材料力学习题册1_14概念答案
- 格式:doc
- 大小:882.00 KB
- 文档页数:30
材料力学习题册参考答案材料力学习题册参考答案(无计算题)第1章:轴向拉伸与压缩一:1(ABE )2(ABD )3(DE )4(AEB )5(C )6(CE)7(ABD )8(C )9(BD )10(ADE )11(ACE )12(D )13(CE )14(D )15(AB)16(BE )17(D )二:1对2错3错4错5对6对7错8错9错10错11错12错13对14错15错三:1:钢铸铁 2:比例极限p σ 弹性极限e σ 屈服极限s σ 强度极限b σ3.横截面 45度斜截面4. εσE =, EAFl l =5.强度,刚度,稳定性;6.轴向拉伸(或压缩);7. llb b ?μ?=8. 1MPa=106 N/m 2 =1012 N/mm 2 9. 抵抗伸缩弹性变形,加载方式 10. 正正、剪 11.极限应力 12. >5% <5% 13. 破坏s σ b σ 14.强度校核截面设计荷载设计15. 线弹性变形弹性变形 16.拉应力 45度 17.无明显屈服阶段的塑性材料力学性能参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑8. s2s 9. 0.1 10. 压缩11. b 0.4σ 12. <;< 剪切挤压答案:一:1.(C ),2.(B ),3.(A ),二:1. 2bh db 2. b(d+a) bc 3. 4a δ a 2 4. F第2章:扭转一:1.(B ) 2.(C D ) 3.(C D ) 4. (C ) 5. (A E ) 6. (A )7. (D )8. (B D ) 9.(C ) 10. (B ) 11.(D ) 12.(C )13.(B )14.(A ) 15.(A E )二:1错 2对 3对 4错 5错 6 对三:1. 垂直 2. 扭矩剪应力 3.最外缘为零4. p ττ< 抗扭刚度材料抵抗扭转变形的能力5. 不变不变增大一倍6. 1.5879τ7.实心空心圆8. 3241)(α- 9. m ax m in αττ= 10. 长边的中点中心角点 11.形成回路(剪力流)第3章:平面图形的几何性质一:1.(C ),2.(A ),3.(C ),4.(C ),5.(A ),6.(C ),7.(C ),8.(A ),9.(D )二:1). 1;无穷多;2)4)4/5(a ; 3),84p R I π=p 4z y I 16R I I ===π4)12/312bh I I z z ==;5))/(/H 6bh 6BH W 32z -= 6)12/)(2211h b bh I I I I z y z y +=+=+;7)各分部图形对同一轴静矩8)两轴交点的极惯性矩;9)距形心最近的;10)惯性主轴;11)图形对其惯性积为零三:1:64/πd 114; 2.(0 , 14.09cm )(a 22,a 62)3: 4447.9cm 4, 4:0.00686d 4 ,5: 77500 mm 4 ;6: 64640039.110 23.410C C C C y y z z I I mm I I mm ==?==?第4章:弯曲内力一:1.(A B )2.(D )3.(B )4.(A B E )5.(A B D )6.(ACE ) 7.(ABDE ) 8.(ABE )9. (D ) 10. (D ) 11.(ACBE ) 12.(D ) 13.(ABCDE )二:1错 2错 3错 4对 5错 6对 7对三:1. 以弯曲变形 2.集中力 3. KNm 2512M .max =4. m KN 2q = 向下 KN 9P = 向上5.中性轴6.荷载支撑力7. 小8. 悬臂简支外伸9. 零第5章:弯曲应力一:1(ABD)2.(C )3.(BE )4.(A )5.(C )6.(C )7.(B )8.(C )9.(BC )二:1对 2错 3错 4 对 5 错 6错 7 对三:1.满足强度要求更经济、更省料2. 变成曲面,既不伸长也不缩短3.中性轴4.形心主轴5.最大正应力6.剪力方向7.相等8.平面弯曲发生在最大弯矩处9.平面弯曲第6章:弯曲变形一:1(B ),2(B ),3(A ),4(D ),5(C ),6(A ),7(C ),8(B ),9(A )10(B ),11(A )二:1对2错3错4错5错6对7错8错9错10对11错12对三:1.(转角小量:θθtan ≈)(未考虑高阶小量对曲率的影响)2. 挠曲线采用近似微分方程导致的。
练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4)应力是内力分布集度。
(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6)若物体产生位移,则必定同时产生变形。
(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。
(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。
(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。
变形。
(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。
(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
材料力学复习材料1.构件的强度、刚度和稳定性指的是什么? 就日常生活和工程实际各举一、两个实例。
2.材料力学的基本任务是什么? 材料力学对变形固体作了哪些基本假设?3.何谓内力?求解内力的基本方法是什么?何谓应力和应力状态? 研究应力状态为什么要采用“单元体”的研究方法?研究一点处的应力状态的目的是什么?何谓应变? 如何表示应力和应变?4.为什么要绘制梁的剪力图与弯矩图? 列剪力方程与弯矩方程时的分段原则是什么? 在什么情况下梁的 Q 图发生突变? 在什么情况下梁的M 图发生突变?5.何谓材料的力学性质? 为何要研究材料的力学性质?通过低碳钢与铸铁的轴向拉伸及压缩试验可以测定出材料哪些力学性质?固体材料在外力作用下呈现出来的力学性质主要体现在那两方面?这些力学性质主要指得是什么? 怎样度量材料的塑性性质?试画出低碳钢材料单轴拉伸实验时的应力应变曲线,标明各变形阶段的极限应力?对于塑性材料和脆性材料,如何定出它们的许用应力[σ]?6.在梁材料服从虎克定律时, 梁横截面上正应力分布规律是怎样的?何谓中性轴?试说明弯曲正应力公式中各字符的含义、σ符号的确定、公式的适用范围。
7.试比较圆形、矩形、工字形截面梁的合理性?8。
叠加原理应用的前提条件是什么?9.一点处于二向应力状态时,如何利用应力圆和解析法求任意斜截面上的应力?如何求主应力和主单元体?一点单元体的三个主应力作用截面上剪应力必定为零,但最大(最小)剪应力作用截面上的正应力 却不一定为零,试说明为什么?10、试简述材料力学求解静不定问题的基本思路?11、固体材料破坏的基本类型是什么?四个常用强度理论的基本内容是什么? 它们的适用范围如何?试简述最大剪应力强度理论的基本观点和基本表达式?12.拉、弯组合时危险截面和危险点位置如何确定? 建立强度条件时为什么不必利用强度理论?13.圆轴受扭、弯组合变形时, 危险截面一般位于何处? 危险点位于何处? 建立强度条件时为什么必须利用强度理论?强度条件中为何未计入弯曲剪应力?以下三种形式的强度条件(按第三强度理论),其适用范围有何区别?原因是什么?14.同时受扭转、弯曲和拉伸的构件, 其强度条件按第三强度理论写成以下形式是否正确? 为什么?15.试说明何谓压杆丧失稳定性?说明临界力的意义, 影响临界力的大小有哪些因素?为什么说欧拉公式有一定的应用范围? 超过这一范围时如何求压杆的临界力?简述提高压杆抵抗失稳的措施.★ 注意:在前面我们学习了杆件的四种基本变形.尽管杆件在四种基本变形形式下,其受力和变形的特点各不相同,但解决的问题基本是相同的,求解问题的步骤和采用的基本方法都是相同的.研究内力的[]σσ≤+=2231n r M M W[]σσ≤⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=2234n n r W M W M A N []στσσ≤+=2234r []σσσσ≤-=313r基本方法是截面怯。
绪 论一、 是非题1.1 材料力学主要研究杆件受力后变形与破坏的规律。
〔 〕 1.2 内力只能是力。
〔 〕1.3 假设物体各点均无位移,则该物体必定无变形。
〔 〕 1.4 截面法是分析应力的基本方法。
〔 〕 二、选择题1.5 构件的强度是指〔 〕,刚度是指〔 〕,稳定性是指〔 〕。
A. 在外力作用下构件抵抗变形的能力B. 在外力作用下构件保持其原有的平衡状态的能力C. 在外力作用下构件抵抗破坏的能力1.6 根据均匀性假设,可认为构件的〔 〕在各点处相同。
A. 应力 B. 应变C. 材料的弹性常数D. 位移1.7 以下结论中正确的选项是〔 〕 A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度 D. 内力必大于应力参考答案:1.1 √ 1.2 × 1.3 √ 1.4 × 1.5 C,A,B 1.6 C 1.7 C轴向拉压一、选择题1. 等截面直杆CD 位于两块夹板之间,如图示。
杆件与夹板间的摩擦力与杆件自重保持平衡。
设杆CD 两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q ,杆CD 的横截面面积为A ,质量密度为ρ,试问以下结论中哪一个是正确的? (A) q gA ρ=;(B) 杆内最大轴力N max F ql =; (C) 杆内各横截面上的轴力N 2gAlF ρ=;(D) 杆内各横截面上的轴力N 0F =。
2. 低碳钢试样拉伸时,横截面上的应力公式N F A σ=适用于以下哪一种情况? (A) 只适用于σ≤p σ; (B) 只适用于σ≤e σ; (C)3. 在A 和B和点B 的距离保持不变,绳索的许用拉应力为[]σ取何值时,绳索的用料最省? (A) 0; (B) 30; (C) 45; (D) 60。
4. 桁架如图示,载荷F 可在横梁〔刚性杆〕DE 为A ,许用应力均为[]σ〔拉和压相同〕。
求载荷F 的许用值。
以下四种答案中哪一种是正确的? (A)[]2A σ; (B) 2[]3Aσ; (C) []A σ; (D) 2[]A σ。
第一章是非判断题1-1材料力学是研究构件承载能力的一门学科。
( )1-2材料力学的任务是尽可能使构件安全地工作。
( )1-3材料力学主要研究弹性范围内的小变形情况。
( )1-4因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
( )1-5外力就是构件所承受的载荷。
( )1-6材料力学研究的内力是构件各部分间的相互作用力。
( )1-7用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
( )1-8压强是构件表面的正应力。
( )1-9应力是横截面上的平均内力。
( )1-10材料力学只研究因构件变形引起的位移。
( )1-11线应变是构件中单位长度的变形量。
( )1-12构件内一点处各方向线应变均相等。
( )1-13切应变是变形后构件中任意两根微线段夹角角度的变化量。
( )1-14材料力学只限于研究等截面直杆。
( )1-15杆件的基本变形只是拉(压)、剪、扭和弯四种,如果还有另一种变形,必定是这四种变形的某种组合。
( )答案:1-1 √1-2 ×1-3 √1-4 ×1-5 ×1-6 ×1-7 √1-8 ×1-9 ×1-10 √1-11 ×1-12 ×1-13 ×1-14 ×1-15 √第二章1 是非判断题2-1使杆件产生轴向拉压变形的外力必须是一对沿杆轴线的集中力。
( )2-2拉杆伸长后,横向会缩短,这是因为杆有横向应力存在。
( )2-3虎克定律适用于弹性变形范围内。
( )2-4材料的延伸率与试件的尺寸有关。
( )2-5 只有超静定结构才可能有装配应力和温度应力。
( )2填空题2-6承受轴向拉压的杆件,只有在( )长度范围内变形才是均匀的。
2-7根据强度条σ≤[σ]可以进行( )三个方面的强度计算。
2-8低碳钢材料由于冷作硬化,会使( )提高,而使( )降低。
2-9铸铁试件的压缩破坏和( )应力有关。
第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。
( × ) 1.2 力只作用在杆件截面的形心处。
( × ) 1.3 杆件某截面上的力是该截面上应力的代数和。
( × ) 1.4 确定截面力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ∨ ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ∨ ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ∨ ) 1.7 同一截面上正应力σ与切应力τ必相互垂直。
( ∨ ) 1.8 同一截面上各点的正应力σ必定大小相等,方向相同。
( × ) 1.9 同一截面上各点的切应力τ必相互平行。
( × ) 1.10 应变分为正应变ε和切应变γ。
( ∨ ) 1.11 应变为无量纲量。
( ∨ ) 1.12 若物体各部分均无变形,则物体各点的应变均为零。
( ∨ ) 1.13 若物体各点的应变均为零,则物体无位移。
( × ) 1.14 平衡状态弹性体的任意部分的力都与外力保持平衡。
( ∨ ) 1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。
( ∨ )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。
( × )二、填空题1.1 材料力学主要研究 受力后发生的以及由此产生1.2 拉伸或压缩的受力特征是 ,变形特征是 。
1.3 剪切的受力特征是 ,变形特征B题1.15图题1.16图外力的合力作用线通过杆轴线 杆件 沿杆轴线伸长或缩短 受一对等值,反向,作用线距离很近的力的作用 沿剪切面发生相对错动是 。
1.4 扭转的受力特征是 ,变形特征是 。
1.5 弯曲的受力特征是 ,变形特征是 。
1.6 组合受力与变形是指 。
1.7 构件的承载能力包括 , 和 三个方面。
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
习题2-1图 习题2-2图习题2-3图 习题2-4图习题2-5图 习题2-6图材料力学习题大全及答案第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。
关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
正确答案是 C 。
1-2 图示带缺口的直杆在两端承受拉力F P 作用。
关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是 D 。
1-3 图示直杆ACB 在两端A 、B 处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是 D 。
1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。
关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是 D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。
关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。
正确答案是 C 。
习题2-1图习题2-2图习题2-3图习题2-4图1-6 等截面直杆,其支承和受力如图所示。
关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是 C 。
第2章 杆件的内力分析2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A )d d Q x F d M(B )d d Q x F (C )d d Q x F (D )d d Q xF 2-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
习题2-1图 习题2-2图习题2-3图 习题2-4图习题2-5图 习题2-6图材料力学习题大全及答案第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。
关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
正确答案是 C 。
1-2 图示带缺口的直杆在两端承受拉力F P 作用。
关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是 D 。
1-3 图示直杆ACB 在两端A 、B 处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是 D 。
1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。
关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是 D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。
关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。
正确答案是 C 。
习题2-1图习题2-2图习题2-3图习题2-4图1-6 等截面直杆,其支承和受力如图所示。
关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是 C 。
第2章 杆件的内力分析2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A )d d Q x F d M(B )d d Q x F (C )d d Q x F (D )d d Q xF 2-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=τ=p sinα=120×sin10°=1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106××2=200×103 N =200 kN其力偶即为弯矩M z=200××10-3 = kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4)应力是内力分布集度。
(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6)若物体产生位移,则必定同时产生变形。
(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。
(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。
(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。
变形。
(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。
(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
材料力学习题册1-14概念答案第一章绪论一、是非判断题1.1材料力学的研究方法与理论力学的研究方法完全相同。
(×)1.2内力只作用在杆件截面的形心处。
(×)1.3杆件某截面上的内力是该截面上应力的代数和。
(×)合变1.4确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组形、横截面或任意截面的普遍情况。
(∨)1.5根据各向同性假设,可认为材料的弹性常数在各方向都相同。
(∨)1.6根据均匀性假设,可认为构件的弹性常数在各点处都相同。
(∨)1.7同一截面上正应力ζ与切应力η必相互垂直。
(∨)1.8同一截面上各点的正应力ζ必定大小相等,方向相同。
(×)1.9同一截面上各点的切应力η必相互平行。
(×)1.10应变分为正应变ε和切应变γ。
(∨)1.11应变为无量纲量。
(∨)1.12若物体各部分均无变形,则物体内各点的应变均为零。
(∨)。
(×)1.13若物体内各点的应变均为零,则物体无位移1.14平衡状态弹性体的任意部分的内力都与外力保持平衡。
(∨)1.15题1.15图所示结构中,AD杆发生的变形为弯曲与压缩的组合变形。
(∨)1.16题1.16图所示结构中,AB杆将发生弯曲与压缩的组合变形。
(×)FFAB ACBCDD题1.16图题1.15图二、填空题杆件变形1.1材料力学主要研究受力后发生的,以及由此产生应力,应变的。
线外力的合力作用线通过杆轴1.2拉伸或压缩的受力特征是,变形特征是。
1沿杆轴线伸长或缩短受一对等值,反向,作用线距离很近的力的作用1.3剪切的受力特征是,变形特征沿剪切面发生相对错动是。
外力偶作用面垂直杆轴线1.4扭转的受力特征是,变形特征任意二横截面发生绕杆轴线的相对转动是。
外力作用线垂直杆轴线,外力偶作用面通过杆轴线1.5弯曲的受力特征是,变形特梁轴线由直线变为曲线征是。
1.6组合受力与变形是指包含两种或两种以上基本变形的组合。
练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4)应力是内力分布集度。
(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6)若物体产生位移,则必定同时产生变形。
(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。
(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。
(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。
变形。
(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。
(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。