多元复合函数的求导法则
- 格式:ppt
- 大小:1.81 MB
- 文档页数:39
多元多重复合函数的求导法则多元多重复合函数是多元函数中重要的一类函数,常用来描述多元关系,其中常用求导法则如下: 1. 链式法则:链式法则是求导最基本的法则,其定义为:若函数y=f(x)是关于变量x的函数,而z=F(y)是关于y的函数,则关于x的F(y)的导数由z的导数乘以y的导数的乘积来决定,即:∂z/∂x = (∂z/∂y) *(∂y/∂x) 2. 偏导数法则:偏导数法则认为多元函数是关于各独立变量变化而变化,即每个变量是由与它独立变量组成的函数组合而成。
这时,只要将函数分解为每个独立变量的函数,分别求出偏导数后,组合即可得到多元函数的极限导数。
3. 偏导数链式法则:偏导数链式法则是将链式法则与偏导数法则相结合而推出的求多元复合函数极限的法则,其定义为:若函数u=f(x,y,z)是三元函数,而v=F(u,z)是关于u,z的多元函数,则u的偏导数即得到v的偏导数,即:∂v ∂x = (∂v/∂u)(∂u/∂x) + (∂v/∂z)(∂z/∂x) 4.Derivative of a composite function:This rule states that for a function y = f(x) composed of two functions u = g(x) and v = h(x), then the derivative of y with respect to x is equal to the product of the derivatives of u and v with respect to x. This can be written as y'(x) = u'(x)·v'(x) 以上是多元多重复合函数常用的求到法则,而求多元复合函数极限的步骤可由偏导数链式法则推导而得。
首先,求出函数中每个变量的偏导数,然后分别乘以各自的函数值,最后将结果进行相乘组合计算即可得到多元复合函数的极限值。
多元复合函数的求导法则为了简化讲解,假设我们有一个复合函数f(g(x)),其中g(x)是一个一元函数,f(y)是一个多元函数。
我们希望计算该函数的导数。
下面是多元复合函数求导的三种基本法则。
法则一:链式法则链式法则是求导复合函数最常用的法则。
它可以帮助我们计算f(g(x))的导数。
根据链式法则,导数可以通过链式相乘的方式进行计算。
链式法则的公式为:(f(g(x)))'=f'(g(x))*g'(x)其中f'(y)是f(y)对变量y的导数,g'(x)是g(x)对变量x的导数。
通过链式法则,我们可以将f(g(x))的导数转化为f'(g(x))和g'(x)的乘积。
法则二:导数反函数法则导数反函数法则是求导复合函数的另一种常用法则。
它适用于求导符合函数的反函数的导数。
设y=g(x)是一个可逆函数,且g'(x)≠0,则它的反函数x=g⁻¹(y)的导数可以通过导数的反函数进行计算。
导数反函数法则的公式为:(g⁻¹(y))'=1/(g'(x))其中g'(x)是g(x)对变量x的导数。
通过导数反函数法则,我们可以计算得到反函数的导数。
法则三:隐函数法则隐函数法则适用于求导复合函数中的隐式函数。
隐式函数是一种表示函数关系的方程,它的导数可以通过隐函数法则进行计算。
假设我们有一个隐函数F(x,y)=0,其中y=g(x)是一个表示x与y的关系的函数。
我们可以使用隐函数法则计算y的导数。
隐函数法则的公式为:(dy/dx) = - (∂F/∂x) / (∂F/∂y)其中(∂F/∂x)和(∂F/∂y)分别表示F(x,y)对变量x和y的偏导数。
通过隐函数法则,我们可以计算得到复合函数的导数。
综上所述,链式法则、导数反函数法则和隐函数法则是求导复合函数的三种基本法则。
这些法则能够帮助我们解决复杂的多元函数求导问题,提高计算效率。
(整理)多元复合函数的求导法.多元复合函数的求导法在⼀元函数中,我们已经知道,复合函数的求导公式在求导法中所起的重要作⽤,对于多元函数来说也是如此。
下⾯我们来学习多元函数的复合函数的求导公式。
我们先以⼆元函数为例:多元复合函数的求导公式链导公式:设均在(x,y)处可导,函数z=F(u,v)在对应的(u,v)处有连续的⼀阶偏导数,那末,复合函数在(x,y)处可导,且有链导公式:例题:求函数的⼀阶偏导数解答:令由于⽽由链导公式可得:其中上述公式可以推⼴到多元,在此不详述。
⼀个多元复合函数,其⼀阶偏导数的个数取决于此复合函数⾃变量的个数。
在⼀阶偏导数的链导公式中,项数的多少取决于与此⾃变量有关的中间变量的个数。
全导数由⼆元函数z=f(u,v)和两个⼀元函数复合起来的函数是x的⼀元函数.这时复合函数的导数就是⼀个⼀元函数的导数,称为全导数.此时的链导公式为:例题:设z=u2v,u=cosx,v=sinx,求解答:由全导数的链导公式得:将u=cosx,v=sinx代⼊上式,得:关于全导数的问题全导数实际上是⼀元函数的导数,只是求导的过程是借助于偏导数来完成⽽已。
多元函数的极值在⼀元函数中我们看到,利⽤函数的导数可以求得函数的极值,从⽽可以解决⼀些最⼤、最⼩值的应⽤问题。
多元函数也有类似的问题,这⾥我们只学习⼆元函数的极值问题。
⼆元函数极值的定义如果在(x0,y0)的某⼀去⼼邻域内的⼀切点(x,y)恒有等式:f(x,y)≤f(x0,y0) 成⽴,那末就称函数f(x,y)在点(x0,y0)处取得极⼤值f(x0,y0);如果恒有等式:f(x,y)≥f(x0,y0) 成⽴,那末就称函数f(x,y)在点(x0,y0)处取得极⼩值f(x0,y0).极⼤值与极⼩值统称极值.使函数取得极值的点(x0,y0)称为极值点.⼆元可导函数在(x0,y0)取得极值的条件是:.注意:此条件只是取得极值的必要条件。
凡是使的点(x,y)称为函数f(x,y)的驻点.可导函数的极值点必为驻点,但驻点却不⼀定是极值点。
第四节多元复合函数的求导法则多元函数是指含有多个自变量的函数,多元复合函数则是由多个函数相互组合而成的复合函数。
在求多元复合函数的导数时,我们需要运用多元复合函数的求导法则。
多元复合函数的求导法则有以下几种情况:1.复合函数的链式法则:设有两个变量x和y,其中y=f(u)是自变量u的函数,u=g(x)是自变量x的函数,则函数y=f(g(x))就是一个多元复合函数。
根据链式法则,该函数的导数可以表示为:dy/dx = dy/du * du/dx2.高阶多元复合函数的求导:对于高阶多元复合函数,我们需要运用多次链式法则来求导。
例如,考虑一个三元复合函数z=f(y),y=g(x),x=h(t),其中t是自变量。
根据链式法则,可以得到如下公式:dz/dt = dz/dy * dy/dx * dx/dt这里 dz/dy 表示 z 关于 y 的导数,dy/dx 表示 y 关于 x 的导数,dx/dt 表示 x 关于 t 的导数。
3.多元复合函数中的偏导数:对于多元复合函数中的偏导数求导,我们需要运用偏导数的链式法则。
偏导数的链式法则可以表示为:∂z/∂x=(∂z/∂y)*(∂y/∂x)其中∂z/∂y表示z关于y的偏导数,∂y/∂x表示y关于x的偏导数。
同样地,对于高阶多元复合函数中的偏导数求导,我们需要运用多次链式法则来求解。
总结起来,多元复合函数的求导法则主要有链式法则和偏导数的链式法则。
通过这些法则,我们可以方便地求解多元复合函数的导数。
在实际应用中,求多元复合函数的导数常常用于最优化问题、概率统计、机器学习等领域。
这些领域中的问题往往涉及多个变量,而多元复合函数的导数可以帮助我们了解函数随变量的变化趋势,从而得出一些有用的结论。