人教版九年级数学21.2.2配方法导学案含答案解析
- 格式:docx
- 大小:47.89 KB
- 文档页数:8
人教版数学九年级上册21.2.2《配方法(1)》教学设计一. 教材分析《配方法(1)》是人教版数学九年级上册第21.2.2节的内容,主要讲述了配方法的基本概念和应用。
配方法是一种解决二次方程的有效方法,通过将二次方程转化为完全平方形式,从而简化计算和求解过程。
本节内容主要包括配方法的定义、配方法的步骤以及配方法在解决实际问题中的应用。
二. 学情分析九年级的学生已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。
但学生在解决实际问题时,往往对这些方法的应用范围和条件把握不清,不能灵活运用。
因此,在教学本节内容时,需要帮助学生巩固已有的知识,并通过实例讲解和练习,让学生理解和掌握配方法的特点和应用。
三. 教学目标1.知识与技能:使学生理解配方法的基本概念和步骤,能够运用配方法解决简单的实际问题。
2.过程与方法:通过实例分析和练习,培养学生运用配方法解决问题的能力,提高学生的数学思维水平。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 教学重难点1.配方法的基本概念和步骤。
2.配方法在解决实际问题中的应用。
五. 教学方法1.讲授法:通过讲解配方法的基本概念和步骤,使学生掌握配方法的理论知识。
2.案例分析法:通过实例分析,让学生了解配方法在解决实际问题中的应用。
3.练习法:通过课堂练习和课后作业,巩固学生对配方法的理解和应用。
4.小组讨论法:鼓励学生分组讨论,培养学生的团队合作精神和数学思维能力。
六. 教学准备1.教材和教辅:准备人教版数学九年级上册教材和相关教辅资料。
2.课件和幻灯片:制作课件和幻灯片,用于课堂讲解和展示。
3.练习题和答案:准备一些配方法的练习题,并准备相应的答案。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,例如:“某数加上其倒数的和为2,求这个数。
”让学生尝试解决此问题,引发学生对配方法的思考。
2.呈现(15分钟)讲解配方法的基本概念和步骤,并举例说明配方法在解决实际问题中的应用。
21.2.2配方法解一元二次方程(1)学习目标1、理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.2、通过复习可直接化成x2=p(p≥0)或(mxn)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤.重点讲清“直接降次有困难”,如x26x-16=0的一元二次方程的解题步骤.难点不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.1知识准备(1)解下列方程①3x2-1=5 ②4(x-1)2-9=0 ③4x216x16=9(2)填空①x26x______=(x______)2;②x2-x_____=(x-_____)2③4x24x_____=(2x______)2; ④x2-x_____=(x-_____)22探究问题要使一块长方形场地的长比宽多6cm,并且面积为16cm2场地的长和宽应各是多少?思?1、以上解法,为什么在方程x 26x=16两边加9?加其他数行吗?2、什么叫配方法?3、配方法的目的是什么? 这也是配方法的基本4、配方法的关键是什么? 例题用配方法解下列一元二次方程(1)2810x x -+= (2)2213x x += (3)23640x x -+=课堂训练用配方法解下列关于x 的方程(4)4x 2-6x-3=0 (5)249211x x x +-=- (6)x(x4)=8x12课堂检测1.将二次三项式x 2-4x1配方后得( ).A .(x-2)23B .(x-2)2-3C .(x2)23D .(x2)2-32.已知x 2-8x15=0,左边化成含有x 的完平方形式,其正确的是( ).A .x 2-8x (-4)2=31B .x 2-8x (-4)2=1C .x 28x42=1D .x 2-4x4=-113.如果mx 22(3-2m )x3m-2=0(m ≠0)的左边是一个关于x 的完平方式,则m 等于( ).A .1B .-1C .1或9D .-1或94.(1)x 2-8x______=(x-______)2;(2)9x 212x_____=(3x_____)2(3)x 2px_____=(x______)2.5、(1)方程x 24x-5=0的解是________.(20,则x 的值为________.拓展延伸一、解下列方程(1)x 210x16=0 (2)x 2(3)3x 26x-5=0二、综合提题1.已知三角形两边长分别为2和4,第三边是方程x2-4x3=0的解,求这个三角形的周长.2.如果x2-4xy2,求(xy)z的值.。
2018-2019学年九年级数学上册第二十一章一元二次方程21.2 解一元二次方程21.2.2 公式法教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学上册第二十一章一元二次方程21.2 解一元二次方程21.2.2 公式法教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学上册第二十一章一元二次方程21.2 解一元二次方程21.2.2 公式法教案(新版)新人教版的全部内容。
21.2.2 公式法※教学目标※【知识与技能】1.理解并掌握求根公式的推导过程.2。
能利用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严禁认真的科学态度.【教学重点】求根公式的推导和公式法的应用.【教学难点】一元二次方程求根公式的推导.※教学过程※一、复习导入1.前面我们学习过直接开平方法解一元二次方程,比如,方程24x,227x:提问1 这种解法的(理论)依据是什么?提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数"的特殊的一元二次方程有效,不能实施于一般形式的一元二次方程)2.面对这种局限性,我们该怎么办?(使用配方法,把一般形式的一元二次方程化为能够直接开平方的形式)(学生活动) 用配方法解方程:2x x.237总结用配方法解一元二次方程的步骤(学生总结,老师点评)(1)先将已知方程化为一般形式; (2)二次项系数化为1; (3)常数项移到右边;(4)方程两边都加上一次项系数的一般的平方,使左边配成一个完全平方式; (5)变形为2x np 的形式,如果0p ,就可以直接开平方求出方程的解,如果0p ,则一元二次方程无解.二、探索新知能否用上面配方法的步骤求出一元二次方程200ax bx c a 的两根?移项,得2ax bxc .二次项系数化为1,得2b cx xa a. 配方,得22222b b c b xx a aaa,即222424b b ac x aa .此时,教师应作适当停顿,提出如下问题,引导学生分析、探究:(1)两边能直接开平方吗?为什么? (2)你认为下一步该怎么办?师生共同完善认知:(1)当b 2—4ac >0时,两边可直接开平方,得242b b ac x a,∴2142bb ac x a,2242bb ac x a;(2)当b 2—4ac =0时,有202b x a 。
人教版数学九年级上册教案21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21章第2节的内容,本节课主要让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。
教材通过引入“完全平方公式”的概念,引导学生探索如何将一个二次多项式转化为完全平方形式,从而引出配方法。
学生在学习过程中,需要理解并掌握配方法的基本步骤,以及如何判断一个多项式是否可以配成完全平方形式。
二. 学情分析学生在学习本节课之前,已经学习了二次方程的解法、完全平方公式等知识,对于二次多项式的基本概念和性质有一定的了解。
但学生在运用配方法解决实际问题时,可能会遇到一些困难,如判断多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
因此,在教学过程中,教师需要关注学生的学习情况,引导学生积极参与课堂活动,提高学生运用配方法解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握配方法的原理和步骤,能够运用配方法将一个二次多项式转化为完全平方形式。
2.过程与方法目标:通过小组合作、讨论交流等学习活动,培养学生探索问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。
四. 教学重难点1.重点:配方法的原理和步骤。
2.难点:如何判断一个多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
五. 教学方法1.启发式教学:教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。
2.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。
3.案例教学:教师通过举例子,让学生理解并掌握配方法的运用。
六. 教学准备1.准备相关教案和教学资料。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)教师通过提出一个实际问题,引导学生思考如何解决。
例如:已知一个二次多项式 f(x) = x^2 - 6x + 9,请问如何将其转化为完全平方形式?2.呈现(10分钟)教师引导学生回顾二次方程的解法和完全平方公式,然后引导学生探索如何将 f(x) = x^2 - 6x + 9 转化为完全平方形式。
人教版数学九年级上册21.2.2《配方法(2)》教学设计一. 教材分析《配方法(2)》是人教版数学九年级上册第21章第二节的内容,这一节主要介绍了配方法的进一步应用。
通过前面的学习,学生已经掌握了配方法的基本概念和步骤,本节内容则进一步引导学生运用配方法解决实际问题,提高学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于配方法的基本概念和步骤有一定的了解。
但是,学生在运用配方法解决实际问题时,可能会遇到一些困难,如不知道如何选择合适的配方法,或者在计算过程中出现错误。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行指导和纠正。
三. 教学目标1.知识与技能:使学生掌握配方法的进一步应用,能够灵活运用配方法解决实际问题。
2.过程与方法:通过实例分析,培养学生运用配方法解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和细心。
四. 教学重难点1.重点:配方法的进一步应用。
2.难点:如何选择合适的配方法,以及在计算过程中避免错误。
五. 教学方法1.实例分析法:通过具体的例子,让学生了解配方法的应用。
2.讨论法:引导学生分组讨论,共同解决问题。
3.练习法:让学生在实践中巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示配方法的应用实例。
2.练习题:准备一些配方法的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节内容,让学生思考如何运用配方法解决。
例如,一个长方形的长是10cm,宽是8cm,求这个长方形的对角线长度。
2.呈现(10分钟)教师展示课件,呈现几个配方法的实例,让学生观察和思考。
同时,教师引导学生回顾配方法的基本步骤,巩固所学知识。
3.操练(10分钟)教师让学生分组进行讨论,每组选择一个实例,尝试运用配方法解决问题。
教师在旁边进行指导,帮助学生解决问题。
4.巩固(10分钟)教师选取几组学生的解题过程,进行讲解和分析,指出其中的优点和不足。
人教版九年级数学上册第二十一章 21.2.1 配方法 导学案第1课时 直接开平方法1、教学目标1.理解解一元二次方程“降次—转化”的数学思想,并能应用它解决一些具体问题.2.能熟练解形如x 2=p(p ≥0)或(mx +n)2=p(p ≥0)的一元二次方程.2、预习反馈1.已知方程x 2=25,根据平方根的意义,得x =±5,即x 1=5,x 2=-5.2.已知方程(2x -1)2=5,根据平方根的意义,得2x -1即x 12x 223.方程x 2+6x +9=2的左边是完全平方式,这个方程可化为(x +3)2=2,进行降次,得到x +3x 1x 2【点拨】 上面的解法,实际上是把一个一元二次方程“降次”,转化为两个一元一次方程.3、例题讲解例 解下列方程:(1)3x 2-27=0;(2)13(x +3)2=4;(3)4(x -2)2-36=0;(4)x 2+2x +1=9.【思路点拨】 把已知方程变形为x 2=p 或(mx +n )2=p (p ≥0)的形式,再对方程的两边直接开平方.【解答】(1)移项,得3x2=27.方程两边同时除以3,得x2=9.方程两边开平方,得x=±3.∴x1=3,x2=-3.(2)方程两边同时乘3,得(x+3)2=12.方程两边开平方,得x+3=±2 3.∴x1=23-3,x2=-23-3.(3)移项,得4(x-2)2=36.方程两边同时除以4,得(x-2)2=9.方程两边开平方,得x-2=±3.∴x1=5,x2=-1.(4)根据完全平方公式,可将原方程变形为(x+1)2=9.方程两边开平方,得x+1=±3.即x+1=3或x+1=-3,∴x1=2,x2=-4.【方法归纳】直接开平方法适用于解x2=a(a≥0)形式的一元二次方程,这里的x可以是单项式,也可以是含有未知数的多项式.换言之,只要经过变形可以转换为x2=a(a≥0)形式的一元二次方程都可以用直接开平方法进行求解.【跟踪训练】解下列方程:(1)4x2=1;(2)(2x-3)2-14=0.解:(1)二次项系数化为1,得x2=1 4 .∴x1=12,x2=-12.(2)移项,得(2x-3)2=14.∴2x-3=±12.∴x1=74,x2=54.4、巩固训练1.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是(D)A.x-6=-4 B.x-6=4 C.x+6=4 D.x +6=-42.若(x+1)2-1=0,则x的值为(D)A.±1 B.±2 C.0或2 D.0或-23.已知关于x的一元二次方程(x+1)2-m=0有两个实数根,则m的取值范围是(B)A.m≥-34B.m≥0 C.m≥1 D.m≥24.方程4x2+4x+1=0的解是(D)A.x1=x2=2 B.x1=x2=-2 C.x1=x2=12D.x1=x2=-125.解下列方程:(1)16x2-49=0; (2)64(1+x)2=100;(3)(x-3)2-9=0; (4)(3x-1)2=(3-2x)2.解:(1)x1=74,x2=-74.(2)x1=14,x2=-94.(3)x1=0,x2=6.(4)x1=45,x2=-2.5、课堂小结(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?说一说.第2课时配方法1、教学目标1.了解配方法解一元二次方程的意义.2.掌握配方法解一元二次方程的步骤,会用配方法解简单的数字系数的一元二次方程.2、预习反馈1.填空:x2+6x+9=(x+3)2.2.(教材P6“探究”)怎样解方程x2+6x+4=0?解:移项,得x2+6x=-4.方程两边加9(即(62)2),使左边配成x2+2bx+b2的形式为x2+6x+9=-4+9,左边写成完全平方的形式为(x+3)2=5,降次,得解一次方程,得x1x23.通过配成完全平方形式来解一元二次方程的方法,叫做配方法.配方是为了降次,把一个一元二次方程转化成两个一元一次方程来解.3、例题讲解例解下列方程:(1)x2-8x+1=0;(2)2x2+1=3x;(3)3x2-6x+4=0.【思路点拨】(1)方程的二次项系数为1,直接运用配方法.(2)先把方程化成2x2-3x+1=0,它的二次项系数为2,为了便于配方,需将二次项系数化为1,为此方程的两边都除以2.(3)与(2)类似,方程的两边都除以3后再配方.【解答】(1)移项,得x2-8x=-1.配方,得x2-8x+42=-1+42,(x-4)2=15. 由此可得x-4=±15,x1=4+15,x2=4-15.(2)移项,得2x2-3x=-1.二次项系数化为1,得x2-32x=-12.配方,得x2-32x+(34)2=-12+(34)2,(x-34)2=116.由此可得x-34=±14,x 1=1,x2=12.(3)移项,得3x2-6x=-4.二次项系数化为1,得x2-2x=-4 3 .配方,得x2-2x+12=-43+12,(x-1)2=-13 .因为实数的平方不会是负数,所以x取任何实数时,(x-1)2都是非负数,上式都不成立,即原方程无实数根.【方法归纳】用配方法解一元二次方程的一般步骤:(1)将一元二次方程化为一般形式;(2)将常数项移到方程的右边;(3)在方程两边同除以二次项系数,将二次项系数化为1;(4)在方程两边都加上一次项系数一半的平方,然后将方程左边化为一个完全平方式,右边为一个常数;(5)当方程右边是一个非负数时,用直接开平方法解这个一元二次方程;当方程右边是一个负数时,原方程无实数解.4、巩固训练1.一元二次方程x2-8x-1=0配方后可变形为(C)A.(x+4)2=17 B.(x+4)2=15C.(x-4)2=17 D.(x-4)2=152.将方程x2-2x=2配方成(x+a)2=k的形式,则方程的两边需加上1.3.在横线上填上适当的数,使等式成立.(1)x2+18x+81=(x+9)2;(2)4x2+4x+1=(2x+1)2.4.用配方法解下列方程:(1)x2-2x-3=0;(2)2x2-7x+6=0;(3)(2x-1)2=x(3x+2)-7.解:(1)移项,得x2-2x=3.配方,得(x-1)2=4.∴x-1=±2,∴x1=-1,x2=3.(2)系数化为1,得x2-72x+3=0.配方,得x2-72x+4916=-3+4916,即(x-74)2=116.∴x-74=±14.∴x1=2,x2=32.(3)去括号,得4x2-4x+1=3x2+2x-7. 移项、合并同类项,得x2-6x=-8.配方,得(x-3)2=1.∴x-3=±1,∴x1=2,x2=4.5、课堂小结1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.。
第二十一章 一元二次方程21.2 解一元二次方程 21.2.2 公式法学习目标:1.经历求根公式的推导过程.2.会用公式法解一元二次方程.3.理解并会计算一元二次方程根的判别式.4.会用判别式判断一元二次方程的根的情况.重点:运用公式法解一元二次方程. 难点:一元二次方程求根公式的推导.一、知识链接如何用配方法解方程2x 2+4x -1=0?二、要点探究探究点1:求根公式的推导合作探究 任何一个一元二次方程都可以写成一般形式ax 2+bx +c =0(a ≠0),能否也用配方法得出它的解呢?问题1 用配方法解一元二次方程ax 2+bx +c =0(a ≠0).解:移项,得ax 2+bx =-c ,二次项系数化为1,得x 2+ x =c a配方,得x 2+ x +( )2=( )2c a即(x +2b a)2=2244b aca ①问题2 对于方程①接下来能直接开平方解吗?要点归纳:∵a ≠0,∴4a 2>0.要注意式子b 2-4ac 的值有大于0、小于0和等于0三种情况. 探究点2:一元二次方程根的判别式22= b 2-4ac.练一练 按要求完成下列表格.4403x21103x x 10的值x 2+x =1,下列判断正确的是( ) A.该方程有两个相等的实数根 B.该方程有两个不相等的实数根 C.该方程无实数根D.该方程根的情况不确定例2 不解方程,判断下列方程的根的情况.(1) 3x 2+4x -3=0; (2) 4x 2=12x -9; (3) 7y =5(y 2+1).方法总结:现将方程变形为一般形式ax 2+bx +c =0,再根据根的判别式求解即可.例3 若关于x 的一元二次方程x 2+8x +q =0有两个不相等的实数根,则q 的取值范围是( ) A. q ≤4 B. q ≥4C. q <16D. q >16【变式题】二次项系数含字母若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是( ) A. k >-1 B. k >-1且k ≠0C. k <1D. k <1且k ≠0方法总结:当一元二次方程二次项系数为字母时,一定要注意二次项系数不为0,再根据根的判别式求字母的取值范围.【变式题】删除限制条件“二次”若关于x 的方程kx 2-2x -1=0有实数根,则k 的取值范围是( ) A. k ≥-1 B.k ≥-1且k ≠0C.k <1D.k <1且k ≠0探究点3:用公式法解方程由上可知,当≥0时,方程ax 2+bx +c =0 (a ≠0)的实数根可写为242bb acxa的形式,这个式子叫做一元二次方程ax 2+bx +c =0的求根公式.用求根公式解一元二次方程的方法叫做公式法.p11例2)用公式法解下列方程:(1) x 2-4x -7=0; (2) 2x 2-+1=0;(2) 5x 2-3x =x +1; (4) x 2+17=8x .要点归纳:公式法解方程的步骤: 1.变形:化已知方程为一般形式; 2.确定系数:用a ,b ,c 写出各项系数;3.计算:b 2-4ac 的值;4.判断:若b 2-4ac ≥0,则利用求根公式求出;若b 2-4ac <0,则方程没有实数根.1.不解方程,判断下列方程的根的情况.(1) 2x 2+3x -4=0; (2) x 2-x +14=0; (3) x 2-x +1=0.2.解方程:x 2+7x –18 = 0.3.解方程:(x -2) (1-3x ) = 6.4.解方程:2x 2- + 3 = 0.5.(1)关于x的一元二次方程220x x m有两个实根,则m的取值范围是;(2)若关于x的一元二次方程(m-1)x2-2mx+m=2有实数根.求m的取值范围.6.不解方程,判别关于x的方程22x kx k的根的情况.220能力提升:在等腰△ABC中,三边分别为a,b,c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.参考答案自主学习一、知识链接解:方程整理得212.2x x 配方,得23+12x .直接开平方,得6+12x ,∴12661122x x ,.课堂探究 二、要点探究探究点1:求根公式的推导问题1 b a b a 2b a 2ba问题2 不能,需要注意右边式子有大于0,等于0,小于0三种情况.探究点2:一元二次方程根的判别式两个不相等实数根 两个相等实数根 没有实数根 两个实数根练一练 从上往下,从左到右依次为0,13,4,有两个相等实数根,没有实数根,有两个不相等的实解析:原方程变形为x 2+x -1=0.∵b 2-4ac =1-4×1×(-1)=5>0,∴该方程有两个不相等的实数根,故选B.例2 解:(1)3x 2+4x -3=0,a =3,b =4,c =-3,∴b 2-4ac =42-4×3×(-3)=52>0.∴方程有两个不相等的实数根.(2)方程化为:4x 2-12x +9=0,∴b 2-4ac =(-12)2-4×4×9=0.∴方程有两个相等的实数根. (3)方程化为:5y 2-7y +5=0,∴b 2-4ac =(-7)2-4×5×5=-51<0.∴方程无实数根.例3 C 解析:由根的判别式知,方程有两个不相等的实数根,则b 2-4ac >0,即82-4q >0.解得q <16,故选C.【变式题】B 解析:方程有两个不相等的实数根,则b 2-4ac >0,即(-2)2+4k >0.又二次项系数不为0,可得k >-1且k ≠0,故选B.【变式题】A 思路分析:分k =0或k ≠0两种情况进行分类讨论. 探究点3:用公式法解方程例4 解:(1)a =1,b =-4,c =-7,b 2-4ac =(-4)2-4×1×(-7)=44>0.方程有两个不相等的实数根24(4)44211.221bb ac xa即12211211x x ,.(2)a =2,b =22,c =1,b 2-4ac =(22)2-4×1×2=0.方程有两个相等的实数根,即212422022222bb ac x x a. (3)方程化为5x 2-4x -1=0,a =5,b =-4,c =-1,b 2-4ac =(-4)2-4×5×(-1)=36>0.方程有两个不相等的实数根24(4)3646.22510bb ac xa 即12115x x ,. (4)方程化为x 2-8x +17=0,a =1,b =-8,c =17,b 2-4ac =(-8)2-4×1×17=-4<0.方程无实数根. 当堂检测1.解:(1)a =2,b =3,c =-4,b 2-4ac =32-4×2×(-4)=41>0.方程有两个不相等的实数根.(2)a =1,b =-1,c =14,b 2-4ac =(-1)2-4×1×14=0.方程有两个相等的实数根.(3)a =1,b =-1,c =1,b 2-4ac =(-1)2-4×1×1=-3<0.方程无实数根.2.解:这里a =1,b =7,c =-18,b 2-4ac =72-4×1×(-18)=121>0.∴247121711.2212bb ac xa1292x x ,.3. 解:去括号,得x -2-3x 2+ 6x = 6,化为一般式为3x 2-7x + 8 = 0,这里a =3,b =-7,c =8,b 2-4ac =(-7)2–4×3×8 =49-96=-47<0.∴原方程无实数根. 4.这里a =2,b =33,c =3,b 2-4ac =(33)2-4×2×3=3>0. ∴24333.24bb acxa12332x x ,. 5.(1)m ≤1(2)解:化为一般式(m -1)x 2-2mx +m -2=0.Δ=4m 2−4(m −1)(m −2)≥0,且m -1≠0,解得23m且m ≠1. 6.解:222222241844kk k k k ,∵20k ,∴240k ,∴0.∴方程有两个实数根.能力提升解:关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,所以Δ=b 2-4ac =(b -2)2-4(6-b )=b 2+8b -20=0.所以b =-10或b =2.将b =-10代入原方程得x 2-8x +16=0,x 1=x 2=4;将b =2代入原方程得x 2+4x +4=0,x 1=x 2=-2(舍去); 所以△ABC 的三边长为4,4,5,其周长为4+4+5=13.第2章圆2.1 圆的对称性【知识与技能】1.通过观察实验操作,使学生理解圆的定义.2.结合图形理解弧、等弧、弦、等圆、半圆、直径等有关概念.3.圆既是轴对称图形又是中心对称图形.4.点与圆的位置关系.【过程与方法】通过举出生活中常见圆的例子,经历观察画图的过程多角度体会和认识圆.【情感态度】结合本课教学特点,向学生进行爱国主义教育和美育渗透.激发学生观察、探究、发现数学问题的兴趣和欲望.【教学重点】圆、等圆、弧、等弧、弦、半圆、直径等有关概念的理解.【教学难点】圆、等圆、弧、等弧、弦、半圆、直径等有关概念的区别与联系.一、情境导入,初步认识圆是生活中常见的图形,许多物体都给我们以圆的形象.1.观察以上图形,体验圆的和谐与美丽.请大家说说生活中还有哪些圆形.2.请同学们在草稿纸上用圆规画圆,体验画圆的过程,想想圆是怎样形成的.【教学说明】学生很容易找出生活中关于圆的例子,通过画圆,有利于学生从直观形象认识上升到抽象理性认识.二、思考探究,获取新知1.圆的定义问题如教材P43图所示,通过用绳子和圆规画圆的过程,你发现了什么?由此你能得到什么结论?【教学说明】由于学生通过操作已经得出圆的定义,教师加以规范,有利于加深印象.如右图:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的圆形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.注意:圆指的是圆周,不是圆面.【教学说明】使学生能准确地理解并掌握圆的定义.2.点与圆的位置关系一般地,设⊙O的半径为r,点P到圆心O的距离为d,则有(1)点P在⊙O内d<r(2)点P在⊙O上d=r(3)点P在⊙O外d>r3.与圆有关的概念弦:连接圆上任意两点的线段叫做弦.(如:线段AB、AC)直径:经过圆心的弦(如AB)叫做直径.注:直径是特殊的弦,但弦不一定是直径.弧:圆上任意两点间的部分叫做圆弧,简称弧.如图,以A、B为端点的弧记作,AB,读作:弧AB.注:①圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.②大于半圆的弧,用三个点表示,如图中的ABC,叫做优弧.小于半圆的弧,用两个点表示,如图中的AC,叫做劣弧.等圆:能够重合的两个圆叫做等圆.注:半径相等的两个圆是等圆,反过来,同圆或等圆的半径相等.等弧:在等圆或同圆中,能够互相重合的弧叫等弧.注:①等弧是全等的,不仅是弧的长度相等.②等弧只存在于同圆或等圆中.【教学说明】结合图形,使学生准确地掌握与圆有关的概念,为后面的学习打下基础.4.圆的对称性(1)圆是中心对称图形,圆心是它的对称中心.(2)圆是轴对称图形,任意一条直径所在的直线都是圆的对称轴.【教学说明】上述两个结论是通过教材P44探究1、2而得出来的,教师应引导学生仔细体会,必要时可通过画图或折叠圆心纸片演示.思考车轮为什么做成圆形的?如果车轮不是圆的(如椭圆或正方形等),坐车人会是什么感觉?【分析】把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面滚动时,车轮中心与平面的距离保持不变.因此,车辆在平路上行驶时,坐车的人会感到非常平稳.如果车轮不是圆的,车辆在行驶时,坐车人会感觉到上下颠簸,不舒服.三、运用新知,深化理解1.在Rt△ABC中,∠C=90°,AB=3cm,BC=2cm,以点A为圆心,2cm长为半径作圆,则点C()A.在⊙A内B.在⊙A上C.在⊙A外D.可能在⊙A上也可能在⊙A外2.(1)以点A为圆心,可以画____个圆.(2)以已知线段AB的长为半径,可以画____个圆.(3)以A为圆心,AB长为半径,可以画___个圆.3.如图,半圆的直径AB=________.第3题图第4题图4.如图,图中共有____条弦.【教学说明】学生自主完成,加深对新学知识的理解和检测对圆的有关概念的掌握情况,对学生的疑惑教师及时指导,并进行强化.【答案】1.C 2.(1)无数(2)无数(3)1 3.22 4.2四、师生互动,课堂小结1.师生共同回顾圆的两种定义,弦(直径),弧(半圆、优弧、劣弧、等弧),等圆等知识点.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳,对于某些概念性的知识,要结合图形加以区别和理解.1.布置作业:从教材“习题2.1”中选取.2.完成同步练习册中本课时的练习.本节课是从学生感受生活中圆的应用开始,到通过学生动手画圆,培养学生动手、动脑习惯,在操作过程中观察圆的特点,加深对所学知识的认识,并运用所学知识解决实际问题,体验应用知识的成就感,激发他们学习的兴趣.二次函数与一元二次方程的关系1.抛物线2283y x x =--与x 轴有______个交点,因为其判别式24b ac -=_____0,相应二次方程23280x x -+=的根的情况为_______.2.二次函数269y x x =-+-的图像与x 轴的交点坐标为________.3.关于x 的方程25mx mx m ++=有两个相等的实数根,则相应二次函数25y mx mx m =++-与x 轴必然相交于 ______点,此时m =__________.4. 函数22y mx x m =+-(m 是常数)的图像与x 轴的交点个数为() A.0个 B.1个 C.2个 D.1个或2个5.关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是( ) A.116m <-B.116m -≥且0m ≠ C.116m =- D.116m >-且0m ≠ 6.函数2y ax bx c =++的图象如图所示,那么关于x 的一元二次方程230ax bx c ++-=的根的情况是( )A.有两个不相等的实数根B.有两个异号的实数根 C.有两个相等的实数根D.没有实数根7. 若二次函数2y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为( )A.a c + B.a c - C.c - D.c8.已知抛物线21()3y x h k =--+的顶点在抛物线2y x =上,且抛物线在x 轴上截得的线段长是h 和k 的值.9.已知函数22y x mx m =-+-. (1)求证:不论m 为何实数,此二次函数的图像与x 轴都有两个不同交点;(2)若函数y 有最小值54-,求函数表达式.10.已知二次函数2224y x mx m =-+.(1)求证:当0m ≠时,二次函数的图像与x 轴有两个不同交点;(2)若这个函数的图像与x 轴交点为A ,B ,顶点为C ,且△ABC的面积为此二次函数的函数表达式.11.已知抛物线2y ax bx c =++与y 轴交于C 点,与x 轴交于1(0)A x ,,212(0)()B x x x <,两点,顶点M 的纵坐标为4-,若1x ,2x 是方程222(1)70x m x m --+-=的两根,且221210x x +=.(1)求A ,B 两点坐标;(2)求抛物线表达式及点C 坐标;(3)在抛物线上是否存在着点P,使△PAB面积等于四边形ACMB面积的2倍,若存在,求出P点坐标;若不存在,请说明理由.。
最新人教版九年级数学上册全册导学案(含答案)第二十一章一元二次方程21.1一元二次方程1.了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.2.掌握一元二次方程的一般形式a某2+b某+c=0(a≠0)及有关概念.3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟)问题1:如图,有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为某cm,则盒底的长为__(100-2某)cm__,宽为__(50-2某)cm__.列方程__(100-2某)·(50-2某)=3600__,化简整理,得__某2-75某+350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__437=28__.设应邀请某个队参赛,每个队要与其他__(某-1)__个队各赛1场,所以全部比赛共某(某-1)某(某-1)__场.列方程__=28__,化简整理,得__某2-某-56=0__.②22探究:(1)方程①②中未知数的个数各是多少?__1个__.(2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.1.一元二次方程的定义等号两边都是__整式__,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于某的一元二次方程,经过整理,都能化成如下形式:a某2+b某+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中__a某2__是二次项,__a__是二次项系数,__b某__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)1.判断下列方程,哪些是一元二次方程?(1)某3-2某2+5=0;(2)某2=1;13(3)5某2-2某-=某2-2某+;45(4)2(某+1)2=3(某+1);(5)某2-2某=某2+1;(6)a某2+b某+c=0.解:(2)(3)(4).点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程.2.将方程3某(某-1)=5(某+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3某2-3某=5某+10.移项,合并同类项,得3某2-8某-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.求证:关于某的方程(m2-8m+17)某2+2m某+1=0,无论m取何值,该方程都是一元二次方程.证明:m2-8m+17=(m-4)2+1,∵(m-4)2≥0,∴(m-4)2+1>0,即(m-4)2+1≠0.∴无论m取何值,该方程都是一元二次方程.点拨精讲:要证明无论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.2.下面哪些数是方程2某2+10某+12=0的根?-4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足等式,所以某=-2或某=-3是一元二次方程2某2+10某+12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.判断下列方程是否为一元二次方程.(1)1-某2=0;(2)2(某2-1)=3y;12(3)2某2-3某-1=0;(4)2-=0;某某(5)(某+3)2=(某-3)2;(6)9某2=5-4某.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.2.若某=2是方程a某2+4某-5=0的一个根,求a的值.解:∵某=2是方程a某2+4某-5=0的一个根,∴4a+8-5=0,3解得a=-.43.根据下列问题,列出关于某的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长某;(2)一个长方形的长比宽多2,面积是100,求长方形的长某.解:(1)4某2=25,4某2-25=0;(2)某(某-2)=100,某2-2某-100=0.学生总结本堂课的收获与困惑.(2分钟)1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式a某2+b某+c=0(a≠0),特别强调a≠0.3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟)21.2解一元二次方程21.2.1配方法(1)1.使学生会用直接开平方法解一元二次方程.2.渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(某+m)2=n(n≥0)的方程;领会降次——转化的数学思想.难点:通过根据平方根的意义解形如某2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(某+m)2=n(n≥0)的方程.一、自学指导.(10分钟)问题1:一桶某种油漆可刷的面积为1500dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为某dm,则一个正方体的表面积为__6某2__dm2,根据一桶油漆可刷的面积列出方程:__1036某2=1500__,由此可得__某2=25__,根据平方根的意义,得某=__±5__,即某1=__5__,某2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm.探究:对照问题1解方程的过程,你认为应该怎样解方程(2某-1)2=5及方程某2+6某+9=4方程(2某-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2某-1=±5__,即将方程变为__2某-1=5和__2某-1=-5__两个一元一1+51-5次方程,从而得到方程(2某-1)2=5的两个解为某1=__,某2=____.22在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程某2+6某+9=4的左边是完全平方式,这个方程可以化成(某+__3__)2=4,进行降次,得到__某+3=±2__,方程的根为某1=__-1__,某2=__-5__.归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成某2=p(p≥0)或(m某+n)2=p(p≥0)的形式,那么可得某=±p或m某+n=±p.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)解下列方程:(1)2y2=8;(2)2(某-8)2=50;(3)(2某-1)2+4=0;(4)4某2-4某+1=0.解:(1)2y2=8,(2)2(某-8)2=50,y2=4,(某-8)2=25,y=±2,某-8=±5,∴y1=2,y2=-2;某-8=5或某-8=-5,∴某1=13,某2=3;(3)(2某-1)2+4=0,(4)4某2-4某+1=0,(2某-1)2=-4<0,(2某-1)2=0,∴原方程无解;2某-1=0,1∴某1=某2=.2点拨精讲:观察以上各个方程能否化成某2=p(p≥0)或(m某+n)2=p(p≥0)的形式,若能,则可运用直接开平方法解.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用直接开平方法解下列方程:(1)(3某+1)2=7;(2)y2+2y+1=24;(3)9n2-24n+16=11.一、自学指导.(8分钟)问题:如果这个一元二次方程是一般形式a某2+b某+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?-b+b2-4ac问题:已知a某+b某+c=0(a≠0),试推导它的两个根某1=,某2=2a2-b-b2-4ac.2a分析:因为前面具体数字已做得很多,现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程a某2+b某+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式a某2+b某+c=0,当b2-4ac≥0时,-b±b2-4ac将a,b,c代入式子某=就得到方程的根,当b2-4ac<0时,方程没有实数2a根.-b±b2-4ac(2)某=叫做一元二次方程a某2+b某+c=0(a≠0)的求根公式.2a(3)利用求根公式解一元二次方程的方法叫做公式法.(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.(5)一般地,式子b2-4ac叫做方程a某2+b某+c=0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b2-4ac.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)用公式法解下列方程,根据方程根的情况你有什么结论?(1)2某2-3某=0;(2)3某2-23某+1=0;(3)4某2+某+1=0.3解:(1)某1=0,某2=;有两个不相等的实数根;2(2)某1=某2=3;有两个相等的实数根;3(3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.方程某2-4某+4=0的根的情况是(B)A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根2.当m为何值时,方程(m+1)某2-(2m-3)某+m+1=0,(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?111解:(1)m<;(2)m=;(3)m>.4443.已知某2+2某=m-1没有实数根,求证:某2+m某=1-2m必有两个不相等的实数根.证明:∵某2+2某-m+1=0没有实数根,∴4-4(1-m)<0,∴m<0.对于方程某2+m某=1-2m,即某2+m某+2m-1=0,Δ=m2-8m+4,∵m<0,∴Δ>0,∴某2+m某=1-2m必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.利用判别式判定下列方程的根的情况:3(1)2某2-3某-=0;(2)16某2-24某+9=0;2(3)某2-42某+9=0;(4)3某2+10某=2某2+8某.解:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根.2.用公式法解下列方程:(1)某2+某-12=0;(2)某2-2某-=0;4(3)某2+4某+8=2某+11;(4)某(某-4)=2-8某;(5)某2+2某=0;(6)某2+25某+10=0.解:(1)某1=3,某2=-4;(2)某1=2+32-3,某2=;22(3)某1=1,某2=-3;(4)某1=-2+6,某2=-2-6;(5)某1=0,某2=-2;(6)无实数根.点拨精讲:(1)一元二次方程a某2+b某+c=0(a≠0)的根是由一元二次方程的系数a,b,c确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac≥0的前提下,把-b±b2-4ac2a,b,c的值代入某=(b-4ac≥0)中,可求得方程的两个根;2a(3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟)1.求根公式的推导过程.2.用公式法解一元二次方程的一般步骤:先确定出b2-4ac的值、.a,b,c的值,再算.最后代入求根公式求解..3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟)21.2.3因式分解法1.会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想.(2分钟)将下列各题因式分解:(1)am+bm+cm=(__a+b+c__)m;(2)a2-b2=__(a+b)(a-b)__;(3)a2±2ab+b2=__(a±b)2__.一、自学指导.(8分钟)问题:根据物理学规律,如果把一个物体从地面以10m/的速度竖直上抛,那么经过某物体离地的高度(单位:m)为10某-4.9某2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01)设物体经过某落回地面,这时它离地面的高度为0,即10某-4.9某2=0,①思考:除配方法或公式法以外,能否找到更简单的方法解方程①?分析:方程①的右边为0,左边可以因式分解得:某(10-4.9某)=0,于是得某=0或10-4.9某=0,②∴某1=__0__,某2≈2.04.上述解中,某2≈2.04表示物体约在2.04时落回地面,而某1=0表示物体被上抛离开地面的时刻,即0时物体被抛出,此刻物体的高度是0m.点拨精讲:(1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法.(2)如果a·b=0,那么a=0或b=0,这是因式分解法的根据.如:如果(某+1)(某-1)=0,那么__某+1=0或__某-1=0__,即__某=-1__或__某=1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.说出下列方程的根:(1)某(某-8)=0;(2)(3某+1)(2某-5)=0.15解:(1)某1=0,某2=8;(2)某1=-,某2=.322.用因式分解法解下列方程:(1)某2-4某=0;(2)4某2-49=0;(3)5某2-20某+20=0.77解:(1)某1=0,某2=4;(2)某1=,某2=-;22(3)某1=某2=2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用因式分解法解下列方程:(1)5某2-4某=0;(2)3某(2某+1)=4某+2;(3)(某+5)2=3某+15.4解:(1)某1=0,某2=;521(2)某1=,某2=-;32(3)某1=-5,某2=-2.点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式.2.用因式分解法解下列方程:(1)4某2-144=0;(2)(2某-1)2=(3-某)2;13(3)5某2-2某-=某2-2某+;44(4)3某2-12某=-12.解:(1)某1=6,某2=-6;4(2)某1=,某2=-2;311(3)某1=,某2=-;22(4)某1=某2=2.点拨精讲:注意本例中的方程可以试用多种方法.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.用因式分解法解下列方程:(1)某2+某=0;(2)某2-23某=0;(3)3某2-6某=-3;(4)4某2-121=0;(5)(某-4)2=(5-2某)2.解:(1)某1=0,某2=-1;(2)某1=0,某2=23;(3)某1=某2=1;1111(4)某1=,某2=-;22(5)某1=3,某2=1.点拨精讲:因式分解法解一元二次方程的一般步骤:(1)将方程右边化为__0__;(2)将方程左边分解成两个一次式的__乘积__;(3)令每个因式分别为__0__,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为某m.则可列方程2π某2=π(某+5)2.解得某1=5+52,某2=5-52(舍去).答:小圆形场地的半径为(5+52)m.学生总结本堂课的收获与困惑.(2分钟)1.用因式分解法解方程的根据由ab=0得a=0或b=0,即“二次降为一次”.2.正确的因式分解是解题的关键.学习至此,请使用本课时对应训练部分.(10分钟)21.2.4一元二次方程的根与系数的关系bc1.理解并掌握根与系数的关系:某1+某2=-,某1某2=.aa2.会用根的判别式及根与系数的关系解题.重点:一元二次方程的根与系数的关系及运用.难点:一元二次方程的根与系数的关系及运用.一、自学指导.(10分钟)自学1:完成下表:方程某2-5某+6=0某2+3某-10=0问题:你发现什么规律?①用语言叙述你发现的规律;某122某23-5某1+某25-3某1某26-10答:两根之和为一次项系数的相反数;两根之积为常数项.②某2+p某+q=0的两根某1,某2用式子表示你发现的规律.答:某1+某2=-p,某1某2=q.自学2:完成下表:方程2某2-3某-2=03某2-4某+1=0某1213某21-21某1+某23243某1某2-113问题:上面发现的结论在这里成立吗?(不成立)请完善规律:①用语言叙述发现的规律;答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.②a某2+b某+c=0的两根某1,某2用式子表示你发现的规律.bc答:某1+某2=-,某1某2=.aa自学3:利用求根公式推导根与系数的关系.(韦达定理)-b+b2-4ac-b-b2-4aca某+b某+c=0的两根某1=____,某2=____.2a2a2bc某1+某2=-,某1某2=.aa二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积.(1)某2-3某-1=0;(2)2某2+3某-5=0;1(3)某2-2某=0.3解:(1)某1+某2=3,某1某2=-1;(2)某1+某2=-,某1某2=-;22(3)某1+某2=6,某1某2=0.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.不解方程,求下列方程的两根之和与两根之积.(1)某2-6某-15=0;(2)3某2+7某-9=0;(3)5某-1=4某2.解:(1)某1+某2=6,某1某2=-15;7(2)某1+某2=-,某1某2=-3;351(3)某1+某2=,某1某2=.44点拨精讲:先将方程化为一般形式,找对a,b,c.2.已知方程2某2+k某-9=0的一个根是-3,求另一根及k的值.3解:另一根为,k=3.2点拨精讲:本题有两种解法,一种是根据根的定义,将某=-3代入方程先求k,再求另一个根;一种是利用根与系数的关系解答.3.已知α,β是方程某2-3某-5=0的两根,不解方程,求下列代数式的值.11(1)+;(2)α2+β2;(3)α-β.αβ3解:(1)-;(2)19;(3)29或-29.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.不解方程,求下列方程的两根和与两根积:(1)某2-3某=15;(2)5某2-1=4某2;(3)某2-3某+2=10;(4)4某2-144=0.解:(1)某1+某2=3,某1某2=-15;(2)某1+某2=0,某1某2=-1;(3)某1+某2=3,某1某2=-8;(4)某1+某2=0,某1某2=-36.2.两根均为负数的一元二次方程是(C)A.7某2-12某+5=0B.6某2-13某-5=0C.4某2+21某+5=0D.某2+15某-8=0点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.学生总结本堂课的收获与困惑.(2分钟)不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值.1.先化成一般形式,再确定a,b,c.2.当且仅当b2-4ac≥0时,才能应用根与系数的关系.bc3.要注意比的符号:某1+某2=-(比前面有负号),某1某2=(比前面没有负号).aa学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(1)1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:列一元二次方程解决实际问题.难点:找出实际问题中的等量关系.一、自学指导.(12分钟)问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了某个人,那么患流感的这一个人在第一轮中传染了__某__人,第一轮后共有__(某+1)__人患了流感;②第二轮传染中,这些人中的每个人又传染了__某__人,第二轮后共有__(某+1)(某+1)__人患了流感.则列方程:__(某+1)2=121__,解得__某=10或某=-12(舍)__,即平均一个人传染了__10__个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.分析:设原来的两位数的个位数字为__某__,则十位数字为__(6-某)__,则原两位数为__10(6-某)+某,新两位数为__10某+(6-某)__.依题意可列方程:[10(6-某)+某][10某+(6-某)]=1008__,解得某1=__2__,某2=__4__,∴原来的两位数为24或42.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有某名学生,根据题意,列出方程为()A.某(某+1)=2550B.某(某-1)=2550C.2某(某+1)=2550D.某(某-1)=255032分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(某-1)张相片,全班共送出某(某-1)张相片,可列方程为某(某-1)=2550.故选B.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?解:设每个支干长出某个小分支,则有1+某+某2=91,即某2+某-90=0,解得某1=9,某2=-10(舍去),故每个支干长出9个小分支.点拨精讲:本例与传染问题的区别.2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为某,则列方程为:__某2+(某+4)2=10(某+4)+某-4__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.两个正数的差是2,它们的平方和是52,则这两个数是(C)A.2和4B.6和8C.4和6D.8和102.教材P21第2题、第3题学生总结本堂课的收获与困惑.(3分钟)1.列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题.2.对于数字问题应注意数字的位置.学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(2)1.会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:如何解决增长率与降低率问题.难点:理解增长率与降低率问题的公式a(1±某)n=b,其中a是原有量,某为增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.一、自学指导.(10分钟)自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为某,则一年后甲种药品成本为__5000(1-某)__元,两年后甲种药品成本为__5000(1-某)2__元.依题意,得__5000(1-某)2=3000__.解得__某1≈0.23,某2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__0.23__.②设乙种药品成本的年平均下降率为y.则,列方程:__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(舍)__.答:两种药品成本的年平均下降率__相同__.点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?【分析】如果设平均每月增长的百分率为某,则11月份的营业额为__5000(1+某)__元,12月份的营业额为__5000(1+某)(1+某)__元,即__5000(1+某)2__元.由此就可列方程:__5000(1+某)2=7200__.点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.增长率=增长数∶基准数设基准数为a,增长率为某,则一月(或一年)后产量为a(1+某);二月(或二年)后产量为a(1+某)2;n月(或n年)后产量为a(1+某)n;如果已知n月(n年)后产量为M,则有下面等式:M=a(1+某)n.解这类问题一般多采用上面的等量关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%)分析:设这种存款方式的年利率为某,第一次存2000元取1000元,剩下的本金和利息是1000+2000某·80%;第二次存,本金就变为1000+2000某·80%,其他依此类推.解:设这种存款方式的年利率为某,则1000+2000某·80%+(1000+2000某·80%)某·80%=1320,整理,得1280某2+800某+1600某=320,即8某2+15某-2=0,解得某1=-2(不符,舍去),某2=0.125=12.5%.答:所求的年利率是12.5%.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)青山村种的水稻2022年平均每公顷产7200kg,2022年平均每公顷产8460kg,求水稻每公顷产量的年平均增长率.解:设年平均增长率为某,则有7200(1+某)2=8460,解得某1=0.08,某2=-2.08(舍).即年平均增长率为8%.答:水稻每公顷产量的年平均增长率为8%.点拨精讲:传播或传染以及增长率问题的方程适合用直接开平方法来解.学生总结本堂课的收获与困惑.(3分钟)1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际意义.2.若平均增长(降低)率为某,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:a(1±某)n=b(常见n=2).学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(3)1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.并能根据具体问题的实际意义,检验结果是否合理.2.列一元二次方程解有关特殊图形问题的应用题.重点:根据面积与面积之间的等量关系建立一元二次方程的数学模型并运用它解决实际问题.难点:根据面积与面积之间的等量关系建立一元二次方程的数学模型.一、自学指导.(10分钟)问题:如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形.如果要使四周的阴影边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?(精确到0.1cm)分析:封面的长宽之比是27∶21=__9∶7,中央的长方形的长宽之比也应是__9∶7__,若设中央的长方形的长和宽分别是__9a_cm__和__7a_cm__,由此得上下边衬与左右边衬的宽度之比是__(27-9a)∶(21-7a)=9∶7__.。
21.2 解一元二次方程21.2.1 配方法一、教学目标【知识与技能】了解配方的概念,能够熟练地利用配方法解一元二次方程及解决有关问题。
【过程与方法】理解通过变形运用开平方法解一元二次方程的方法,进一步体会降次的数学思想方法.【情感态度与价值观】在学生合作交流过程中,进一步增强合作交流意识,培养探究精神,增强数学学习的乐趣.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】用配方法解一元二次方程.【教学难点】用配方法解一元二次方程的方法和技巧.五、课前准备课件六、教学过程(一)导入新课要使一块矩形场地的长比宽多6米,并且面积为16平方米,求场地的长和宽应各是多少?(出示课件2)教师展示以下问题,学生思考。
如果设这个长方形场地的宽为xm,则长为,由题意可列出的方程为,化为一般式,得,怎样解这个方程?能不能用直接开平方法?(二)探索新知让学生阅读第6~7页探究内容,思考并回答如下问题:(出示课件4)1.用直接开平方法解下列方程:(1)9x2=1;(2)(x-2)2=2.2.下列方程能用直接开平方法来解吗?(1)x2+6x+9=5;(2)x2+6x+4=0.教师总结:把两题转化成(x+n)2=p(p≥0)的形式,再利用开平方来解.出示课件5:填一填下列完全平方公式.(1)a2+2ab+b2=( )2;(2)a2-2ab+b2=( )2.出示课件6:填一填2222222222(1)10___(2)12___(3)5____2(4)___3(5)___(__)(__)(__)(__)(__)x x x x x b x x x x x x x x x x ++=-+=++=-+==+++-+-+教师问:你发现了什么规律?学生答:⑴二次项系数都为1.⑵配方时, 等式两边同时加上的是一次项系数一半的平方.出示课件7:怎样解方程: x 2+6x+4=0(1)(1)方程(1)怎样变成(x+n)2=p 的形式呢?学生思考后,共同解答如下:教师强调:二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.(2)为什么在方程x 2+6x=-4的两边加上9?加其他数行吗?(出示课件8) 学生思考后,教师加以提示:不行,只有在方程两边加上一次项系数一半的平方,方程左边才能变成完成平方x 2+2bx+b 2的形式.归纳总结:(出示课件9)像上面那样,通过配成完全平方的形式来解一元二次方程的方法叫做配方法.配方是为了降次 ,把一个一元二次方程转化成两个一元一次方程来解. 例1 解方程:(出示课件10)2810x x -+=.师生共同讨论解答如下:解:移项,得x 2-8x =-1配方,得x 2-8x+4²=-1+4²,整理,得(x-4)2=15,由此可得4x -=1244x x =+=-出示课件11:解方程:x 2+8x-4=0.学生自主思考并解答.解:移项,得 x 2+8x =4配方,得 x 2+8x+4²=4+4²,整理,得 (x+4)2=20,由此可得 x+4=±,x 1=4-+,x 2=4--.例2 解方程(1)2213 +=x x ;(出示课件12) 师生共同讨论解答如下:解:移项,得2x 2-3x=-1,二次项系数化为1,得231,22x x -=-配方,得2223313,2424x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭ 231,416x ⎛⎫-= ⎪⎝⎭ 由此可得31,44x -=±2111,.2x x ==(2)2 3640.-+=x x (出示课件13)师生共同讨论解答如下:解:移项,得2364,x x -=- 二次项系数化为1,得242,3x x -=- 配方,得2224211,3x x -+=-+即()211.3x -=- 因为实数的平方不会是负数,所以x 取任何实数时,上式都不成立,所以原方程无实数根.教师问:用配方法解一元二次方程时,移项时要注意些什么?(出示课件14)学生答:移项时需注意改变符号.教师问:用配方法解一元二次方程的一般步骤.学生答:①移项,二次项系数化为1;②左边配成完全平方式;③左边写成完全平方形式;④降次;⑤解一次方程.根据解方程的过程及学生的回答,教师总结如下:(出示课件15)一般地,如果一个一元二次方程通过配方转化成(x+n )2=p.⑴当p>0时,则 ,方程的两个根为x 1, x 2(2)当p=0时,则(x+n)2=0,x+n=0,开平方得方程的两个根为x 1=x 2=-n;(3)当p<0时,则方程(x+n)2=p 无实数根.出示课件16-19,选4名学生板演,师生共同完成后,老师仍要向学生强调方程无实数根的情况.例3试用配方法说明:不论k 取何实数,多项式 k 2-4k +5 的值必定大于零.(出示课件20)师生共同讨论解答如下:解:k 2-4k +5=k 2-4k +4+1=(k -2)2+1因为(k -2)2≥0,所以(k -2)2+1≥1.所以k 2-4k +5的值必定大于零.教师强调:证明代数式的值恒为正数,需要利用配方法将代数式化成几个非负数的和,利用非负数的性质说明代数式的值恒为正数.例4若a,b,c 为△ABC 的三边长,且试判断△ABC 的形状. (出示课件21)x n +=2268250,a a b b -+-=师生共同讨论解答如下:解:对原式配方,得根据非负数的性质得由此可得 即根据勾股定理的逆定理可知,△ABC 为直角三角形.出示课件22,进行及时巩固.教师问:配方法的应用有哪些?(出示课件23)配方法的应用()()22340,-+-+=a b ()()2230,40,-=-==a b 345,===a b c ,,222222345,+=+==a b c(三)课堂练习(出示课件24-29)1. 一元二次方程y2﹣y ﹣=0配方后可化为( )A.(y+)2=1B.(y-)2=1C.(y+)2=D.(y-)2=2.解方程:4x 2-8x-4=0.3.利用配方法证明:不论x 取何值,代数式-x 2-x -1的值总是负数,并求出它的最大值.4.若 ,求(xy)z 的值.5.如图,在一块长35m 、宽26m 的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少?6.已知a,b,c 为△ABC 的三边长,且试判断△ABC 的形状. 参考答案:3412121234123401326422=+-+++-z y y x x 2220,a b c ab ac bc ++---=1.B2.解:移项,得4x 2-8x=4,二次项系数化为1,得x 2-2x=1,配方,得x 2-2x+1=1+1,整理,得(x-1)2=2,3. 证明:原式=-(x 2+x )-1 =-[x 2+x+(12)2]+14-1=-(x+12)2-344.解:对原式配方,得由非负数的性质可知5.解:设道路的宽为xm, 根据题意得(35-x)(26-x)=850,整理得11=+x 21=-x 2211()0()022-因为,即 x+x+≥≤-x 所以2133(+)--,244≤2121.34-因此当 时,---有最-大值x=x x ()()22230,-+++=x y ()()2220,30,0.-=+==x y 2,32.,==-=由此可得x y z ()()()222.6363⎡⎤=⨯-=-=⎣⎦因此z xyx 2-61x+60=0.解得x 1=60(不合题意,舍去), x 2=1.答:道路的宽为1m.6.解:对原式配方,得由代数式的性质可知所以,△ABC 为等边三角形(四)课堂小结(1)你学会怎样解一元二次方程了吗?有哪些步骤?(2)通过今天的学习你了解了哪些数学思想方法?与同伴交流.(五)课前预习预习下节课(21.2.2)公式法的相关内容。
21.2.1 配方法导学探究:阅读教材P6-9,回答下列问题:1.将下列各式配成完全平方式:(1)x2 -12x+_____=(x+_____)2;(2)x2– x +______=(x-_____)2;(3)x2 - 16x +_______=(x-____)2.2.回顾:(1)等式的基本性质是什么?(2)用直接开平方法解一元二次方程x2 + 6x + 9 = 73. (1)解一元二次方程x2+12x=15的困难在哪里? 如何转化才能将其化为上面方程的形式求解? 试试看.(2)对于一元二次方程x2-2x -2 =0,如何转化才能化为上面方程的形式求解? 试试看.4.上面解一元二次方程的方法叫什么方法比较合适? 请你给这种方法下一个定义,并简要说明这种方法的基本思想.归纳梳理1.配方法的基本要求是把一元二次方程的一边配方化为一个__________,另一边化为_________________,然后用法求解.2.配方法的一般步骤:(1)移项,使方程左边为_________项、_______项,右边为_____项:(一移)(2)方程两边都除以______系数,将________系数化为l:(二除)(3)配方,方程两边都加上_________________的平方,使方程左边成为一个__________,右边是一个______________的形式;(三配)(4)如果右边是___________,两边直接开平方,求这个一元二次方程的解.(四开)如果右边是负数.则这个方程没有实数解.典例探究1.配方法解一元二次方程【例1】(2015•科左中旗校级一模)用配方法解下列方程时,配方有错误的是()A.x2﹣2x﹣99=0化为(x﹣1)2=100 B.x2+8x+9=0化为(x+4)2=25C.2t2﹣7t﹣4=0化为(t﹣)2= D.3x2﹣4x﹣2=0化为(x﹣)2=总结:配方法解一元二次方程的一般步骤:(1)把二次项的系数化为1;(2)把常数项移到等号的右边;(3)等式两边同时加上一次项系数一半的平方.(4)用直接开平方法解这个方程.练1用配方法解方程:(1)x2﹣2x﹣24=0;(2)3x2+8x-3=0;(3)x(x+2)=120.2.用配方法求多项式的最值【例2】(2015春•龙泉驿区校级月考)当x,y取何值时,多项式x2+4x+4y2﹣4y+1取得最小值,并求出最小值.总结:配方法是求代数式的最值问题中最常用的方法.基本思路是:把代数式配方成完全平方式与常数项的和,根据完全平方式的非负性求代数式的最值.练2(2014•甘肃模拟)用配方法证明:二次三项式﹣8x2+12x﹣5的值一定小于0.练3(2014秋•崇州市期末)已知a、b、c为△ABC三边的长.(1)求证:a2﹣b2+c2﹣2ac<0.(2)当a2+2b2+c2=2b(a+c)时,试判断△ABC的形状.夯实基础一、选择题1.(2015•延庆县一模)若把代数式x2﹣2x+3化为(x﹣m)2+k形式,其中m,k为常数,结果为()A.(x+1)2+4 B.(x﹣1)2+2C.(x﹣1)2+4 D.(x+1)2+22.(2015•东西湖区校级模拟)一元二次方程x2﹣8x﹣1=0配方后为()A.(x﹣4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x﹣4)2=17或(x+4)2=173. (2016·新疆)一元二次方程x2﹣6x﹣5=0配方组可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4二、填空题4.(2015春•盐城校级期中)一元二次方程x2﹣6x+a=0,配方后为(x﹣3)2=1,则a= .5.(2014秋•营山县校级月考)当x= 时,代数式3x2﹣6x的值等于12.三、解答题6.(2015•东西湖区校级模拟)用配方法解方程:x2﹣2x﹣4=0.7.(2013秋•安龙县校级期末)试说明:不论x,y取何值,代数式x2+4y2﹣2x+4y+5的值总是正数.你能求出当x,y取何值时,这个代数式的值最小吗?8.(2014秋•蓟县期末)阅读下面的材料并解答后面的问题:小李:能求出x2+4x﹣3的最小值吗?如果能,其最小值是多少?小华:能.求解过程如下:因为x2+4x﹣3=x2+4x+4﹣4﹣3=(x2+4x+4)﹣(4+3)=(x+2)2﹣7而(x+2)2≥0,所以x2+4x﹣3的最小值是﹣7.问题:(1)小华的求解过程正确吗?(2)你能否求出x2﹣3x+4的最小值?如果能,写出你的求解过程.9.(2014秋•安陆市期末)阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4﹣(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值为4仿照上面的解答过程,求m2+m+4的最小值和4﹣2x﹣x2的最大值.10.(2014春•乳山市期末)已知代数式x2﹣2mx﹣m2+5m﹣5的最小值是﹣23,求m的值.11.(2014秋•江阴市期中)配方法可以用来解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1≥1,即:3a2+1有最小值1,此时a=0;同样,因为﹣3(a+1)2≤0,所以﹣3(a+1)2+6≤6,即﹣3(a+1)2+6有最大值6,此时 a=﹣1.①当x= 时,代数式﹣2(x﹣1)2+3有最(填写大或小)值为.②当x= 时,代数式﹣x2+4x+3有最(填写大或小)值为.③矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?典例探究答案:【例1】【解析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.根据以上步骤进行变形即可.解:A、∵x2﹣2x﹣99=0,∴x2﹣2x=99,∴x2﹣2x+1=99+1,∴(x﹣1)2=100,故A选项正确.B、∵x2+8x+9=0,∴x2+8x=﹣9,∴x2+8x+16=﹣9+16,∴(x+4)2=7,故B选项错误.C、∵2t2﹣7t﹣4=0,∴2t2﹣7t=4,∴t2﹣t=2,∴t2﹣t+=2+,∴(t﹣)2=,故C选项正确.D 、∵3x 2﹣4x ﹣2=0,∴3x 2﹣4x=2,∴x 2﹣x=,∴x 2﹣x +=+ ,∴(x ﹣)2=.故D 选项正确.故选:B .点评:此题考查了配方法解一元二次方程,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.练1.【解析】(1)移项,得x 2﹣2x=24,配方,得:x 2﹣2x+1=24+1,即:(x ﹣1)2=25, 开方,得:x ﹣1=±5, ∴x 1=6,x 2=﹣4.(2)两边除以3,得: 28103x x +-=, 移项,得:2813x x +=,配方,得:222844()1()333x x ++=+, 即:2245(x )()33+=, 开方,得:4533x +=± ∴121,33x x ==- (3)整理,得:22120x x +=, 配方,得:2211201x x ++=+,即:2(1)121x +=, 开方,得:111x +=±∴1210,12x x ==-点评:本题考查了解一元二次方程﹣﹣配方法.【例2】【解析】把所给代数式整理为两个完全平方式子与一个常数的和,最小值应为那个常数,从而确定最小值.解:x 2+4x+4y 2﹣4y+1=x 2+4x+4+4y 2﹣4y+1﹣4=(x+2)2+(2y ﹣1)2﹣4,又∵(x+2)2+(2y ﹣1)2的最小值是0, ∴x 2+4x+4y 2﹣4y+1的最小值为﹣4. ∴当x=﹣2,y=时有最小值为﹣4.点评:本题考查配方法的应用;根据﹣4y,4x把所给代数式整理为两个完全平方式子的和是解决本题的关键.练2.【解析】将﹣8x2+12x﹣5配方,先把二次项系数化为1,然后再加上一次项系数一半的平方,然后根据配方后的形式,再根据a2≥0这一性质即可证得.解:﹣8x2+12x﹣5=﹣8(x2﹣x)﹣5=﹣8[x2﹣x+()2]﹣5+8×()2=﹣8(x﹣)2﹣,∵(x﹣)2≥0,∴﹣8(x﹣)2≤0,∴﹣8(x﹣)2﹣<0,即﹣8x2+12﹣5的值一定小于0.点评:此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.练3.【解析】(1)将不等式的左边因式分解后根据三角形三边关系判断代数式的符号即可;(2)将等式右边的项移至左边,然后配方即可.解:(1)a2﹣b2+c2﹣2ac=(a﹣c)2﹣b2=(a﹣c+b)(a﹣c﹣b)∵a、b、c为△ABC三边的长,∴(a﹣c+b)>0,(a﹣c﹣b)<0,∴a2﹣b2+c2﹣2ac<0.(2)由a2+2b2+c2=2b(a+c)得:a2﹣2ab+b2+b2﹣2bc+c2=0配方得:(a﹣b)2+(b﹣c)2=0∴a=b=c∴△ABC为等边三角形.点评:本题考查了配方法的应用,解题的关键是对原式正确的配方.夯实基础答案:一、选择题1.【解析】二次项系数为1,则常数项是一次项系数的一半的平方.解:x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2.故选:B.点评:此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.2.【解析】先移项,得x2﹣8x=1,然后在方程的左右两边同时加上16,即可得到完全平方的形式.解:移项,得x2﹣8x=1,配方,得x2﹣8x+16=1+16,即(x﹣4)2=17.故选A.点评:本题考查了用配方法解一元二次方程,对多项式进行配方,不仅应用于解一元二次方程,还可以应用于二次函数和判断代数式的符号等,应熟练掌握.3、【解析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.解:x2﹣6x﹣5=0,x2﹣6x=5,x2﹣6x+9=5+9,(x﹣3)2=14,故选:A.点评:本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.二、填空题4.【解析】利用完全平方公式化简后,即可确定出a的值.解:∵(x﹣3)2=x2﹣6x+9,∴a=9;故答案为:9.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.5.【解析】根据题意列出方程,两边除以3变形后,再加上1配方后,开方即可求出解.解:根据题意得:3x2﹣6x=12,即x2﹣2x=4,配方得:x2﹣2x+1=5,即(x﹣1)2=5,开方得:x﹣1=±,解得:x=1±.故答案为:1±.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.三、解答题6.【解析】按照配方法的一般步骤计算:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.解:把方程x2﹣2x﹣4=0的常数项移到等号的右边,得到x2﹣2x=4,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=4+1,配方得(x﹣1)2=5,∴x﹣1=±,∴x1=1﹣,x2=1+.点评:本题考查了用配方法解一元二次方程的步骤,解题的关键是牢记步骤,并能熟练运用,此题比较简单,易于掌握.7.【解析】原式利用完全平方公式变形,根据完全平方式恒大于等于0,即可求出最小值.解:原式=x2﹣2x+1+4y2+4y+1+3=(x﹣1)2+(2y+1)2+3≥3,当x=1,y=﹣时,x2+4y2﹣2x+4y+5有最小值是3.点评:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.8.【解析】对于x2+4x﹣3和x2﹣3x+4都是同时加上且减去一次项系数一半的平方.配成一个完全平方式与常数的和,利用完全平方式为非负数的性质得到原代数式的最小值.解:(1)正确(2)能.过程如下:x2﹣3x+4=x2﹣3x+﹣+4=(x﹣)2+∵(x﹣)2≥0,所以x2﹣3x+4的最小值是.点评:此题考查配方法的运用,配方法是常用的数学思想方法.不仅用于解方程,还可利用它解决某些代数式的最值问题.它的一个重要环节就是要配上一次项系数一半的平方.同时要理解完全平方式的非负数的性质.9.【解析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值.解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥.则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5.点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.10.【解析】先将原式变形为x2﹣2m﹣m2+5m﹣5=(x﹣m)2﹣2m2+5m﹣5,由非负数的性质就可以求出最小值.解:x2﹣2m﹣m2+5m﹣5=(x﹣m)2﹣2m2+5m﹣5.∵代数式x2﹣2m﹣m2+5m﹣5的最小值是﹣23,∴﹣2m2+5m﹣5=﹣23解得 m=﹣2或m=点评:本题考查了配方法的运用,非负数的性质,一个数的偶次幂为非负数的运用.解答时配成完全平方式是关键.11.【解析】①由完全平方式的最小值为0,得到x=1时,代数式的最大值为3;②将代数式前两项提取﹣1,配方为完全平方式,根据完全平方式的最小值为0,即可得到代数式的最大值及此时x的值;③设垂直于墙的一边长为xm,根据总长度为16m,表示出平行于墙的一边为(16﹣2x)m,表示出花园的面积,整理后配方,利用完全平方式的最小值为0,即可得到面积的最大值及此时x的值.解:①∵(x﹣1)2≥0,∴当x=1时,(x﹣1)2的最小值为0,则当x=1时,代数式﹣2(x﹣1)2+3的最大值为3;②代数式﹣x2+4x+3=﹣(x2﹣4x+4)+7=﹣(x﹣2)2+7,则当x=2时,代数式﹣x2+4x+3的最大值为7;③设垂直于墙的一边为xm,则平行于墙的一边为(16﹣2x)m,∴花园的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x2﹣8x+16)+32=﹣2(x﹣4)2+32,则当边长为4米时,花园面积最大为32m2.故答案为:①1;大;3;②2;大;7点评:此题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.。