初一人教版期末复习卷1
- 格式:docx
- 大小:85.99 KB
- 文档页数:4
数学七年级上册期末检测试卷一、选择题(每小题只有一个正确的选项,每小题3分,共45分)1.4的相反数是()A.﹣4B.4C.D.2.方程2x+6=0的解是()A.3B.﹣3C.2D.03.毕节市七星关区三板桥体育场占地30万平方米,可容纳观众80012人.30万平方米用科学记数法表示为()平方米.A.3×105B.30×104C.3×106D.3×1044.化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n5.代数式﹣x2y的系数是()A.3B.0C.﹣1D.16.下列去括号正确的是()A.a+(b﹣c)=a+b+c B.a﹣(b﹣c)=a﹣b﹣cC.a﹣(b﹣c)=a﹣b+c D.a+(b﹣c)=a﹣b+c7.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两点之间的所有连线中,线段最短8.把方程去分母,正确的是()A.10x﹣5(x﹣1)=1﹣2(x+2)B.10x﹣5(x﹣1)=10﹣2(x+2)C.10x﹣5(x﹣1)=10﹣(x+2)D.10x﹣(x﹣1)=10﹣(x+2)9.下列事件,你认为是必然事件的是()A.打开电视机,正在播广告B.今天星期二,明天星期三C.今年的正月初一,天气一定是晴天D.一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的10.小明做了以下4道计算题:①(﹣1)2020=2020②0﹣(﹣1)=﹣1③④请你帮他检查一下,他一共做对了()A.1题B.2题C.3题D.4题11.如图所示,在数轴上点A表示的数可能是()A.1.5B.﹣1.5C.﹣2.6D.2.612.在立方体的六个面上,分别标上“我、爱、实、验、中、学”,如图是立方体的三种不同摆法,则三种摆法的左侧面上三个字分别是()A.爱、实、验B.中、学、验C.中、我、验D.爱、中、学13.从如图的两个统计图中,可看出女生人数较多的是()A.初一(一)班B.初一(二)班C.两班一样多D.不能确定14.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个15.已知x=﹣2是方程2x+m﹣4=0的一个根,则m的值是()A.8B.﹣8C.0D.2二、填空题(每小题5分,共25分)16.如图,直线AB、CD相交于O,∠COE是直角,∠1=57°,则∠2=.17.建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,你能说明其中的原理是.18.若3a m b2与是同类项,则=.19.初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性(填“大”或“小”).20.观察下面一列数,按某种规律在横线上填上适当的数:1,,,,,,则第n个数为.三、解答题(7小题,共80分)21.计算:(1)4×(﹣2)﹣(﹣8)÷2(2)22.解方程:(1)6y+2=3y﹣4(2)23.先化简,再求值:(4a2﹣3a)﹣(1﹣4a+4a2),其中a=﹣2.24.如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图.25.如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?26.中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:意见非常不满意不满意有一点满意满意人数200160328百分比(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);(2)请画出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论?说说你的理由.27.在如图所示的2020年8月份日历中,(1)用一个长方形的方框圈出任意3×3个数,如果从左下角到右上角的“对角线”上的3个数字的和为39,那么这9个数的和为多少?(2)这个长方形的方框圈出的9个数的和能为216吗?(3)如果任意选择如上的阴影部分,那么其中的四个数a、b、c、d又有什么规律呢?请用含a、b、c、d的等式表示.(其中a、b、c、d四个数之间的大小关系是a<b<c<d,a、b、c、d为整数)参考答案一、选择题(每小题只有一个正确的选项,每小题3分,共45分)1.4的相反数是()A.﹣4B.4C.D.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.解:根据相反数的含义,可得4的相反数是:﹣4.故选:A.2.方程2x+6=0的解是()A.3B.﹣3C.2D.0【分析】方程移项后,将x系数化为1,即可求出解.解:方程2x+6=0,移项得:2x=﹣6,解得:x=﹣3.故选:B.3.毕节市七星关区三板桥体育场占地30万平方米,可容纳观众80012人.30万平方米用科学记数法表示为()平方米.A.3×105B.30×104C.3×106D.3×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:30万=300000=3×105.故选:A.4.化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n【分析】利用分配律把括号内的2乘到括号内,然后利用去括号法则求解.解:﹣2(m﹣n)=﹣(2m﹣2n)=﹣2m+2n.故选:D.5.代数式﹣x2y的系数是()A.3B.0C.﹣1D.1【分析】根据单项式系数的定义进行解答即可.解:∵代数式﹣x2y的数字因数是﹣1,∴此单项式的系数是﹣1.故选:C.6.下列去括号正确的是()A.a+(b﹣c)=a+b+c B.a﹣(b﹣c)=a﹣b﹣cC.a﹣(b﹣c)=a﹣b+c D.a+(b﹣c)=a﹣b+c【分析】利用去括号添括号法则,逐项判断即可得出正确答案.解:A、D、a+(b﹣c)=a+b﹣c,故A和D都错误;B、C、a﹣(b﹣c)=a﹣b+c,故B错误,C正确;故选:C.7.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两点之间的所有连线中,线段最短【分析】本题涉及直线,相交线的有关概念和性质.当两条直线相交所成的四个角中,有一个角是直角时,两条直线互相垂直.解:A、只有当相交的两条直线有一个角是直角时,才能叫做垂直,错误;B、经过一点可以画无数条直线,错误;C、平角和直线是两种不同的概念,说平角是一条直线,错误;D、两点之间的所有连线中,线段最短,是公理,正确.故选:D.8.把方程去分母,正确的是()A.10x﹣5(x﹣1)=1﹣2(x+2)B.10x﹣5(x﹣1)=10﹣2(x+2)C.10x﹣5(x﹣1)=10﹣(x+2)D.10x﹣(x﹣1)=10﹣(x+2)【分析】把方程的两边同时乘以10即可.解:方程的两边同时乘以10得,10x﹣5(x﹣1)=10﹣2(x+2).故选:B.9.下列事件,你认为是必然事件的是()A.打开电视机,正在播广告B.今天星期二,明天星期三C.今年的正月初一,天气一定是晴天D.一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的【分析】必然事件就是一定发生的事件,依据定义即可作出判断.解:A、是随机事件,选项错误;B、是必然事件,选项正确;C、是随机事件,选项错误;D、是随机事件,选项错误.故选:B.10.小明做了以下4道计算题:①(﹣1)2020=2020②0﹣(﹣1)=﹣1③④请你帮他检查一下,他一共做对了()A.1题B.2题C.3题D.4题【分析】根据有理数的乘方可以判断①,根据有理数的加减法可以判断②③,根据有理数的除法可以判断④.解:(﹣1)2020=1,故①错误,不符合题意;0﹣(﹣1)=0+1=1,故②错误,不符合题意;﹣=﹣,故③正确,符合题意;÷(﹣)=﹣1,故④正确,符合题意;故选:B.11.如图所示,在数轴上点A表示的数可能是()A.1.5B.﹣1.5C.﹣2.6D.2.6【分析】根据点A位于﹣3和﹣2之间求解.解:∵点A位于﹣3和﹣2之间,∴点A表示的实数大于﹣3,小于﹣2.故选:C.12.在立方体的六个面上,分别标上“我、爱、实、验、中、学”,如图是立方体的三种不同摆法,则三种摆法的左侧面上三个字分别是()A.爱、实、验B.中、学、验C.中、我、验D.爱、中、学【分析】从3个图形看,和我相邻的有爱、验、中、学,那么和我相对的就是实,和爱相对的就是验,和中相对的就是学.依此答题即可.解:根据三个图形的汉字,可推断出来,和我相对的就是实,和爱相对的就是验,和中相对的就是学,∴三种摆法的左侧面上三个字分别是爱、中、学.故选:D.13.从如图的两个统计图中,可看出女生人数较多的是()A.初一(一)班B.初一(二)班C.两班一样多D.不能确定【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.解:因为没有男女生总数,只看所占百分比无法确定哪个班女生人数较多.故选:D.14.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个【分析】本题考查有理数的乘方运算,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,进行4次分裂,即24,计算出结果即可.解:2×2×2×2=24=16.故选:B.15.已知x=﹣2是方程2x+m﹣4=0的一个根,则m的值是()A.8B.﹣8C.0D.2【分析】虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.解:把x=﹣2代入2x+m﹣4=0得:2×(﹣2)+m﹣4=0解得:m=8.故选:A.二、填空题(每小题5分,共25分)16.如图,直线AB、CD相交于O,∠COE是直角,∠1=57°,则∠2=33°.【分析】根据∠2=180°﹣∠COE﹣∠1,可得出答案.解:由题意得:∠2=180°﹣∠COE﹣∠1=180°﹣90°﹣57°=33°.故答案为:33°.17.建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,你能说明其中的原理是两点确定一条直线.【分析】根据公理“两点确定一条直线”,来解答即可.解:∵两点确定一条直线,∴建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.故答案为:两点确定一条直线.18.若3a m b2与是同类项,则=0.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程求出n,m 的值,再代入代数式计算即可.解:∵3a m b2与是同类项,∴n=2,m=1,∴m﹣n=0故答案为:0.19.初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性大(填“大”或“小”).【分析】分别求得找到男生和找到女生的概率即可比较出可能性的大小.解:∵初一(2)班共有学生44人,其中男生有30人,女生14人,∴找到男生的概率为:=,找到女生的概率为:=∴找到男生的可能性大,故答案为:大20.观察下面一列数,按某种规律在横线上填上适当的数:1,,,,,,则第n个数为.【分析】根据数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,所以第5个数是,第6个数是第n个数为.解:通过数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,第n个数为,那么第5项为:=,第6项的个数为:=.三、解答题(7小题,共80分)21.计算:(1)4×(﹣2)﹣(﹣8)÷2(2)【分析】(1)依据同号相乘得正,异号相乘得负计算;(2)运用乘法分配律计算比较简便.解:(1)4×(﹣2)﹣(﹣8)÷2,=﹣8+4,=﹣4;(2)原式=(﹣3)2×()+(﹣3)2×(﹣),=3﹣4=﹣1.22.解方程:(1)6y+2=3y﹣4(2)【分析】(1)此题为整式方程,只需移项,化系数为1,即可得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而解出方程.解:(1)移项,得:6y﹣3y=﹣4﹣2;合并同类项,得:3y=﹣6;方程两边同除于3,得:y=﹣2;(2)去分母,得:2(x+1)﹣6=5x﹣1;去括号,得:2x+2﹣6=5x﹣1;移项、合并同类项,得:﹣3x=3;方程两边同除以﹣3,得:x=﹣1.23.先化简,再求值:(4a2﹣3a)﹣(1﹣4a+4a2),其中a=﹣2.【分析】本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把a的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:(4a2﹣3a)﹣(1﹣4a+4a2)=4a2﹣3a﹣1+4a﹣4a2=a﹣1,当a=﹣2时,a﹣1=﹣2﹣1=﹣3.24.如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图.【分析】从正面看有2排,左边3层,右边2层;从左面看1排,3层;从上面看2排,每排1层.解:如图所示:25.如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?【分析】(1)根据邻补角的定义,即可求得∠2的度数,根据角平分线的定义和平角的定义即可求得∠3的度数;(2)根据OF分∠AOD的两部分角的度数即可说明.解:(1)∵∠BOC+∠2=180°,∠BOC=80°,∴∠2=180°﹣80°=100°;∵OE是∠BOC的角平分线,∴∠1=40°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣40°﹣100°=40°.(2)平分理由:∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣100°﹣40°=40°.∴∠AOF=∠3=40°,∴OF平分∠AOD.26.中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:意见非常不满意不满意有一点满意满意人数200160328百分比(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);(2)请画出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论?说说你的理由.【分析】(1)由每个的人数除以总人数.再乘以100%,即可求得;(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形图即可;(3)扇形图能反映各种情况的百分比,根据扇形图即可得到答案.解:(1)∵×100%=50%,×100%=40%,×100%=8%,×100%=2%,(2)∵50%×360°=180°,40%×360°=144°,8%×360°=28.8°,2%×360°=7.2°,∴(3)人民对国家足球队非常不满意的人数占到一半.绝大部分人对中国足球环境问题不满意.27.在如图所示的2020年8月份日历中,(1)用一个长方形的方框圈出任意3×3个数,如果从左下角到右上角的“对角线”上的3个数字的和为39,那么这9个数的和为多少?(2)这个长方形的方框圈出的9个数的和能为216吗?(3)如果任意选择如上的阴影部分,那么其中的四个数a、b、c、d又有什么规律呢?请用含a、b、c、d的等式表示.(其中a、b、c、d四个数之间的大小关系是a<b<c<d,a、b、c、d为整数)【分析】(1)求出中间一个数,即可得答案;(2)设中间的数为y,列出代数式比较得出结果;(3)观察可得四个数的关系.解:(1)设对角线中间一个数为x,那么左下角的数为x+6,右上角的数为x﹣6,x+x+6+x﹣6=39 解得x=13,这9个数的和为5+6+7+12+13+14+19+20+21=162;(2)不能.设中间的数为y,则9y=216,解得y=24,那么矩形右下角的数为24+8=32,这是不可能的,∴不能;(3)a=b﹣1=c﹣6=d﹣7或b=a+1=c﹣5=d﹣6或c=a+6=b+7=d﹣1或d=a+7=b+6=c+1.。
一、选择题(每题2分,共20分)1. 下列词语中,字形、字音都正确的一项是()A. 恍若(huǎng ruò)B. 惊愕(jīng è)C. 倾盆(qīng pén)D. 崇尚(chóng shàng)2. 下列句子中,没有语病的一项是()A. 她学习非常努力,成绩一直名列前茅。
B. 通过这次活动,同学们深刻地认识到了团结互助的重要性。
C. 随着科技的进步,我们的生活水平得到了很大提高。
D. 这个问题非常复杂,我一时难以解决。
3. 下列词语中,加点字的注音有误的一项是()A. 悲壮(bēi zhuàng)B. 憔悴(qiáo cuì)C. 潇洒(xiāo sǎ)D. 峰回路转(fēng huí luò zhuǎn)4. 下列句子中,使用了比喻修辞手法的一项是()A. 天上的星星,像眼睛一样闪烁着光芒。
B. 这座山高耸入云,好像一座巨大的塔。
C. 这条小河弯弯曲曲,像一条玉带。
D. 那个孩子聪明伶俐,像个小机灵鬼。
5. 下列句子中,加点词语的用法有误的一项是()A. 她穿着一件漂亮的衣服,显得格外精神。
B. 这本书我已经读了两遍,还是觉得很有趣。
C. 我们要努力学习,争取早日实现我们的梦想。
D. 春天来了,花儿开了,蝴蝶飞来了。
6. 下列词语中,字形、字音都正确的一项是()A. 娇艳(jiāo yàn)B. 漫步(màn bù)C. 翠绿(cuì lǜ)D. 翻滚(fān gǔn)7. 下列句子中,没有语病的一项是()A. 这篇文章的主题鲜明,内容丰富,语言生动。
B. 随着社会的进步,人们的生活水平不断提高。
C. 这个问题非常简单,我一眼就能看出答案。
D. 我们要珍惜时间,努力学习,为实现我们的目标而努力。
8. 下列词语中,加点字的注音有误的一项是()A. 悲壮(bēi zhuàng)B. 憔悴(qiáo cuì)C. 潇洒(xiāo sǎ)D. 风和日丽(fēng hé rì lì)9. 下列句子中,使用了比喻修辞手法的一项是()A. 天上的星星,像眼睛一样闪烁着光芒。
第一学期七年级数学期末复习专题有理数姓名:_______________班级:_______________得分:_______________一选择题:1.如果+20%表示增加20%,那么﹣6%表示()A.增加14%B.增加6%C.减少6%D.减少26%2.一种零件的直径尺寸在图纸上是30±(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过()A.0.03mmB.0.02mmC.30.03mmD.29.98mm3.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如:9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.452.010010001…中,有理数有()4.在-,3.1415,0,-0.333…,-,-,A.2个B.3个C.4个D.5个5.10月7日,铁路局“十一”黄金周运输收官,累计发送旅客640万人,640万用科学计数法表示为()A.6.4×102B.640×104C.6.4×106D.6.4×1056.若向北走27米记为-27米,则向南走34米记为()A.34米B.+7米C.61米D.+34米7.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大是()A.aB.bC.cD.d8.比较,,的大小,结果正确的是()A. B.C. D.9.如果,则x的取值范围是()A.x>0B.x≥0C.x≤0D.x<010.已知ab≠0,则+的值不可能的是()A.0B.1C.2D.﹣211.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若+=3,则原点是().A.M或NB.M或RC.N或PD.P或R12.一只蚂蚁从数轴上A点出发爬了4个单位长度到了表示-1的点B,则点A所表示的数是()A.-3或5B.-5或3C.-5D.313.已知=3,=4,且x>y,则2x-y的值为()A.+2B.±2C.+10D.-2或+1014.有理数a,b,c在数轴上的位置如图所示,则()A.-2bB.0C.2cD.2c-2b15.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005B.﹣2010C.0D.﹣116.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a、b的值分别为()A.10、91B.12、91C.10、95D.12、9517.下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第②个图形中有18根火柴棒,…依此类推,则第6个图形中火柴棒根数是()A.60B.61C.62D.6318.a为有理数,定义运算符号“※”:当a>-2时,※a=-a;当a<-2时,※a=a;当a=-2时,※a=0.根据这种运算,则※[4+※(2-5)]的值为()A.1B.-1C.7D.-719.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳各计算结果中的个位数字的规律,猜测32017+1的个位数字是()A.0B.2C.4D.820.计算(﹣2)2016+(﹣2)2015的结果是()A.﹣1B.﹣22015C.22015D.﹣22016二填空题:21.把下面的有理数填在相应的大括号里:15,-,0,-30,0.15,-128,,+20,-2.6.(1)非负数集合:{,…};(2)负数集合:{,…};(3)正整数集合:{,…};(4)负分数集合:{,…}.22.近似数3.06亿精确到___________位.23.按照如图所示的操作步骤,若输入的值为3,则输出的值为________.24.已知(x﹣2)2+|y+4|=0,则2x+y=_______.25.绝对值不大于5的整数有个.26.小韦与同学一起玩“24点”扑克牌游戏,即从一幅扑克牌(去掉大、小王)中任意抽出4张,根据牌面上的数字进行有理数混合运算(每张牌只能用一次)使运算结果等于24或-24,小韦抽得四张牌如图,“哇!我得到24点了!”他的算法是__27.有理数在数轴上的对应点如图所示,化简:.28.观察下列各题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52…根据上面各式的规律,请直接写出1+3+5+7+9+…+99=________.29.观察下列等式:,,,…则=.(直接填结果,用含n的代数式表示,n是正整数,且n≥1)30.观察下列等式:解答下面的问题:21+22+23+24+25+26+…+22015的末位数字是三计算题:31.32.33.34.35.小丽有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(3)从中取出2张卡片,利用这2张卡片上数字进行某种运算,得到一个最大的数,如何抽取?最大的数是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).37.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照下列图象并思考,完成下列各题:(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A,B两点间的距离为________;(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么,请你求出终点B表示什么数?A,B两点间的距离为多少?38.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=.(2)若|x﹣2|=5,则x=.(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是.39.阅读材料:求1+2+22+23+24+…+2200的值.解:设S=1+2+22+23+24+…+2199+2200,将等式两边同时乘以2得2S=2+22+23+24+25+…+2200+2201,将下式减去上式得2S-S=2201-1,即S=2201-1,即1+2+22+23+24+…+2200=2201-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n.(其中n为正整数)40.已知数轴上有A、B、C三个点,分别表示有理数﹣24,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=,PC=;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.第一学期七年级数学期末复习专题有理数参考答案1、C2、C3、B4、D5、C6、D7、A8、D9、C10、B11、B12、B13、D14、B15、A16、A17、D18、B19、C20、C21、(1)15,0,0.15,,+20(2)-,-30,-128,-2.6(3)15,+20(4)-,-2.622、百万;23、5524、0.25、1126、23(1+2)__.27、-b+c+a;28、502.29、30、4.31、32、.33、;34、原式=-1×[-32-9+]-2.5=-1×(-32-9+2.5)-2.5=+32+9-2.5-2.5=36.35、(1)抽取;(2)抽取;(3)抽取;(4)答案不唯一;例如抽取-3,-5,3,4;36、37、(1)4_7__(2)1_2__(3)—92__88__(4)m+n-p_38、【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.39、解:(1)211-1(2)设S=1+3+32+33+34+…+3n ,将等式两边同乘以3得3S=3+32+33+34+35+…+3n+1,所以3S-S=3n+1-1,即2S=3n+1-1,所以S=2131-+n ,即1+3+32+33+34+ (3)=2131-+n 40、【解答】解:(1)∵动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒,∴P 到点A 的距离为:PA=t,P 到点C 的距离为:PC=(24+10)﹣t=34﹣t;故答案为:t,34﹣t;(2)当P 点在Q 点右侧,且Q 点还没有追上P 点时,3t+2=14+t 解得:t=6,∴此时点P 表示的数为﹣4,当P 点在Q 点左侧,且Q 点追上P 点后,相距2个单位,3t﹣2=14+t 解得:t=8,∴此时点P 表示的数为﹣2,当Q 点到达C 点后,当P 点在Q 点左侧时,14+t+2+3t﹣34=34解得:t=13,∴此时点P 表示的数为3,当Q 点到达C 点后,当P 点在Q 点右侧时,14+t﹣2+3t﹣34=34解得:t=14,∴此时点P 表示的数为4,综上所述:点P 表示的数为﹣4,﹣2,3,4.第一学期七年级数学期末复习专题整式的加减姓名:_______________班级:_______________得分:_______________一选择题:1.下列说法中错误的是()A.-x2y的系数是-B.0是单项式C.xy的次数是1D.-x是一次单项式2.下列说法:①最大的负整数是;②的倒数是;③若互为相反数,则;④=;⑤单项式的系数是-2;⑥多项式是关于x,y的三次多项式。
人教版七年级第一学期期末试卷一、单项选择题(每题2分,共50分)1、进入中学后,一切都是陌生的,为了尽快适应新的环境,取得好成绩,以下你认为不合适的是()A.不管环境如何,只要闷头学习,就一定能取得好成绩B.尽快了解新学校C.尽快认识新同学,建立新友谊D.尽快熟悉新老师,融入新的班集2、进入新的学校,要创建新的班集体,你认为以下建议中哪一项不正确?()A.树立共同的目标B.各尽其能,发挥所长,奉献集体C.团结协作,互助前行D.只要每个同学都是最优秀的,那么班集体自然就是最优秀的3、张鹏同学说:“新学期开始了,我是一个中学生了,我一定要在新班级里尽快认识所有的同学,和老师、同学成为好朋友,因为良好的人际关系可以促进我们的学业成功。
”在以下关于人际关系作用的说法中,你认为不正确的是()A.良好的人际关系为同学们的学习提供了一个和谐、舒心的环境B.同学之间互帮互助,能促使你学习更快地进步C.与老师和谐相处,会赢得老师真诚耐心的指导与帮助D.和同学搞好关系,可以在自己犯错误时避免同学向老师打小报告4、美国思想家爱默生曾说过:“要想得到别人的友谊,自己就得先向别人表示友好。
”对这句话理解不正确的是()A.缺少热情,友谊之树就会枯萎B.我们应该主动关心他人、发现他人的优点并由衷地予以赞扬C.在交朋友的过程中太主动会显得掉价,会被别人看不起D.主动交往是建立良好人际关系的前提5、.“良好的学习方法能使我们更好地发挥运用天赋的才能,而拙劣的方法可能阻拦才能的发挥。
”以下学习方法中,你认为哪一种方法是拙劣的?()A.课上积极回答问题,参加讨论B.课外没有制订学习计划,想起什么就做什么C.每科有固定的笔记本,笔记有条理D.学新课前,先初步把新内容看一看6、王明总是抱怨:“学习真是太苦了,我甚至都不想上学了。
”你认为王明之所以这样,是因为他只看到了()A.学习是一个苦乐交织的过程B.学习是一个探究和发现的过程,需要克服困难,刻苦努力C.在学习中,我们不断地发现自身的潜能,从而获得一种不断超越自己的快乐D.学习中的困难和辛苦7、.“如果你有一个苹果,我有一个苹果,彼此交换,我们每个人仍只有一个苹果;如果你有一种思想,我有一种思想,彼此交换,我们每个人就有两种思想。
2024年最新人教版初一语文(上册)期末考卷及答案(各版本)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列加点字注音正确的一项是()。
A. 沉默(mò)B. 拥挤(jǐ)C. 惊愕(è)D. 遗憾(hàn)2. 下列词语中,书写正确的一项是()。
A. 狡猾B. 狡猾C. 狡猾D. 狡猾3. 下列句子中,没有语病的一项是()。
A. 我们要努力提高学习成绩。
B. 他喜欢听音乐,看电影,打篮球。
C. 那个地方的风景非常美丽。
D. 他的字写得非常漂亮。
4. 下列句子中,使用了比喻修辞手法的一项是()。
A. 那座山高耸入云。
B. 那个苹果红得像火一样。
C. 他像一只小鸟一样飞走了。
D. 他的眼睛像星星一样明亮。
5. 下列句子中,使用了拟人修辞手法的一项是()。
A. 风吹过,树叶沙沙作响。
B. 那朵花在微风中摇曳。
C. 雨水从天空中倾泻而下。
D. 太阳从东方升起。
6. 下列句子中,使用了排比修辞手法的一项是()。
A. 他喜欢看书,喜欢听音乐,喜欢运动。
B. 那个苹果红得像火一样,甜得像蜜一样,脆得像玻璃一样。
C. 那个地方山清水秀,风景如画。
D. 他的眼睛像星星一样明亮,像月亮一样皎洁。
7. 下列句子中,使用了夸张修辞手法的一项是()。
A. 他一口气跑了十公里。
B. 那个苹果甜得像蜜一样。
C. 他的眼睛像星星一样明亮。
D. 那个地方的风景美得让人无法形容。
二、填空题(每空1分,共10分)1. 《论语》中,孔子说:“学而时习之,不亦说乎?”其中“说”的意思是______。
2. 《论语》中,孔子说:“温故而知新,可以为师矣。
”其中“温故”的意思是______。
3. 《论语》中,孔子说:“三人行,必有我师焉。
”其中“我师”的意思是______。
4. 《论语》中,孔子说:“学而不思则罔,思而不学则殆。
”其中“罔”的意思是______。
5. 《论语》中,孔子说:“知之为知之,不知为不知,是知也。
2024-2025学年人教版七年级数学上册期末测试卷1.有理数的倒数是()A.B.C.D.2.篆刻是中华传统艺术之一,雕刻印章是篆刻基本功.如图是一块雕刻印章的材料,其俯视图为()A.B.C.D.3.单项式表示球的表面积,其中表示圆周率,表示球的半径.下列说法中,正确的是()A.系数是4,次数是2B.系数是4,次数是3C.系数是,次数是3D.系数是,次数是24.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于.下列正确的是()A.B.C.是一个12位数D.是一个13位数5.《九章算术》中有这样一道题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注步为长度单位).设走路快的人要走x步才能追上,则正确的是()A.依题意B.依题意C.走路快的人要走200步才能追上D.走路快的人要走300步才能追上6.一个正两位数M,它的个位数字是a,十位数字是,把M十位上的数字与个位上的数字交换位置得到新两位数N,则的值总能()A.被3整除B.被9整除C.被10整除D.被11整除7.已知整数m同时满足下列两个条件,写出一个符合条件的m的值:________.①在数轴上位于原点左侧;②绝对值大于2且小于68.用代数式表示“x的2倍与y的差”为__.9.如图,点A在点O的北偏东方向上,点B在点O的南偏西方向上,则的度数为____.10.将长度相同的木棒按如图所示的方式摆放,图1中有5根木棒,图2中有9根木棒,图3中有13根木棒,…,按此规律摆放下去,则图9中木棒的根数是____.11.某市居民每月用水收费标准如下:用水量/立方米单价/元a超过10的部分李阿姨家11月份用水5立方米,交水费11元.若李阿姨12月份交水费元,则李阿姨12月份的用水量是____.12.科技创新小组为测试新款机器人的性能,令机器人在一个长的笔直测试道上来回运动,当机器人到达起点或终点时立即按当前运行速度折返,每次运动时间为,运动过程如下:第次从起点出发以的速度运动到记录点;第次从出发以的速度运动到记录点;第次从出发以的速度运动到记录点;第次从出发以的速度运动到记录点,到达后停止.若机器人的运动速度不超过,记录点恰好为终点,则的值为______.13.(1)计算:.(2)若单项式与是同类项,求的值.14.阅读下面解题过程并解答问题:计算:.解:原式(第一步)(第二步)(第三步).(1)上面解题过程有两处错误:第一处是第步,错误原因是;第二处是第步,错误原因是.(2)请写出正确的计算过程.15.解方程:(1);(2)16.春节快到了,小明同学准备了一份礼物送给自己的好朋友.他设计了一个正方体盒子进行包装,如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有___________种弥补方法;(2)任意画出一种成功的设计图(在图中补充),并将这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0(直接在图中填上即可).17.已知整式.(1)当,求整式的值;(2)若整式比整式大,求整式.18.某仓库5月份前6天,每天粮食相对于前一天(单位:袋)变化如图10,增加粮食记作“”,减少粮食记作“”.(1)通过计算说明前6天,仓库粮食总共的变化情况;(2)在1~7号中,如果前四天的仓库粮食变化情况是后三天变化情况的一半,求7号这天仓库粮食变化情况.19.如图,为了方便学生停放自行车,学校建了一块长边靠墙的长方形停车场,其他三面用护栏围起,其中停车场的长为米,宽比长少米.(1)用含a、b的代数式表示护栏的总长度;(2)若,,每米护栏造价80元,求建此停车场所需护栏的费用.20.追本溯源题(1)来自于课本中的定义,请你完成解答,利用定义完成题(2).(1)如图1,点M把线段分成相等的两条线段与,点M叫做线段的___,____.拓展延伸(2)如图2,线段上依次有D,B,E三点,,E是的中点,.①求线段的长;②求线段的长.21.根据表中的素材,完成下面的任务:如何设计奖品购买及兑换方案?素材1文具店销售某种钢笔与笔记本,已知钢笔每支10元,笔记本每本5元.素材2学校用1100元购买这种钢笔和笔记本,其数量之比为.素材3文具店开展“满送”优惠活动,每满130元送1张兑换券,满260元送2张兑换券,以此类推.学校花费1100元后,将兑换券全部用于商品兑换.最终,笔记本与钢笔数量相同.问题解决任务1探究购买方案分别求出兑换前购买钢笔和笔记本的数量.任务2确定兑换方式求出用于兑换钢笔的兑换券的张数.22.数轴上两点A、B,A在B左边,原点O是线段上的一点,已知,且.点A、B对应的数分别是a、b,点P为数轴上的一动点,其对应的数为x.(1)_____,_____;(2)若,求x的值;(3)若点P以每秒2个单位长度的速度从原点O向右运动,同时点A以每秒1个单位长度的速度向左运动,点B以每秒3个单位长度的速度向右运动,设运动时间为t秒.请问在运动过程中,的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.23.【实践操作】在数学实践活动课上,同学们准备研究如下问题:如图,点A,O,B在同一条直线上,将一直角三角尺如图①放置,是直角,直角顶点与点O重合,平分.【问题发现】(1)若,求的度数;(2)猜想图①中和的度数之间的关系,写出你的结论,并说明理由.【变式探究】将这一直角三角尺如图②放置,其他条件不变,试探究和的度数之间的关系,写出你的结论,并说明理由.。
人教版数学七年级上册期末检测卷(一)时间:100分钟满分:120分一、选择题(每小题3分,共30分)1. |-2018|的相反数是( )A. 2018B. -2018C.12018D. -120182. A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是( )A BC D3. 已知-18x3y2n与2x3m y2是同类项,则mn的值是( )A. 1B. 3C. 6D. 94. 下列运算正确的是( )A. 8x-6x=2B. a+8b=9abC. -(x-y)=y+xD. 9ab-8ba=ab5. 下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A B C D6. 某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A. 240元B. 250元C. 280元D. 300元7. 数x,y在数轴上对应点的位置如图所示,则化简|x+y|-|y-x|的结果是( )A. 0B. 2xC. 2yD. 2x-2y8.如图,下面几何体,从左边看得到的平面图形是( )9. 已知M ,N ,P ,Q 四点的位置如图所示,下列结论中,正确的是( )A. ∠NOQ =42°B. ∠NOP =132°C. ∠PON 比∠MOQ 大D. ∠MOQ 与∠MOP 互补10. 观察图和所给表格回答:当图形的周长为80时,梯形的个数为( )A. 25B. 26C. 27D. 28二、填空题(每小题3分,共24分)11. 上海中信大厦是中国第一、世界第二高的摩天大楼,它塔冠上的风力发电机每年可以产生1189000千瓦时的绿色电力,1189000这个数用科学记数法可表示为 .12. 已知x =23是方程3(m -34x )+32x =5m 的解,则m = .13. 式子5m +14与2(m -14)的值互为相反数,则m 的值等于 .14. 如图,点O 在直线AB 上,射线OC 平分∠DOB ,若∠COB =35°,则∠AOD = .第14题 第15题15. 如图,将长方形纸片ABCD 的∠C 沿GF 折叠(点F 在BC 上,不与点B ,C 重合),使点C落在长方形内部点E 处,若EH 平分∠BFE ,则∠GFH 的度数是 .16. 已知A =3x 2+3y 2-5xy ,B =4x 2-3y 2+2xy ,当x =-1,y =1时,则2A -3B = . 17. 某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件 元.18. 将正整数按如图方式进行有规律的排列,第2行最后一个数是4,第3行最后一个数是7,第4行最后一个数是10,…,依此类推,则2018在第 行.三、解答题(66分)19. (8分)计算:(1)-14-(-6)+2-3×(-13); (2)317×(317-713)×722÷1121.20. (8分)解下列方程:(1)2(3-x )=-4(x +5); (2)74x -582x =1.21. (8分)如图,在同一直线上有四点A ,B ,C ,D ,已知AD =59DB ,AC =95CB ,且CD =4 cm ,求AB 的长.22. (10分)先化简,再求值:5a 2+3ab +2(a -ab )-(5a 2+ab -b 2),其中a ,b 满足|a +1|+(b -12)2=0.23. (10分)一艘载重480吨的船,容积是1050立方米,现有甲种货物450立方米,乙种货物350吨,而甲种货物每吨体积2.5立方米,乙种货物每立方米0.5吨.问是否都能装上船?如果不能,请说明理由;并求出为了最大限度的利用船的载重量和容积,两种货物应各装多少吨?24. (10分)某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样? (2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?25. (12分)点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =65°,将一直角三角板的直角顶点放在点O 处.(1)如图1,将三角板MON 的一边ON 与射线OB 重合时,求∠MOC 的度数;(2)如图2,将三角板MON 绕点O 逆时针旋转一定角度,此时OC 是∠MOB 的平分线,求∠BON 和∠CON 的度数;(3)将三角板MON 绕点O 逆时针旋转至图3时,∠NOC =14∠AOM ,求∠NOB 的度数.。
2020-2021学年人教新版七年级上册数学期末复习试卷1 一.选择题(共10小题,满分30分,每小题3分)1.若x与3互为相反数,则|x|+3等于()A.﹣3B.0C.3D.62.下列各组代数式中,不是同类项的是()A.2与﹣5B.﹣0.5xy2与3x2yC.﹣3t与200t D.ab2与﹣b2a3.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.当x分别取﹣5和5时,多项式﹣x2+7x4+x6﹣2019的值的关系是()A.相等B.互为相反数C.互为倒数D.异号5.2020年初新冠疫情肆虐,社会经济受到严重影响.地摊经济是就业岗位的重要来源.小李把一件标价60元的T恤衫,按照8折销售仍可获利10元,设这件T恤的成本为x元,根据题意,下面所列的方程正确的是()A.60×0.8﹣x=10B.60×8﹣x=10C.60×0.8=x﹣10D.60×8=x﹣106.下列说法正确的是()A.两点之间的距离是两点间的线段B.与同一条直线垂直的两条直线也垂直C.同一平面内,过一点有且只有一条直线与已知直线平行D.同一平面内,过一点有且只有一条直线与已知直线垂直7.如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S8.如图,点A、O、B在一条直线上,∠1是锐角,则∠1的余角是()A.∠2﹣∠1B.∠2﹣∠1C.(∠2﹣∠1)D.(∠1+∠2)9.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为()A.35°B.45°C.55°D.65°10.如图,下列推理及所证明的理由都正确的是()A.若AB∥DG,则∠BAC=∠DCA,理由是内错角相等,两直线平行B.若AB∥DG,则∠3=∠4,理由是两直线平行,内错角相等C.若AE∥CF,则∠E=∠F,理由是内错角相等,两直线平行D.若AE∥CF,则∠3=∠4,理由是两直线平行,内错角相等二.填空题(共8小题,满分24分,每小题3分)11.已知a,m,n均为有理数,且满足|a﹣m|=5,|n﹣a|=3,那么|m﹣n|的值为.12.计算:48°39′+67°31′=.13.将一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G、D、C分别在M、N的位置上,若∠EFG=52°,则∠2﹣∠1=°.14.若3x2m﹣1+6=0是关于x的一元一次方程,则m的值为.15.如图,OA表示方向,∠AOB=.16.如图,l1∥l2,则α+β﹣γ=.17.观察下列一组数,按规律在横线上填写适当的数,﹣,,﹣,,……,第7个数是.18.小明把一副三角板按如图所示叠放在一起,固定三角板ABC,将另一块三角板DEF绕公共顶点B顺时针旋转(旋转的度数不超过180°).若二块三角板有一边平行,则三角板DEF旋转的度数可能是.三.解答题(共9小题,满分96分)19.计算:(1)16÷(﹣2)3﹣(﹣)×(﹣4)+(﹣1)2020;(2)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].20.解方程:(1)2x﹣1=3(x﹣1);(2)﹣=2.21.先化简再求值:2(x2y﹣xy2﹣1)﹣(3x2y﹣3xy2﹣3),其中x=1,y=﹣222.如图,已知△ABC.(1)画出△ABC的高AD;(2)尺规作出△ABC的角平分线BE(要求保留作图痕迹,不用证明).23.完成下面证明:(1)如图1,已知直线b∥c,a⊥c,求证:a⊥b.证明:∵a⊥c(已知)∴∠1=(垂直定义)∵b∥c(已知)∴∠1=∠2 ()∴∠2=∠1=90°()∴a⊥b()(2)如图2:AB∥CD,∠B+∠D=180°,求证:CB∥DE.证明:∵AB∥CD(已知)∴∠B=()∵∠B+∠D=180°(已知)∴∠C+∠D=180°()∴CB∥DE()24.(9分)(1)一家住房的结构如图所示,这家房子的主人打算把卧室以外的部分都铺上地砖,至少需要多少m2的地砖?如果每1m2地砖的价格是a元钱,则购买所需地砖至少需要多少元?(2)已知房屋的高度为h米,现需要在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果某种壁纸的价格是b元/平方米,那么购买所需要的壁纸至少需要多少元?(计算时不扣除门、窗所占的面积)25.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°).(1)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由;(2)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=60°,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.26.已知:∠AOD=160°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD内旋转时,∠MON=度.(2)OC也是∠AOD内的射线,如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小.(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕O点以每秒2°的速度逆时针旋转t秒,如图3,若∠AOM:∠DON=2:3,求t的值.27.滴滴快车是一种便捷的出行工具,计价规则如表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里加收0.8元.小明与小亮各自乘坐滴滴快车,到同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里.设小明乘车时间为x分钟,小亮乘车时间为y分钟.(1)则小明乘车费为元(用含x的代数式表示),小亮乘车费为元(用含y的代数式表示);(2)若小明比小亮少支付3元钱,问小明与小亮的乘车时间哪个多?多几分钟?(3)在(2)的条件下,已知乘车时间较少的人先到达约见地点等候,等候时间是他自己乘车时间的一半,且比另一人乘车时间的少2分钟,问他俩谁先出发?先出发多少分钟?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵x与3互为相反数,∴x=﹣3,∴|x|+3=|﹣3|+3=3+3=6.故选:D.2.解:A是两个常数项,是同类项;B中两项所含字母相同但相同字母的指数不同,不是同类项;C和D所含字母相同且相同字母的指数也相同的项,是同类项.故选:B.3.解:∵530060是6位数,∴10的指数应是5,故选:B.4.解:当x=﹣5时,原式=﹣(﹣5)2+7×(﹣5)4+(﹣5)6﹣2019=﹣52+7×54+56﹣2019,当x=5时,原式=﹣52+7×54+56﹣2019,则当x分别等于5和﹣5时,多项式﹣x2+7x4+x6﹣2019的值相等,故选:A.5.解:设这件T恤的成本为x元,根据题意,可得:60×0.8﹣x=10.故选:A.6.解:A、两点之间的距离是指两点间的线段长度,而不是线段本身,错误;B、在同一平面内,与同一条直线垂直的两条直线平行,错误;C、同一平面内,过直线外一点有且只有一条直线与已知直线平行,应强调“直线外”,错误;D、这是垂线的性质,正确.故选:D.7.解:∵2<<3,∴数轴上表示实数的点可能是点Q.故选:B.8.解:由图知:∠1+∠2=180°;∴(∠1+∠2)=90°;∴90°﹣∠1=(∠1+∠2)﹣∠1=(∠2﹣∠1).故选:C.9.解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=55°,∴∠COM=90°﹣55°=35°,∵射线OM平分∠AOC,∴∠AOM=∠COM=35°,故选:A.10.解:A、若AB∥DG,则∠BAC=∠DCA,理由是两直线平行,内错角相等;故选项A 错误;B、若AB∥DG,则∠BAC=∠DCA,并不是∠3=∠4,理由是两直线平行,内错角相等;故选项B错误;C、若AE∥CF,则∠E=∠F,理由是两直线平行,内错角相等;故选项C错误;D、若AE∥CF,则∠3=∠4,理由是两直线平行,内错角相等;正确;故选:D.二.填空题(共8小题,满分24分,每小题3分)11.解:∵|a﹣m|=5,|n﹣a|=3,∴a﹣m=±5,n﹣a=±3∴m=a±5,n=a±3∴|m﹣n|=|(a±5)﹣(a±3)|,于是可分类计算:①|m﹣n|=|5﹣3|=2②|m﹣n|=|﹣5﹣3|=8③|m﹣n|=|5﹣(﹣3)|=8④|m﹣n|=|﹣5﹣(﹣3)|=2故答案为2或8.12.解:39′+31′=70′=1°10′,故48°39′+67°31′=116°10'.故答案为:116°10'.13.解:∵AD∥BC,∠EFG=52°,∴∠DEF=∠FEG=52°,∠1+∠2=180°,由折叠的性质可得∠GEF=∠DEF=52°,∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣52°﹣52°=76°,∴∠2=180°﹣∠1=104°,∴∠2﹣∠1=104°﹣76°=28°.故答案为:28.14.解:根据题意可知:2m﹣1=1解得m=1故答案为1.15.解:,OA表示:北偏东28°方向,∠AOB=90°﹣28+45°=107°北偏东28°,107°16.解:∵l1∥l2,∴∠1=α,∵∠1=180°﹣β﹣γ,∴α=180°﹣β﹣γ,即α+β﹣γ=180°.故答案为:180°.17.解:观察一组数,﹣,,﹣,,……,发现规律:第n个数是(﹣1)n,所以第7个数是﹣.故答案为:﹣.18.解:设旋转的度数为α,若DE∥AB,则∠E=∠ABE=90°,∴α=90°﹣30°﹣45°=15°,若BE∥AC,则∠ABE=180°﹣∠A=120°,∴α=120°﹣30°﹣45°=45°,若BD∥AC,则∠ACB=∠CBD=90°,∴α=90°,当点C,点B,点E共线时,∵∠ACB=∠DEB=90°,∴AC∥DE,∴α=180°﹣45°=135°,故答案为:15°或45°或90°或135°.三.解答题(共9小题,满分96分)19.解:(1)16÷(﹣2)3﹣(﹣)×(﹣4)+(﹣1)2020=16÷(﹣8)﹣+1=﹣2﹣+1=﹣;(2)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=.20.解:(1)∵2x﹣1=3(x﹣1),∴2x﹣1=3x﹣3,∴2x﹣3x=1﹣3,∴﹣x=﹣2,∴x=2.(2)∵﹣=2,∴2x+15﹣=2,∴3(2x+15)﹣(10x﹣1)=6,∴6x+45﹣10x+1=6,∴﹣4x+46=6,∴﹣4x=﹣40,∴x=10.21.解:原式=2x2y﹣2xy2﹣2﹣3x2y+3xy2+3=﹣x2y+xy2+1,当x=1,y=﹣2时,原式=2+4+1=7.22.解:(1)如图,AD即为△ABC的高.(2)如图,BE即为△ABC的角平分线.23.(1)证明:如图1,∵a⊥c(已知),∴∠1=90°(垂直定义),∵b∥c(已知),∴∠1=∠2(两直线平行,同位角相等),∴∠2=∠1=90°(等量代换),∴a⊥b(垂直的定义);(2)证明:如图2,∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等),∵∠B+∠D=180°(已知),∴∠C+∠D=180°(等量代换),∴CB∥DE(同旁内角互补,两直线平行).故答案是:(1)90°;两直线平行,同位角相等;等量代换;垂直的定义;(2)∠C;两直线平行,内错角相等;等量代换;同旁内角互补,两直线平行.24.解:(1)根据题意得:xy+2xy+8xy=11xy(m2),则把卧室以外的部分都铺上地砖,至少需要11xym2的地砖;购买所需地砖至少需要11axy 元;(2)根据题意得:(8x+12y)h=(8xh+12yh)m2,则在客厅和卧室的墙壁上贴壁纸,那么至少需要(8xh+12yh)平方米的壁纸,至少需要(8xhb+12yhb)元.25.解:(1)ON平分∠AOC.理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM平分∠BOC,∴∠BOM=∠MOC,∴∠AON=∠NOC.∴ON平分∠AOC.(2)∠BOM=∠NOC+30°.理由如下:∵∠CON+∠NOB=60°,∠BOM+∠NOB=90°,∴∠BOM=90°﹣∠NOB=90°﹣(60°﹣∠NOC)=∠NOC+30°.∴∠BOM与∠NOC之间存在的数量关系是:∠BOM=∠NOC+30°.26.解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=∠AOB,∠BON=∠BOD,∴∠MON=∠BOM+∠BON=(∠AOB+∠BOD)=∠AOD=80°,故答案为:80;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠AOC,∠BON=∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOB+∠BOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵∠AOM=(10°+2t+20°),∠DON=(160°﹣10°﹣2t),又∵∠AOM:∠DON=2:3,∴3(30°+2t)=2(150°﹣2t),得t=21.答:t为21秒.27.解:(1)小明乘车费为(0.3x+10.8)元(用含x的代数式表示),小亮乘车费为(0.3y+16.5)元.故答案为(0.3x+10.8),(0.3y+16.5).(2)由题意:10.8+0.3x+3=16.5+0.3y,∴x﹣y=9,∴小明比小亮的乘车时间多,多9分钟.(3)由(2)可知:小亮乘车时间为y分钟,小明乘车时间为(y+9)分钟.由题意:=﹣2,解得y=6.∴小明的乘车时间为6+9=15(分钟),小亮等候的时间为=3(分钟),∴小明比小亮先出发,先出发的时间=15﹣6﹣3=6(分钟),答:明比小亮先出发,先出发6分钟.。
人教版七年级上册数学期末考试试卷一、单选题1.12-的相反数是()A .2-B .2C .12-D .122.下列方程为一元一次方程的是()A .y +3=0B .x +2y =3C .x 2=2xD .12y y+=3.将3922亿用科学记数法表示为()A .8392210⨯B .93.92210⨯C .113.92210⨯D .123.92210⨯4.单项式xmy 3与4x 2yn 的和是单项式,则nm 的值是()A .3B .6C .8D .95.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A .两点之间,线段最短B .两点确定一条直线C .过一点,有无数条直线D .连接两点之间线段的长度叫做两点间的距离6.下列运算中,正确的是()A .-2-1=-1B .-2(x-3y )=-2x+3yC .3÷6×12=3÷3=1D .5x 2-2x 2=3x 27.某商品的标价为200元,8折销售仍赚60%,则商品进价为()元.A .140B .120C .160D .1008.一个角的补角是它的余角的三倍,则这个角为()A .45︒B .30°C .15︒D .60︒9.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是()A .B .C .D .10.已知方程216x y -+=,则整式3610x y --的值为A .5B .10C .12D .15二、填空题11.多项式3x 2y-7x 4y 2-xy 4的次数是______.12.计算77°53′26″+43°22′16″=_____.13.已知关于x 的方程(m+1)x |m |+2=0是一元一次方程,则m=______14.已知3a -4与-5互为相反数,则a 的值为______.15.|x-y|=y-x ,则x ___y .16.若2214x x -+=,则2247x x -+的值是______.17.如图,已知点C 为AB 上一点,AC =12cm ,CB =23AC ,D 、E 分别为AC 、AB 的中点;则DE 的长为_____cm .三、解答题18.计算:(1)(+15)+(-30)-(+14)-(-25)(2)-42+3×(-2)2×(13-1)÷(-113)19.解方程:2(x+8)=3(x-1)20.如图,平面上有A 、B 、C 、D 四个点,根据下列语句画图.(1)画直线AB ,作射线AD ,画线段BC ;(2)连接DC ,并将线段DC 延长至E ,使DE =2DC .21.先化简,再求值:(3a2b﹣ab2)﹣2(ab2﹣3a2b),其中a=13,b=﹣3.22.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?x x<的正方形拼成的图形.23.如图是由边长分别为4和3的长方形与边长为()3(1)用含有x的代数式表示图中阴影部分的面积并化简;(2)当2x=时,求这个阴影部分的面积.24.为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?25.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求△BOE的度数;(3)试判断OF是否平分∠AOC,请说明理由.26.如图,点A,B,C在数轴上对应数为a,b,c.(1)化简|a﹣b|+|c﹣b|;(2)若B,C间距离BC=10,AC=3AB,且b+c=0,试确定a,b,c的值,并在数轴上画出原点O;(3)在(2)的条件下,动点P,Q分别同时都从A点C点出发,相向在数轴上运动,点P 以每秒1个单位长度的速度向终点C移动,点Q以每秒0.5个单位长度的速度向终点A移动;设点P,Q移动的时间为t秒,试求t为多少秒时P,Q两点间的距离为6.参考答案1.D【分析】根据相反数的性质,互为相反数的两个数的和为0即可求解.【详解】解:因为-12+12=0,所以-12的相反数是12.故选:D.【点睛】本题考查求一个数的相反数,掌握相反数的性质是解题关键.2.A 【分析】根据一元一次方程的定义,形如0ax b +=(0a ≠),含有一个未知数,且未知数的最高次数是一次的方程即为一元一次方程,逐项判断作答即可.【详解】A.y +3=0含有一个未知数,且未知数的最高次数是一次,是一元一次方程,故选项A 符合题意;B.x +2y =3含有两个未知数,不是一元一次方程,故选项B 与题意不符;C.x 2=2x 最高次数是二次,不是一元一次方程,故选项C 与题意不符;D.12y y+=不是整式方程,不是一元一次方程,故选项D 与题意不符.故选A .【点睛】本题主要考查了一元一次方程的定义,0ax b +=(0a ≠)的方程即为一元一次方程;含有一个未知数,且未知数的最高次数是一次,是判断是否是一元一次方程的依据.3.C 【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:3922亿=392200000000=3.922×1011.故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.4.D 【分析】同类项的定义:字母相同,并且相同字母的指数也相同的两个单项式叫同类项,据此求出m 、n ,代入求解即可.【详解】解:由两个单项式的和还是单项式可得xmy³与4x²yn 同类项∴m=2,n=3,∴nm=3²=9,故选:D .【点睛】本题考查代数式求值、同类项的定义、合并同类项,能得出两个单项式是同类项是解答的关键.5.B 【分析】依据直线基本事实两点确定一条直线来解答即可.【详解】在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据直线基本事实是两点确定一条直线.故选择:B .【点睛】本题考查了直线的性质,掌握直线的性质是解题的关键.6.D 【分析】计算出各选项中式子的值,即可判断哪个选项是正确的.【详解】A 、213--=-,故选项错误;B 、()2326x y x y --=-+,故选项错误;C 、11113632624÷⨯=⨯⨯=,故选项错误;D 、222523x x x -=,故选项正确.故选D .【点睛】本题考查有理数混合运算、合并同类项、去括号与添括号,解题的关键是明确它们各自的计算方法.7.D 【分析】设进价为x 元,根据售价=标价×打折数=进价×(1+利润率)列方程求解即可.【详解】解:设进价为x 元,则依题可得:200×0.8=(1+0.6)x ,解得:x=100,故选:D .【点睛】本题考查一元一次方程的应用,理解题意,熟知打折销售中的等量关系是解答的关键.8.A 【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列方程求出这个角的度数即可.【详解】设这个角是α,则它的补角为180°-α,余角为90°-α,根据题意得,180°-α=3(90°-α),解得α=45°.故选:A .【点睛】本题考查了余角与补角,是基础题,熟记概念并列出方程是解题的关键.9.B 【分析】根据题意作出图形,即可进行判断.【详解】将如图所示的直角三角形绕直线l 旋转一周,可得到圆锥,故选:B .【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.10.A 【分析】根据题意求出x-2y ,利用添括号法则把原式变形,代入计算即可.【详解】解:∵x-2y+1=6,∴x-2y=5,∴3x-6y-10=3(x-2y)-10=3×5-10=5,故选A.【点睛】本题考查的是代数式求值,灵活运用整体思想是解题的关键.11.6次【分析】直接利用多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式3x2y-7x4y2-xy4次数最高的项为-7x4y2,次数是:6次.故答案为:6次.【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.12.121°15′42″【分析】把秒和秒相加,分和分相加,度和度相加,满60向上一位近1.【详解】解:77°53′26″+43°22′16″=(77°+43°)+(53′+22′)+(26″+16″)=120°+75′+42″=121°15′42″.故答案为121°15′42″.【点睛】本题考查了度分秒的加法,将度与度相加,分与分相加,秒与秒相加,满60向上一位近1.13.1【分析】直接利用一元一次方程的定义分析得出答案.【详解】∵关于x的方程(m+1)x|m|+2=0是一元一次方程,∴|m|=1,m+1≠0,解得:m=1.故答案为1.【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.14.3【分析】根据相反数的性质互为相反数的和为0列方程求解即可.【详解】解:由题意,得3a–4+(-5)=0,解得a=3,故答案为:3.【点睛】本题考查了一元一次方程,相反数的性质,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆,互为相反数的两个数的和为0是解题关键.15.≤【分析】利用绝对值的性质:|a|≥0,可以先去掉绝对值再进行判断大小.【详解】解:∵|x-y|=y-x ,∴y-x≥0,∴y≥x ,故答案为:≤.16.13【分析】根据已知等式得到223x x -=,再利用整体思想代入求值即可.【详解】∵2214x x -+=,∴223x x -=,∴2246x x -=,∴22476713x x -+=+=.故答案为:13.【点睛】本题考查了代数式求值,熟练掌握整体思想是解题的关键.17.4【分析】根据AC =12cm ,CB =23AC ,求出CB 的长度,从而得到AB 的长度,根据D 、E 分别为AC 、AB 的中点,分别求出AD ,AE ,最后根据DE =AE−AD 即可求出DE 的长.【详解】解:∵AC =12cm ,CB =23AC ,∴CB =12×23=8(cm ),∴AB =AC +CB =12+8=20(cm ),∵D 、E 分别为AC 、AB 的中点,∴AD =12AC =12×12=6(cm ),AE =12AB =12×20=10(cm ),∴DE =AE−AD =10−6=4(cm ),故答案为:4.【点睛】本题考查了两点间的距离,线段中点的定义,解题的关键是:根据D 、E 分别为AC 、AB 的中点,求出AD ,AE 的长.18.(1)-4;(2)-10.【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】(1)解:原式=-15-14+25=-4(2)解:原式=-16+3×4×(-23)×(-34)=-16+12×12=-10.【点睛】此题主要考查有理数的混合运算,解题的关键是熟知其运算法则.19.(1)x=19;(2)x=38【分析】(1)根据去括号、移项、合并同类项、化系数为1的计算过程解答即可;(2)根据去分母、去括号、合并同类项、化系数为1的计算过程解答即可.【详解】(1)解:去括号,得:2x+16=3x-3,移项、合并同类项,得:-x=-19,化系数为1,得:x=19;(2)解:去分母,得:2(5x+1)-(2x-1)=6,去括号,得:10x+2-2x+1=6,移项、合并同类项,得:8x=3,化系数为1:x=3 8.【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.20.(1)见解析;(2)见解析【分析】(1)根据直线,射线,线段的定义画出图形.(2)在DC的延长线上截取CE=CD即可.【详解】解:(1)如图,直线AB,射线AD,线段BC即为所求作.(2)如图,线段DE即为所求作.【点睛】本题考查作图-复杂作图,直线,射线,线段的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.9a2b-3ab2,-12【分析】先去括号,再合并同类项,最后将a=13,b=﹣3代入化简后的结果,即可求解.【详解】解:()()2222323a b ab ab a b ---2222326a b ab ab a b =--+2293a b ab =-当a =13,b =﹣3时,原式()()22119333391233⎛⎫=⨯⨯--⨯⨯-=--=- ⎪⎝⎭.【点睛】本题主要考查了整式的加减混合运算,熟练掌握整式的加减混合运算法则是解题的关键.22.应该分配8人生产螺钉.【详解】分析:根据每人每天平均生产600个螺钉或800个螺母,以及一个螺钉与两个螺母配套,进而得出等式求出即可.本题解析:设生产螺钉x 人,螺母(20-x )人,()800206002x x -=,x=8,答:应该分配8人生产螺钉.点睛:本题考查了一元一次方程的应用,属于基础题,解答本题关键是得出生产的螺母数是螺钉的2倍这一等量关系.23.(1)21122x x +;(2)3【分析】(1)根据阴影部分的面积等于长方形和正方形的面积和减去三个三角形的面积可列代数式;(2)将2x =代入计算可求解阴影部分的面积.【详解】解:阴影部分的面积为:()()22111123443222x x x x +--⨯+-⨯-2221311126622222x x x x x x =+----+=+;(2)当2x =时,阴影部分的面积为1142322⨯+⨯=,答:阴影部分的面积为3.【点睛】本题主要考查列代数式,代数式求值,列代数式求解阴影部分的面积是解题的关键.24.(1)甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米;(2)选择方案①完成施工费用最少【分析】(1)设乙工程队每天能完成绿化的面积是x 平方米,根据甲队与乙队合作一天能完成800平方米的绿化改造面积,列出方程,求解即可;(2)利用施工费用=每天的施工费用×施工时间,即可求出选择各方案所需施工费用,再比较后即可得出结论.【详解】解:(1)设乙队每天能完成绿化的面积是x平方米,则甲队每天能完成绿化的面积是(x+200)米,依题意得:x+x+200=800解得:x=300,x+200=500∴甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米.(2)选择方案①甲队单独完成所需费用=1200060014400500⨯=(元);选择方案②乙队单独完成所需费用=1200040016000300⨯=(元);选择方案③甲、乙两队全程合作完成所需费用=()1200040060015000800+⨯=(元);∴选择方案①完成施工费用最少.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出方程;(2)利用总费用=每天支出的费用×工作时间,分别求出选择各方案所需费用.25.(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.26.(1)c﹣a;(2)a=﹣10,c=5,b=﹣5;(3)点P,Q移动6秒或14秒时,P,Q两点间的距离为6.【分析】(1)根据数轴可得c>b>a,再去绝对值合并即可求解;(2)根据相反数的定义和等量关系即可求解;(3)由题意得运动t秒后,点P,Q对应的点在数轴上所对的数为P:﹣10+t,Q:5﹣0.5t,然后根据P,Q两点间的距离为6,列出方程计算即可求解.【详解】解:(1)由数轴及题意得:∵c>b>a,∴原式=b﹣a+c﹣b=c﹣a;(2)原点位置如图:∵BC=10,∴c﹣b=10,又∵b+c=0,∴c=5,b=﹣5,又∵BC=10,AC=3AB,∴BC=2AB=10,∴AB=5,∴b﹣a=5,∴a=﹣10;(3)∵AC=15,最短运动时间15÷1=15秒,运动t秒后,点P,Q对应的点在数轴上所对的数为P:﹣10+t,Q:5﹣0.5t,若P,Q两点间的距离为6,则有()-+--=,t t1050.56解得t=6或t=14,均小于15秒,∴点P,Q移动6秒或14秒时,P,Q两点间的距离为6.【点睛】本题主要考查数轴上的动点问题、两点距离、线段的和差关系及一元一次方程的应用,熟练掌握数轴上的动点问题、两点距离、线段的和差关系及一元一次方程的应用是解题的关键.。
可编辑修改精选全文完整版人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项符合题目要求。
1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A .一B .起C .向D .来7.时钟的分针从8点整转到8点20分,分针旋转了( )度. A .20B .120C .90D .1508.直线、线段、射线的位置如图所示,下图中能相交的是( )A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( )A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。
2024年最新人教版七年级数学(上册)期末考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.54. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/25. 下列哪个数是负数?A. 3B. 0C. 2D. 1/26. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零7. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.58. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/29. 下列哪个数是负数?A. 3B. 0C. 2D. 1/210. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零二、填空题(每题3分,共30分)1. 5的绝对值是______。
2. 2的绝对值是______。
3. 3/4的绝对值是______。
4. 0的绝对值是______。
5. 1/2的绝对值是______。
6. 1/2的绝对值是______。
7. 3的绝对值是______。
8. 3的绝对值是______。
9. 2/3的绝对值是______。
10. 0.25的绝对值是______。
三、解答题(每题10分,共50分)1. 计算:| 5 | | 3 | + | 2 | | 1 |2. 计算:| 4 | + | 6 | | 2 | + | 3 |3. 计算:| 7 | | 5 | + | 3 | | 2 |4. 计算:| 8 | + | 7 | | 4 | + | 3 |5. 计算:| 9 | | 6 | + | 5 | | 4 |四、应用题(每题10分,共30分)1. 小明有5个苹果,小红有3个苹果,小刚有2个苹果。
小明比小红多几个苹果?小红比小刚多几个苹果?2. 一辆汽车从A地开往B地,速度是每小时60公里。
人教版七年级数学上册期末试卷及答案【1套】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.已知a=255, b=344, c=533, d=622 , 那么a,b,c,d大小顺序为()A. a<b<c<dB. a<b<d<cC. b<a<c<dD. a<d<b<c2.如图, 在和中, , 连接交于点, 连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A. 4B. 3C. 2D. 13.已知x+y=﹣5, xy=3, 则x2+y2=()A. 25B. ﹣25C. 19D. ﹣194.若ax=6, ay=4, 则a2x﹣y的值为()A. 8B. 9C. 32D. 405.已知是整数, 当取最小值时, 的值是( )A. 5B. 6C. 7D. 86.如图, 要把河中的水引到水池A中, 应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短, 这样做依据的几何学原理是()A. 两点之间线段最短B. 点到直线的距离C. 两点确定一条直线D. 垂线段最短7.《九章算术》是我国古代数学名著, 卷七“盈不足”中有题译文如下: 今有人合伙买羊, 每人出5钱, 会差45钱;每人出7钱, 会差3钱.问合伙人数、羊价各是多少?设合伙人数为人, 所列方程正确的是()A. B. C. D.8.如图,将一副三角尺按不同的位置摆放, 下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④9.如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线交AC, AD, AB于点E, O, F, 则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对10. 计算的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的立方根是__________.2.如图a是长方形纸带, ∠DEF=25°, 将纸带沿EF折叠成图b, 再沿BF折叠成图c, 则图c中的∠CFE的度数是__________°.3. 已知有理数a, b满足ab<0, a+b>0, 7a+2b+1=﹣|b﹣a|, 则的值为________.4. 若, 则m+2n的值是________.5. 对于任意实数a、b, 定义一种运算: a※b=ab﹣a+b﹣2. 例如, 2※5=2×5﹣2+5﹣2=ll. 请根据上述的定义解决问题: 若不等式3※x<2, 则不等式的正整数解是________.6. 已知一组从小到大排列的数据:2, 5, x, y, 2x, 11的平均数与中位数都是7, 则这组数据的众数是________.三、解答题(本大题共6小题, 共72分)1. 解方程组2. 解不等式组: , 并把解集在数轴上表示出来.3. 如图所示, 在平面直角坐标系中, 点A, B的坐标分别为A(a, 0), B(b, 0), 且a, b满足, 点C的坐标为(0, 3).(1)求a, b的值及S三角形ABC;(2)若点M在x轴上, 且S三角形ACM=S三角形ABC, 试求点M的坐标.4. 如图, ∠1=∠ACB, ∠2=∠3, 求证: ∠BDC+∠DGF=180°.5. 为了解某市市民“绿色出行”方式的情况, 某校数学兴趣小组以问卷调查的形式, 随机调查了某市A B C D E 部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类), 并将调查结果绘制成如下不完整的统计图.种类出行方式共享单车步行公交车的士私家车根据以上信息, 回答下列问题:(1)参与本次问卷调查的市民共有人, 其中选择B类的人数有人;(2)在扇形统计图中, 求A类对应扇形圆心角α的度数, 并补全条形统计图;(3)该市约有12万人出行, 若将A, B, C这三类出行方式均视为“绿色出行”方式, 请估计该市“绿色出行”方式的人数.6. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元, 甲种图书每本的售价是乙种图书每本售价的1.4倍, 若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者, 决定甲种图书售价每本降低3元, 乙种图书售价每本降低2元, 问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、D2、B3、C4、B5、A6、D7、B8、A9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、-22.105°3、0.4、-15、16、5三、解答题(本大题共6小题, 共72分)1、31 xy=⎧⎨=-⎩2.x≥3、(1)9(2)(0, 0)或(-4, 0)4、略5.(1)800, 240;(2)补图见解析;(3)9.6万人.6、(1)甲种图书售价每本28元, 乙种图书售价每本20元;(2)甲种图书进货533本, 乙种图书进货667本时利润最大.。
20232024学年全国初一上数学人教版期末考试试卷一、选择题(每题2分,共20分)1. 下列数中,不是有理数的是()A. 3/4B. 2C. √5D. 0.52. 下列式子中,正确的是()A. 3 + 2 = 5B. 3 2 = 5C. 3 × 2 = 5D. 3 ÷ 2 = 53. 下列图形中,不是直线的是()A. 直线ABB. 线段ABC. 射线ABD. 曲线AB4. 下列式子中,不是同类项的是()A. 3x + 2yB. 4x 2yC. 3x + 2xD. 4y 2y5. 下列式子中,正确的是()A. 2^3 = 8B. 2^4 = 16C. 3^2 = 9D. 3^3 = 276. 下列式子中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 3/27. 下列式子中,正确的是()A. (2 + 3) × 4 = 20B. 2 + 3 × 4= 20C. 2 × (3 +4) = 20 D. 2 × 3 + 4 = 208. 下列式子中,正确的是()A. 2^3 × 2^4 = 2^7B. 2^3 ÷ 2^4 = 2^1C. 2^3 + 2^4 = 2^7D. 2^3 2^4 = 2^19. 下列式子中,正确的是()A. 3x + 2y = 5B. 3x 2y = 5C. 3x × 2y = 5D. 3x ÷ 2y = 510. 下列式子中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x y)^2 = x^2 2xy + y^2C. (x + y)^2 = x^2 2xy + y^2D. (x y)^2 = x^2 + 2xy + y^2二、填空题(每题2分,共20分)1. 下列数中,不是有理数的是()A. 3/4B. 2C. √5D. 0.52. 下列式子中,正确的是()A. 3 + 2 = 5B. 3 2 = 5C. 3 × 2 = 5D. 3 ÷ 2 = 53. 下列图形中,不是直线的是()A. 直线ABB. 线段ABC. 射线ABD. 曲线AB4. 下列式子中,不是同类项的是()A. 3x + 2yB. 4x 2yC. 3x + 2xD. 4y 2y5. 下列式子中,正确的是()A. 2^3 = 8B. 2^4 = 16C. 3^2 = 9D. 3^3 = 276. 下列式子中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 3/27. 下列式子中,正确的是()A. (2 + 3) × 4 = 20B. 2 + 3 × 4 = 20C. 2 × (3 +4) = 20 D. 2 × 3 + 4 = 208. 下列式子中,正确的是()A. 2^3 × 2^4 = 2^7B. 2^3 ÷ 2^4 = 2^1C. 2^3 + 2^4 = 2^7D. 2^3 2^4 = 2^19. 下列式子中,正确的是()A. 3x + 2y = 5B. 3x 2y = 5C. 3x × 2y = 5D. 3x ÷ 2y = 510. 下列式子中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x y)^2 = x^2 2xy + y^2C. (x + y)^2 = x^2 2xy + y^2D. (x y)^2 = x^2 + 2xy + y^2三、解答题(每题10分,共30分)1. 解方程:2x + 3 = 72. 解不等式:3x 2 < 53. 求解:2^3 × 2^4 ÷ 2^2四、应用题(每题10分,共20分)1. 小明有10元钱,他买了一支铅笔和一本笔记本,铅笔的价格是2元,笔记本的价格是5元。
人教版七年级数学上册期末复习测试卷一、 填空题:(每小题3分,共30分)1. 有7个面的棱柱有________个顶点,有__________条棱.2. 若0)8(52=++-y x ,则x =_________,y =__________.3. 在数轴上与-2所对应的点相距3个单位长度的点表示的数是_____________.4. 已知a 与-4互为相反数c 与d 互为倒数互为倒数,m 的绝对值为6,则cda m 2421--=____________. 5. 代数式7322b a π-系数为____________.6. 如图1,∠1=∠2,∠3=∠4,∠BOD =65°,则∠AOE =__________.7. 关于x 的一元一次方程05327=+-k xk的解是______________.8. 正方体骰子上都有1~6个数字,掷两次骰子,朝上的数字之和等于11的可能性是_________.9. 加工一圆柱形机器零件,图纸上注明了它的直径是ϕ02.001.0125+-,125ϕ表示直径是125毫米,+0.02与-0.01表示合格产品的误差,那么合格产品直径的取值范围是_____________________. 10. 研究下列算式,你会发现什么规律?1×3+1=4=22 2×4+1=9=32 3×5+1=16=42 4×6+1=25=52 …… 请将你找出的规律用公式表示出来:_______________________________. 二、选择题:(每小题3分,共30分)11. 用小立方体搭成的几何体的一个视图为 ,这一定是( ) A. 左视图B. 主视图C. 俯视图D. 不是俯视图12. 下列语句中,正确的是( )A. 一个数的相反数一定是负数B. 一个数的绝对值一定不是负数 2)1O ABCDE 图113. 甲从点A 出发向北偏东45°走到点B ,乙从点A 出发向西偏北30°走到点C ,则∠BAC =( )A. 15°B. 75°C. 105°D. 135°14. 解方程23.02.05.005.022.004.0=--+xx 时,下列变形正确的是( )A. 2003255224=--+x xB. 232.05.05224=--+xx C.23255224=--+xxD.203255224=--+xx 15. 有理数a 、b 在数轴上对应的位置如图2所示,下列四个式子是的数是正数的是( )A. b a +B. b a -C. abD. 33b a16. 某产品降价后的价格为a 元,比原来降低了20%,则原价为( )A.%201+a元 B. a %)201(+元 C. a %)201(-元D.%201-a元17. 下列说法正确的是( )A. 一条直线的平行线只有一条B. 一条直线的垂线只有一条C. 两条互相垂直的线段不一定相交D. 与线段不相交的直线一定与线段平行 18. 一批产品的合格率为95%,从中任意抽取1件是不合格产品的可能性为( )A.2019 B.201 C.51 D.21 19. 将-369 000用科学记数法应表示为( )A. -369B. 5107.3⨯-C. 3.69×510D. -3.69×510 20. 三个连续整数的和为21,则它们的积是( )A. 336B. 326C. 346D. 316三、解答题:(满分60分)21. (10分)计算下列各题:(每小题5分,共10分)(1))83()321()43(411-+----(2))61()]416(4.0)25.0(311[-÷-⨯+-÷图222. 解下列各方程:(每小题5分,共10分)(1)x x 5.12)73(72-=+(2)52221+-=--y y y23. (8分)如图3,直线AB 与CD 相交于O 点,OF ⊥CD ,∠BOF =∠DOE ,你能猜出OE 与AB的位置关系吗?并说明理由.24. (8分)出售一种产品,数量x 与售价y 之间的关系如下表(表中售价栏中的0.5是包装袋的价钱)(1)写出用数量x 表示售价y 的公式;(2)计算6.5千克该货的售价.25. (8分)我校七年级学生为保护我国珍稀大熊猫进行了捐款,(1)班捐款为七年级总捐款数的31,(2)班捐款数为(1)班(3)班数的和的一半,(3)班捐了380元,求七年级总捐款数. ABCDEO F图326. (8分)请你联系生活实际,根据方程1151210=++x x 编写一道应用题,并补全解题过程.27. (8分)小李通过对某地区2018年至2020年快餐公司发展情况的调查,制成了该地区快餐公司个数情况的条形图(如图4)和快餐公司盒饭销量的平均数情况条形图(如图5),利用图4、图5共同提供的信息:解答下列问题:(1)2019年该地区销售盒饭共__________万盒;(2)该地区盒饭销售量最大的年份是___________年,这一年的年销售量是____________万盒; (3)这三年中该地区每年平均销售盒饭答 案年份年份图4图51. 10,152. 5,-83. -5或14. ±35. 四,单,73-6. 130°7. -58.181 9. 124.99≤d ≤125.0210. 2)1()2(+=+n n n二、选择题:(每小题3分,共30分)一、解答题:(满分60分) 21. 计算:(每小题5分,共10分)(1)2473;(2)-17. 22. 解方程:(每小题5分,共10分)(1)x =0;(2)711=y . 23. (8分)(1)5.03+=x y ;(2)y =20. 24. (8分)1 140. 25. (8分)略.26. (8分)(1)118;(2)2000;(3)96.1、三人行,必有我师。
人教版七年级上册数学期末考试卷及答案一 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若方程:()2160x --=与3103a x --=的解互为相反数,则a 的值为( ) A .-13 B .13C .73D .-1 2.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.下列图形具有稳定性的是( )A .B .C .D .5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.如果23a b -=22()2a b a b a a b+-⋅-的值为( ) A 3 B .23C .33D .37.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或79.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 410.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,点O 是直线AD 上一点,射线OC ,OE 分别平分∠AOB 、∠BOD .若∠AOC =28°,则∠BOE =________.3.已知点A (0,1),B (0 ,2),点C 在x 轴上,且2ABC S ∆=,则点C 的坐标________.4.如果方程(m-1)x |m|+2=0是表示关于x 的一元一次方程,那么m 的取值是________.51a -5b -=0,则(a ﹣b )2的平方根是________.6.一个正多边形的一个外角为30°,则它的内角和为________.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x y x y +=⎧⎨-=⎩ (2)143()2()4x y x y x y ⎧-=-⎪⎨⎪+--=⎩2.在解方程组2628mx y x ny +=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n ,得解为7323x y ⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m ,得解为24x y =-⎧⎨=⎩ (1)则m ,n 的值分别是多少?(2)正确的解应该是怎样的?3.如图,在平面直角坐标系中,已知点A (0,4),B (8,0),C (8,6)三点.(1)求△ABC 的面积;(2)如果在第二象限内有一点P (m ,1),且四边形ABOP 的面积是△ABC 的面积的两倍;求满足条件的P 点的坐标.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小組.要求每人必须参加.并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据);(2)________, ________;m n ==(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?6.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、A5、A6、A7、A8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、62°3、(4,0)或(﹣4,0)4、-15、±4.6、1800°三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、(1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩3、(1)24;(2)P(﹣16,1)4、(1)略;(2)略.5、(1)150;补图见解析;(2)36,16;(3)选择“围棋”课外兴趣小组的人数为192人.6、(1)该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;225 4千米.(2)甲、丙两地相距。
人教新版七年级上册数学期末复习试卷一.填空题(共6小题,满分24分,每小题4分)1.把多项式2m2﹣4m4+2m﹣1按m的升幂排列.2.若2a﹣b=﹣3,则多项式5﹣8a+4b的值是.3.将36000用科学记数法表示应为.4.某商店将彩电按成本价提高50%,然后再打八折出售,结果每台彩电仍获利270元,那么每台彩电成本价是.5.如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB=.6.如图,将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪彩成四个小正方形,如此继续下去,…,根据以上操作方法,请你填写下表:操作次数1 2 3 4 5 …N …N4 7 10 ……正方形的个数.二.选择题(共8小题,满分32分,每小题4分)7.已知|m|=3,|n|=2,且mn<0,则m+n的值等于()A.5或﹣5 B.﹣5或﹣1 C.5或﹣1 D.1或﹣18.一个数的相反数是它本身,则这个数为()A.0 B.1 C.﹣1 D.±19.下列式子成立的是()A.2x﹣5=﹣(5﹣2x)B.7a+3=7(a+3)C.﹣a﹣b=﹣(a﹣b)D.2x﹣5=﹣(2x﹣5)10.若方程2x﹣kx+1=5x﹣2的解为﹣1,则k的值为()A.10 B.﹣4 C.﹣6 D.﹣811.下列判断中正确的是()A.3a2bc与bca2不是同类项 B.不是整式C.2x2﹣3y+4xy2是二次三项式 D.单项式﹣9x3y2的系数是﹣912.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD的度数为()A.160°B.110°C.130°D.140°13.如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD上,且EA=1,则BE的长为()A.4 B.6或8 C.6 D.814.某书店把一本书按进价提高60%标价,再按七折出售,这样每卖出一本书就可盈利6元,设每本书的进价是x元,根据题意列一元一次方程,正确的是()A.(1+60%)x=6 B.60%x﹣x=6C.(1+60%)x﹣x=6 D.(1+60%)x﹣x=6三.解答题(共7小题,满分44分)15.解方程:﹣1=2+.16.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=,b=﹣4.17.计算:(1)|﹣|÷(﹣)﹣×(﹣2)3;(2)(﹣+)÷(﹣).18.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?19.如图,C,D是线段AB上的两点,已知M,N分别为AC,DB的中点,AB=18cm,且AC:CD:DB=1:2:3,求线段MN的长.20.有理数a,b在数轴上的对应点位置如图所示,且|a|=|c|.(1)用“<”连接这四个数:0,a,b,c;(2)化简:|a+b|﹣2|a|﹣|b+c|.21.如图,∠AOC=80°,OB是∠AOC的平分线,OD是∠COE的平分线.(1)求∠BOC的度数;(2)若∠DOE=30°,求∠BOE的度数.。
1.多项式3x|m|y2+(m+2)x2y﹣1是四次三项式,则m的值为()
A.2B.﹣2C.±2D.±1
2.已知a、b是有理数,满足a<0<b,a+b>0,则把a、﹣a、b、﹣b按照从小到大的顺序
排列,正确的是()
A.﹣b<﹣a<a<b B.﹣b<a<﹣a<b C.﹣a<﹣b<a<b D.a<﹣b<b<﹣a 3.如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形有()
A.1个B.2个C.3个D.4个
4..如图,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()
A.B.C.D.
5.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上
B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上
C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上
D.为了缩短航程把弯曲的河道改直
6.下列语句中,正确的个数是()
①直线AB和直线BA是两条直线;②射线AB和射线BA是两条射线;③若∠1+∠2+
∠3=90°,则∠1、∠2、∠3互余;④一个角的余角比这个角的补角小;⑤一条射线就是一个周角;⑥两点之间,线段最短.
A.1个B.2个C.3个D.4个
7.如图,可以判定AB∥CD的条件是()
A.∠1=∠2 B.∠BAD+∠B=180°C.∠3=∠4 D.∠D=∠5
8.如图,将长方形纸片ABCD进行折叠,如果∠BHG=82°,那么∠BHE的度数为()
A.49°B.50°C.51°D.59°
9.已知代数式x2﹣2x﹣1=4,则代数式2019+4x﹣2x2值是()
A.2009B.2029C.2020D.2024
10.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.
A.70B.150C.90D.100第7题第8题第10题
11.在数轴上将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.
12.如图,已知AC⊥BC,CD⊥AB,AC=3,BC=4,AB=5,则点B到直线
AC的距离等于.
13.巴蜀中学下午到校时间为14:15分,此时钟表上时针和分针的夹角
为.
14.有理数a,b在数轴上对应点的位置如图所示,化简:|a|+|b|﹣|a+b|=.
15.计算:
①33°52′+21°54′=;
②18.18°=°′″.
16.某商品每件标价为150元,若按标价打8折后,仍可获利20%.
则该商品每件的进价为元.
17.一个角的补角与它的余角的3倍的差是40°,则这个角为.
18.平面内,已知∠AOB=90°,∠BOC=20°,OE平分∠AOB,OF平分∠BOC,则∠EOF
=.
三、解答题
19.计算:﹣14﹣(1﹣)××[2+(﹣2)2]
20.已知关于x的方程3[x﹣2(x﹣)]=4x和﹣=1有相同的解,求这个解.
21.已知多项式(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)的值与字母x的取值无关.
(1)求a,b的值;
(2)当y=1时,代数式的值3,求:当y=﹣1时,代数式的值.
22.010270
50张以上
购买贺卡数不超过30张30张以上不超过50
张
每张价格3元 2.5元2元
(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?
(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?
23.如图,已知∠1+∠2=180°,∠B=∠3,试判断∠C与∠AED的大小关系,请补全证明
过程,即在横线处填上结论或理由.
解:∠AED=∠C.理由如下:
∵∠1+∠2=180°(已知),
∠1+∠DFE=180°(),
∴∠2=∠DFE(),
∴AB∥(),
∴∠3=∠ADE(),
∵∠B=∠3(已知),
∴∠=∠(),
∴∥(),
∴∠C=∠AED().
24.1125115
小明的思路是:过P作PM∥AB,通过平行线性质来求∠APC.
(1)按小明的思路,易求得∠APC的度数为度;
(2)如图2,AB∥CD,点P在直线a上运动,记∠P AB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点B、D两点不重合),请直接写出∠APC与α、β之间的数量关系
25.如图①,已知∠AOB=100°,∠BOC=60°,OC在∠AOB外部,OM、ON分别是∠AOC、
∠BOC的平分线.
(1)求∠MON的度数.
(2)如果∠AOB=α,∠BOC=β,其它条件不变,请直接写出∠MON的值(用含α,β式子表示).
(3)其实线段的计算与角的计算存在着紧密的联系.如图②,已知线段AB=a,延长线段AB到C,使BC=m,点M、N分别为线段AC、BC的中点,求线段MN的长(用含a,m的式子表示).。