SAS时讲义序分析介绍
- 格式:ppt
- 大小:1.19 MB
- 文档页数:31
第四十课 平稳时间序列分析对时间序列数据的分析,首先要对它的平稳性和纯随机性进行检验。
根据检验的结果可以将序列分为不同的类型,对不同类型的序列将会采用不同的分析方法。
如果一个时间序列被识别为平稳非白噪声序列,那就说明该序列是一个蕴涵着相关信息的平稳序列。
在统计上,我们通常是建立一个线性模型来拟合该序列的发展,借此提取该序列中被蕴涵着有用信息。
目前,最常用的拟合平稳序列的模型是ARMA (Auto Regression Moving Average )模型。
一、 平稳性检验1. 严平稳和宽平稳平稳时间序列有两种定义,根据限制条件的严格程度,分为:● 严平稳时间序列(strictly stationary )—指序列所有的统计性质都不会随着时间的推移而发生变化。
● 宽平稳时间序列(week stationary )—指序列的统计性质只要保证序列的二阶矩平稳就能保证序列的主要性质近似稳定。
如果在任取时间t 、s 和k 时,时间序列t X 满足如下三个条件:∞<2t EX(40.1) μ=t EX(40.2) ))(())((t s k t s k k k s s t t X X E X X E -+-+--=--μμμμ(40.3)则称为宽平稳时间序列。
也称为弱平稳或二阶平稳。
对于正态随机序列而言,由于联合概率分布仅由均值向量和协方差阵决定,即只要二阶矩平稳,就等于分布平稳了。
2. 平稳时间序列的统计性质根据平稳时间序列的定义,可以推断出两个重要的统计性质: ● 常数均值。
即式(40.2)的条件。
● 自协方差只依赖于时间的平均长度。
即式(40.3)的条件。
如果定义自协方方差函数(autocovariance function )为:))((),(s s t t X X E s t μμγ--=(40.4)那么它可由二维函数简化为一维函数)(t s -γ,由此引出延迟k 自协方差函数:),()(k t t k +=γγ(40.5)容易推断出平稳时间序列一定具有常数方差:)0(),()(2γγμ==-=t t X E Dx t t t (40.6)如果定义时间序列自相关函数(autocorrelation function ),简记为ACF :st s s t t DX DX X X E s t ⋅--=))((),(μμρ(40.7)由延迟k 自协方差函数的概念可以等价得到延迟k 自相关函数的概念:)0()()0()0()())(()(r k r k DX DX X X E k kt t k t k t t t ==⋅--=+++γγγμμρ (40.8)容易验证自相关函数具有几个基本性质: ● 1)0(=ρ; ●)()(k k ρρ=-;● 自相关阵为对称非负定阵; ● 非惟一性。
结果分析:上图是数据对应的时序图,从图上曲线分析来看,数据并没有周期性或者趋向性规律,因而可以初步判断这是平稳数列。
proc arima data=ex3_1;结果分析:本过程中,我们建立了8阶自回归分析模型,图上依次是变量的描述性统计量、样本自相关图、样本逆相关图和样本偏自相关图。
由于本次实验探究的是平稳序列,因而样本逆相关图先不作分析。
结果分析:从上图可以看出,在众多模型中,MA(4)模型的BIC信息量是最小的,因而我们接下来会采用结果分析:结果分析: 结果分析:结果分析:该图为预测的图像,其中,红色线段表示预测出来的数列,绿色的两条线段分别表示95%的置信下限和95%的置信上限,而黑色的星号标识则是对应的样本数据值。
从图来分析,我们可以看出,黑色的样本数据值跟我们预测出来的线段非常的吻合,因而模型建立得很不错。
再结合上一步骤的参数结果,二、课后习题(老师布置的习题部分)17.data lianxi3_17;input x@@;time=_n_;cards;126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4110.5 25 69.3 53.5 39.8 63.6 46.7 72.979.6 83.6 80.7 60.3 79 74.4 49.6 54.771.8 49.1 103.9 51.6 82.4 83.6 77.8 79.389.6 85.5 58 120.7 110.5 65.4 39.9 40.188.7 71.4 83 55.9 89.9 84.8 105.2 113.7124.7 114.5 115.6 102.4 101.4 89.8 71.5 70.998.3 55.5 66.1 78.4 120.5 97 110;proc gplot data=lianxi3_17;plot x*time=1;symbol1c=red I=join v=star;run;结果分析:上图是数据对应的时序图,从图上曲线分析来看,数据并没有周期性或者趋向性规律,因而可以初结果分析:本过程中,我们建立了8阶自回归分析模型,图上依次是变量的描述性统计量、样本自相关图、样本逆相关图和样本偏自相关图。
第四十课 平稳时间序列分析对时间序列数据的分析,首先要对它的平稳性和纯随机性进行检验。
根据检验的结果可以将序列分为不同的类型,对不同类型的序列将会采用不同的分析方法。
如果一个时间序列被识别为平稳非白噪声序列,那就说明该序列是一个蕴涵着相关信息的平稳序列。
在统计上,我们通常是建立一个线性模型来拟合该序列的发展,借此提取该序列中被蕴涵着有用信息。
目前,最常用的拟合平稳序列的模型是ARMA (Auto Regression Moving Average )模型。
一、 平稳性检验1. 严平稳和宽平稳平稳时间序列有两种定义,根据限制条件的严格程度,分为:● 严平稳时间序列(strictly stationary )—指序列所有的统计性质都不会随着时间的推移而发生变化。
● 宽平稳时间序列(week stationary )—指序列的统计性质只要保证序列的二阶矩平稳就能保证序列的主要性质近似稳定。
如果在任取时间t 、s 和k 时,时间序列t X 满足如下三个条件:∞<2t EX(40.1) μ=t EX(40.2) ))(())((t s k t s k k k s s t t X X E X X E -+-+--=--μμμμ(40.3)则称为宽平稳时间序列。
也称为弱平稳或二阶平稳。
对于正态随机序列而言,由于联合概率分布仅由均值向量和协方差阵决定,即只要二阶矩平稳,就等于分布平稳了。
2. 平稳时间序列的统计性质根据平稳时间序列的定义,可以推断出两个重要的统计性质: ● 常数均值。
即式(40.2)的条件。
● 自协方差只依赖于时间的平均长度。
即式(40.3)的条件。
如果定义自协方方差函数(autocovariance function )为:))((),(s s t t X X E s t μμγ--=(40.4)那么它可由二维函数简化为一维函数)(t s -γ,由此引出延迟k 自协方差函数:),()(k t t k +=γγ(40.5)容易推断出平稳时间序列一定具有常数方差:)0(),()(2γγμ==-=t t X E Dx t t t (40.6)如果定义时间序列自相关函数(autocorrelation function ),简记为ACF :st s s t t DX DX X X E s t ⋅--=))((),(μμρ(40.7)由延迟k 自协方差函数的概念可以等价得到延迟k 自相关函数的概念:)0()()0()0()())(()(r k r k DX DX X X E k kt t k t k t t t ==⋅--=+++γγγμμρ (40.8)容易验证自相关函数具有几个基本性质: ● 1)0(=ρ; ●)()(k k ρρ=-;● 自相关阵为对称非负定阵; ● 非惟一性。
应用时间序列分析 SAS什么是时间序列分析?时间序列分析是一种统计学方法,用于处理连续性的数据,这些数据是按照时间顺序收集的。
它的目的是通过分析过去的数据模式和趋势来预测的趋势。
时间序列分析可用于各种领域,如经济学、气象学、股票市场预测等。
时间序列数据通常具有以下特征:•趋势:随着时间的推移,数据的整体趋势可能会上升或下降。
•季节性:数据可能会显示出固定周期的重复模式,如每年的季节性变化。
•周期性:数据可能会显示出非固定周期的重复模式,如商业周期。
•随机性:数据可能会受到许多随机因素的影响,如市场波动或天气变化。
为什么要使用 SAS 进行时间序列分析?SAS(Statistical Analysis System)是一种功能强大的统计分析和数据管理软件。
它提供了丰富的数据分析和建模工具,特别适合应用于时间序列数据分析。
以下是使用 SAS 进行时间序列分析的一些主要优势:1.多种统计模型:SAS 提供了多种用于时间序列分析的统计模型,包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)、季节性自回归移动平均模型(SARIMA)等。
这些模型可以帮助我们更好地理解时间序列数据的模式和趋势。
2.强大的数据处理能力:SAS 提供了丰富的数据处理功能,包括数据清洗、数据转换、变量选择等。
这些功能可以帮助我们对时间序列数据进行预处理,以便更好地应用统计模型进行分析。
3.可视化工具:SAS 提供了各种可视化工具,如图表和图形,可以帮助我们更直观地理解时间序列数据的模式和趋势。
这些可视化工具还可以帮助我们有效地呈现分析结果。
4.自动化分析:SAS 具有自动化分析的能力,可以帮助我们快速而准确地进行时间序列分析。
通过编写脚本和宏,可以自动化执行重复的分析任务,提高工作效率。
使用 SAS 进行时间序列分析的基本步骤以下是使用 SAS 进行时间序列分析的基本步骤:1.导入数据:,需要将时间序列数据导入 SAS 中。
第一课SAS系统简介一.SAS系统1SAS系统的功能SAS系统是大型集成应用软件系统,具有完备的以下四大功能:●数据访问●数据管理●数据分析●数据呈现它是美国软件研究所(SAS Institute Inc.)经多年的研制于1976年推出。
目前已被许多国家和地区的机构所采用。
SAS系统广泛应用于金融、医疗卫生、生产、运输、通信、政府、科研和教育等领域。
它运用统计分析、时间序列分析、运筹决策等科学方法进行质量管理、财务管理、生产优化、风险管理、市场调查和预测等等业务,并可将各种数据以灵活多样的各种报表、图形和三维透视的形式直观地表现出来。
在数据处理和统计分析领域,SAS系统一直被誉为国际上的标准软件系统。
2SAS系统的支持技术在当今的信息时代中,如何有效地利用业务高度自动化所产生的巨量宝贵数据,挖掘出对预测和决策有用的信息,就成为掌握竞争主导权的关键因素。
因此,SAS系统始终致力于应用先进的信息技术和计算机技术对业务和历史数据进行更深层次的加工。
经过二十多年的发展,SAS系统现在是以下三种技术的主要提供者:●数据仓库技术(Data Warehouse)数据仓库是用于支持管理决策过程的面向主题的、集成的、随时间而变化的、持久的(非易失的)数据集合。
通俗的说,可以将数据仓库理解为“将多个生产数据源中的数据按一定规则统一集中起来,并提供灵活的观察分析数据手段,从而为企业制定决策提供事实数据的支持。
”数据仓库最大的用途是能够提供给用户一种全新的方式从宏观或微观的角度来观察多年积累的数据,从而使用户可以迅速地掌握自己企业的经营运转状况、运营成本、利润分布、市场占有率、发展趋势等对企业发展和决策有重要意义的信息,使用户能制定更加准确科学的决策迅速对市场做出反应。
利用数据仓库技术可以使大企业运作的像小企业一样灵活,也可以使小企业像大企业一样规范。
从目前情况来看,许多企业和机构已经建立了相对完善的生产数据库系统。
随着时间的推移,这些系统中积累了大量的历史数据,其中蕴含了许多重要的信息。