所以BC =5.点A 的坐标是(-2,0),所以BA =5.因此BC =BA ,所以△ABC 是等腰三角形.(2)①如图2,图3,过点N 作NH ⊥AB ,垂足为H .在Rt △BNH 中,BN =t ,4sin 5B =,所以45N H t =.如图2,当M 在AO 上时,OM =2-t ,此时211424(2)22555S O M N H t t t t =⋅⋅=-⨯=-+.定义域为0<t ≤2.如图3,当M 在OB 上时,OM =t -2,此时211424(2)22555S O M N H t t t t =⋅⋅=-⨯=-.定义域为2<t ≤5.图2 图3②把S =4代入22455S t t =-,得224455t t -=.解得1211t =+,2211t =-(舍去负值).因此,当点M 在线段OB 上运动时,存在S =4的情形,此时211t =+.③如图4,当∠OMN =90°时,在Rt △BNM 中,BN =t ,BM 5t =-,3cos 5B =,所以535t t-=.解得258t =.如图5,当∠OMN =90°时,N 与C 重合,5t =.不存在∠ONM =90°的可能. 所以,当258t =或者5t =时,△MON 为直角三角形.图4 图5考点伸展在本题情景下,如果△MON 的边与AC 平行,求t 的值.如图6,当ON //AC 时,t =3;如图7,当MN //AC 时,t =2.5.图6 图7例6(2008年天津市中考第25题)已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(1)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图1,求证:222BNAMMN +=;(2)当扇形CEF 绕点C 旋转至图2的位置时,关系式222BNAMMN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.图1 图2满分解答(1)如图3,将△ACM 沿直线CE 对折,得△DCM ,连DN ,则△DCM ≌△ACM .因此CA CD =,AM DM =,ACM DCM ∠=∠,A CDM ∠=∠.又由CBCA =,得 CBCD =.由D CD C ME CF D C N ∠-︒=∠-∠=∠45,ACM ECF ACB BCN ∠-∠-∠=∠ACM ACM ∠-︒=∠-︒-︒=454590,得BCN DCN ∠=∠.又CN CN =,所以△CDN ≌△CBN .因此BN DN =,B CDN ∠=∠.所以︒=∠+∠=∠+∠=∠90B A CDN CDM MDN . 在Rt △MDN 中,由勾股定理,得222DNDMMN+=.即222BNAMMN+=.图3 图4(2)关系式222BNAMMN+=仍然成立.如图4,将△ACM 沿直线CE 对折,得△DCM ,连DN ,则△DCM ≌△ACM . 所以CA CD =,AM DM =,ACM DCM ∠=∠,CAM CDM ∠=∠. 又由CBCA =,得 CB CD =.由︒+∠=∠+∠=∠45DCM ECF DCM DCN ,ACM ACM ECF ACN ACB BCN ∠+︒=∠-∠-︒=∠-∠=∠45)(90,得BCN DCN ∠=∠.又CN CN =,所以△CDN ≌△CBN .因此BN DN =,45=∠=∠B CDN . 又由于︒=∠-︒=∠=∠135180CAB CAM CDM ,所以9045135=-=∠-∠=∠CDN CDM MDN .在Rt △MDN 中,由勾股定理,得222DNDMMN +=.即222BNAMMN+=.考点伸展当扇形CEF 绕点C 旋转至图5,图6,图7的位置时,关系式222BNAMMN +=仍然成立.图5 图6 图7。
因动点产生的直角三角形问题例1 如图1,抛物线213442y x x =−−与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.图1思路点拨1.第(2)题先用含m 的式子表示线段MQ 的长,再根据MQ =DC 列方程.2.第(2)题要判断四边形CQBM 的形状,最直接的方法就是根据求得的m 的值画一个准确的示意图,先得到结论.3.第(3)题△BDQ 为直角三角形要分两种情况求解,一般过直角顶点作坐标轴的垂线可以构造相似三角形.满分解答(1)由21314(2)(8)424y x x x x =−−=+−,得A (-2,0),B (8,0),C (0,-4). (2)直线DB 的解析式为142y x =−+. 由点P 的坐标为(m , 0),可得1(,4)2M m m −−,213(,4)42Q m m m −−. 所以MQ =221131(4)(4)82424m m m m m −+−−−=−++. 当MQ =DC =8时,四边形CQMD 是平行四边形. 解方程21884m m −++=,得m =4,或m =0(舍去). 此时点P 是OB 的中点,N 是BC 的中点,N (4,-2),Q (4,-6).所以MN =NQ =4.所以BC 与MQ 互相平分.所以四边形CQBM 是平行四边形.图2图3(3)存在两个符合题意的点Q ,分别是(-2,0),(6,-4).考点伸展第(3)题可以这样解:设点Q 的坐标为1(,(2)(8))4x x x +−. ①如图3,当∠DBQ =90°时,12QG BH GB HD ==.所以1(2)(8)1482x x x −+−=−.解得x =6.此时Q (6,-4).②如图4,当∠BDQ =90°时,2QG DH GD HB==.所以14(2)(8)42x x x −+−=−.解得x =-2.此时Q (-2,0).图3 图4例2 如图1,抛物线233384y x x =−−+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.图1思路点拨1.根据同底等高的三角形面积相等,平行线间的距离处处相等,可以知道符合条件的点D 有两个.2.当直线l 与以AB 为直径的圆相交时,符合∠AMB =90°的点M 有2个;当直线l 与圆相切时,符合∠AMB =90°的点M 只有1个.3.灵活应用相似比解题比较简便.满分解答(1)由23333(4)(2)848y x x x x =−−+=−+−, 得抛物线与x 轴的交点坐标为A (-4, 0)、B (2, 0).对称轴是直线x =-1.(2)△ACD 与△ACB 有公共的底边AC ,当△ACD 的面积等于△ACB 的面积时,点B 、D 到直线AC 的距离相等.过点B 作AC 的平行线交抛物线的对称轴于点D ,在AC 的另一侧有对应的点D ′. 设抛物线的对称轴与x 轴的交点为G ,与AC 交于点H .由BD //AC ,得∠DBG =∠CAO .所以34DG CO BG AO ==.所以3944DG BG ==,点D 的坐标为9(1,4−.因为AC //BD ,AG =BG ,所以HG =DG .而D ′H =DH ,所以D ′G =3DG 274=.所以D ′的坐标为27(1,4.图2 图3(3)过点A 、B 分别作x 轴的垂线,这两条垂线与直线l 总是有交点的,即2个点M . 以AB 为直径的⊙G 如果与直线l 相交,那么就有2个点M ;如果圆与直线l 相切,就只有1个点M 了.联结GM ,那么GM ⊥l .在Rt △EGM 中,GM =3,GE =5,所以EM =4.在Rt △EM 1A 中,AE =8,113tan 4M A M EA AE ∠==,所以M 1A =6. 所以点M 1的坐标为(-4, 6),过M 1、E 的直线l 为334y x =−+.根据对称性,直线l 还可以是334y x =+. 考点伸展第(3)题中的直线l 恰好经过点C ,因此可以过点C 、E 求直线l 的解析式.在Rt △EGM 中,GM =3,GE =5,所以EM =4.在Rt △ECO 中,CO =3,EO =4,所以CE =5.因此三角形△EGM ≌△ECO ,∠GEM =∠CEO .所以直线CM 过点C .例 3 在平面直角坐标系中,反比例函数与二次函数y =k (x 2+x -1)的图象交于点A (1,k )和点B(-1,-k ).(1)当k =-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y 随x 增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.思路点拨1.由点A (1,k )或点B (-1,-k )的坐标可以知道,反比例函数的解析式就是k y x =.题目中的k 都是一致的.2.由点A (1,k )或点B (-1,-k )的坐标还可以知道,A 、B 关于原点O 对称,以AB 为直径的圆的圆心就是O .3.根据直径所对的圆周角是直角,当Q 落在⊙O 上是,△ABQ 是以AB 为直径的直角三角形.满分解答(1)因为反比例函数的图象过点A (1,k ),所以反比例函数的解析式是k y x =.当k =-2时,反比例函数的解析式是2y x =−.(2)在反比例函数k y x=中,如果y 随x 增大而增大,那么k <0.当k <0时,抛物线的开口向下,在对称轴左侧,y 随x增大而增大.抛物线y =k (x 2+x +1)=215()24k x k +−的对称轴是直线12x =−.图1所以当k <0且12x <−时,反比例函数与二次函数都是y 随x 增大而增大. (3)抛物线的顶点Q 的坐标是15(,)24k −−,A 、B 关于原点O 中心对称,当OQ =OA =OB 时,△ABQ 是以AB 为直径的直角三角形.由OQ 2=OA 2,得222215()()124k k −+−=+.解得1k =(如图2),2k =3).图2 图3 考点伸展如图4,已知经过原点O的两条直线AB与CD分别与双曲线kyx=(k>0)交于A、B和C、D,那么AB与CD互相平分,所以四边形ACBD是平行四边形.问平行四边形ABCD能否成为矩形?能否成为正方形?如图5,当A、C关于直线y=x对称时,AB与CD互相平分且相等,四边形ABCD是矩形.因为A、C可以无限接近坐标系但是不能落在坐标轴上,所以OA与OC无法垂直,因此四边形ABCD不能成为正方形.图4 图5例4 设直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2,若l 1⊥l 2,垂足为H ,则称直线l 1与l 2是点H 的直角线.(1)已知直线①122y x =−+;②2y x =+;③22y x =+;④24y x =+和点C (0,2),则直线_______和_______是点C 的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC 的顶点A (3,0)、B (2,7)、C (0,7),P 为线段OC 上一点,设过B 、P 两点的直线为l 1,过A 、P 两点的直线为l 2,若l 1与l 2是点P 的直角线,求直线l 1与l 2的解析式.图1答案(1)直线①和③是点C 的直角线.(2)当∠APB =90°时,△BCP ∽△POA .那么BC PO CP OA =,即273PO PO =−.解得OP =6或OP =1.如图2,当OP =6时,l 1:162y x =+, l 2:y =-2x +6. 如图3,当OP =1时,l 1:y =3x +1, l 2:113y x =−+.图2 图3例5 在平面直角坐标系xOy 中,抛物线22153244m m y x x m m −=−++−+与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上.(1)求点B 的坐标;(2)点P 在线段OA 上,从点O 出发向点A 运动,过点P 作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当点P 运动时,点C 、D 也随之运动).①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;②若点P 从点O 出发向点A 作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从点A 出发向点O 作匀速运动,速度为每秒2个单位(当点Q 到达点O 时停止运动,点P 也停止运动).过Q 作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当点Q 运动时,点M 、N 也随之运动).若点P 运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.图1思路点拨1.这个题目最大的障碍,莫过于无图了.2.把图形中的始终不变的等量线段罗列出来,用含有t 的式子表示这些线段的长.3.点C 的坐标始终可以表示为(3t ,2t ),代入抛物线的解析式就可以计算此刻OP 的长.4.当两个等腰直角三角形有边共线时,会产生新的等腰直角三角形,列关于t 的方程就可以求解了.满分解答(1)因为抛物线22153244m m y x x m m −=−++−+经过原点,所以2320m m −+=. 解得12m =,21m =(舍去).因此21542y x x =−+.所以点B 的坐标为(2,4).(2)①如图4,设OP 的长为t ,那么PE =2t ,EC =2t ,点C 的坐标为(3t , 2t ).当点C 落在抛物线上时,2152(3)342t t t =−×+×.解得229t OP ==.②如图1,当两条斜边PD 与QM 在同一条直线上时,点P 、Q 重合.此时3t =10.解得103t =. 如图2,当两条直角边PC 与MN 在同一条直线上,△PQN 是等腰直角三角形,PQ =PE .此时1032t t −=.解得2t =.如图3,当两条直角边DC 与QN 在同一条直线上,△PQC 是等腰直角三角形,PQ =PD .此时1034t t −=.解得107t =.图1 图2 图3考点伸展在本题情境下,如果以PD 为直径的圆E 与以QM 为直径的圆F 相切,求t 的值. 如图5,当P 、Q 重合时,两圆内切,103t =.如图6,当两圆外切时,30t =−.图4 图5 图6例6 如图1,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =.(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值;(3)探究:△ABC 的最大面积?图1思路点拨1.根据三角形的两边之和大于第三边,两边之差小于第三边列关于x 的不等式组,可以求得x 的取值范围.2.分类讨论直角三角形ABC ,根据勾股定理列方程,根据根的情况确定直角三角形的存在性.3.把△ABC 的面积S 的问题,转化为S 2的问题.AB 边上的高CD 要根据位置关系分类讨论,分CD 在三角形内部和外部两种情况.满分解答(1)在ᇞABC 中,1=AC ,x AB =,x BC −=3,所以⎩⎨⎧>−+−>+.31,31x x x x 解得21<<x . (2)①若AC 为斜边,则22)3(1x x −+=,即0432=+−x x ,此方程无实根.②若AB 为斜边,则1)3(22+−=x x ,解得35=x ,满足21<<x .③若BC 为斜边,则221)3(x x +=−,解得34=x ,满足21<<x .因此当35=x 或34=x 时,△ABC 是直角三角形.(3)在ᇞABC 中,作AB CD ⊥于D ,设h CD =,ᇞABC 的面积为S ,则xh S 21=.①如图2,若点D 在线段AB 上,则x h x h =−−+−222)3(1.移项,得2221)3(h x h x −−=−−.两边平方,得22222112)3(h h x x h x −+−−=−−.整理,得4312−=−x h x .两边平方,得16249)1(222+−=−x x h x .整理,得16248222−+−=x x h x 所以462412222−+−==x x h x S 21)23(22+−−=x (423x <≤). 当23=x 时(满足423x <≤),2S 取最大值21,从而S 取最大值22.图2 图3②如图3,若点D 在线段MA 上,则x h h x =−−−−2221)3(.同理可得,462412222−+−==x x h x S 21)23(22+−−=x (413x <≤). 易知此时22<S .综合①②得,ᇞABC 的最大面积为22.考点伸展第(3)题解无理方程比较烦琐,迂回一下可以避免烦琐的运算:设a AD =,例如在图2中,由2222BD BC AD AC −=−列方程222)()3(1a x x a −−−=−. 整理,得x x a 43−=.所以21a −22216248431x x x x x −+−=⎟⎠⎞⎜⎝⎛−−=.因此462)1(412222−+−=−=x x a x S .例 7 如图1,直线434+−=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .①求S 与t 的函数关系式;②设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.图1思路点拨1.第(1)题说明△ABC 是等腰三角形,暗示了两个动点M 、N 同时出发,同时到达终点.2.不论M 在AO 上还是在OB 上,用含有t 的式子表示OM 边上的高都是相同的,用含有t 的式子表示OM 要分类讨论.3.将S =4代入对应的函数解析式,解关于t 的方程.4.分类讨论△MON 为直角三角形,不存在∠ONM =90°的可能.满分解答(1)直线434+−=x y 与x 轴的交点为B (3,0)、与y 轴的交点C (0,4).Rt △BOC 中,OB =3,OC =4,所以BC =5.点A 的坐标是(-2,0),所以BA =5.因此BC =BA ,所以△ABC 是等腰三角形. (2)①如图2,图3,过点N 作NH ⊥AB ,垂足为H .在Rt △BNH 中,BN =t ,4sin 5B =,所以45NH t =.如图2,当M 在AO 上时,OM =2-t ,此时 211424(2)22555S OM NH t t t t =⋅⋅=−×=−+. 定义域为0<t ≤2.如图3,当M 在OB 上时,OM =t -2,此时211424(2)22555S OM NH t t t t =⋅⋅=−×=−. 定义域为2<t ≤5.图2图3②把S =4代入22455S t t =−,得224455t t −=.解得12t =+,22t =−去负值).因此,当点M 在线段OB 上运动时,存在S =4的情形,此时2t =+.③如图4,当∠OMN =90°时,在Rt △BNM 中,BN =t ,BM 5t =−,3cos 5B =,所以535t t −=.解得258t =.如图5,当∠OMN =90°时,N 与C 重合,5t =.不存在∠ONM =90°的可能. 所以,当258t =或者5t =时,△MON 为直角三角形.图4 图5考点伸展在本题情景下,如果△MON 的边与AC 平行,求t 的值.如图6,当ON //AC 时,t =3;如图7,当MN //AC 时,t =2.5.图6 图7例8 如图1,直线434+−=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .①求S 与t 的函数关系式;②设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.图1思路点拨1.第(1)题说明△ABC 是等腰三角形,暗示了两个动点M 、N 同时出发,同时到达终点.2.不论M 在AO 上还是在OB 上,用含有t 的式子表示OM 边上的高都是相同的,用含有t 的式子表示OM 要分类讨论.3.将S =4代入对应的函数解析式,解关于t 的方程.4.分类讨论△MON 为直角三角形,不存在∠ONM =90°的可能.满分解答(1)直线434+−=x y 与x 轴的交点为B (3,0)、与y 轴的交点C (0,4).Rt △BOC 中,OB =3,OC =4,所以BC =5.点A 的坐标是(-2,0),所以BA =5.因此BC =BA ,所以△ABC 是等腰三角形.(2)①如图2,图3,过点N 作NH ⊥AB ,垂足为H .在Rt △BNH 中,BN =t ,4sin 5B =,所以45NH t =. 如图2,当M 在AO 上时,OM =2-t ,此时211424(2)22555S OM NH t t t t =⋅⋅=−×=−+.定义域为0<t ≤2. 如图3,当M 在OB 上时,OM =t -2,此时211424(2)22555S OM NH t t t t =⋅⋅=−×=−.定义域为2<t ≤5.图2图3 ②把S =4代入22455S t t =−,得224455t t −=.解得12t =+,22t =(舍去负值).因此,当点M 在线段OB 上运动时,存在S =4的情形,此时2t =+. ③如图4,当∠OMN =90°时,在Rt △BNM 中,BN =t ,BM 5t =−,3cos 5B =, 所以535t t −=.解得258t =.如图5,当∠OMN =90°时,N 与C 重合,5t =.不存在∠ONM =90°的可能. 所以,当258t =或者5t =时,△MON 为直角三角形.图4 图5考点伸展在本题情景下,如果△MON 的边与AC 平行,求t 的值.如图6,当ON //AC 时,t =3;如图7,当MN //AC 时,t =2.5.图6 图7。
由动点形生成的特殊三角形问题
抛物线与直线形的结合表形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常风的基本形式
(1)抛物线上的点能否构成等腰三角形(2)抛物线上的点能否构成直角三角形
(2)抛物线上的点能否构成相似三角形
解决这类问题的基本思路是:假设存在,数形结合,分类讨论,逐一考查
例题1:(2010重庆綦江县)已知抛物线y=ax2+bx+c(a>0)经过点B(12,0)和C(0,-6),对称轴为x=2.
(1)求该抛物线的解析式.
(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度
的速度匀速运动,同时另一个动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若存在,请说明理由.
(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,
请求出所有点M的坐标;若存在,请说明理由.
例题2(2010四川巴中)如图12已知△ABC中,∠ACB=90°以AB 所在直线为x 轴,过c 点的直线为y 轴建立平面直角坐标系.此时,A 点坐标为(一1 , 0), B 点坐标为(4,0 )
(1)试求点C 的坐标
(2)若抛物线2
=++过△ABC的三个顶点,求抛物线的解析式.
y ax bx c
(3)点D( 1,m )在抛物线上,过点A 的直线y=-x-1 交(2)中的抛物线于点E,那么在x轴上点B 的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE 相似?若存在,求出P点坐标;若不存在,说明理由。
D
H
G
例题3(2010湖北荆门)已知一次函数y =
12
1+x 的图象与x 轴交于点A .与y 轴交于点
B ;二次函数c bx x y ++=
2
2
1图象与一次函数y =
12
1+x 的图象交于B 、C 两点,与x
轴交于D 、E 两点且D 点的坐标为)0,1(
(1)求二次函数的解析式;(2)求四边形BDEF 的面积S ;
(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,
求出所有的点P ,若不存在,请说明理由。
例题4(2010年厦门湖里模拟)已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由
练习1(2010重庆市潼南县)(12分)如图, 已知抛物线c bx x y ++=
2
2
1与y 轴相交于
C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1).
(1)求抛物线的解析式;
(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积
最大时,求点D 的坐标;
(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,
若不存在,说明理由.
题图26
练习2(2010湖南郴州)如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为
y 轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C .
b ;若
练习3(2010湖北襄樊)如图7,四边形ABCD是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA 向点A运动,运动到点A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.
(1)求抛物线的解析式;
(2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?
(3)当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?
练习4、(2009年河南)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?
请直接写出相应的t值.。