2016-2017学年上海市浦东新区建平中学高一(上)期末数学试卷含答案
- 格式:doc
- 大小:317.50 KB
- 文档页数:14
浦东新区2016学年度第一学期教学质量检测高一数学试卷一、填空题:(本大题共12小题,每小题3分,共36分)1.函数y =a x( a 0且a = 1 )的图象均过定点__________ .2•请写出“好货不便宜”的等价命题:3. 若集合A d x|x乞1,B 4x|x _a:满足Ap] B」朮,则实数a=4. 不等式2 x-1 -1 cO的解集是.5 .若f x 1 =2x-1,贝U f 1 二___________ .6. 不等式□一0的解集为x_2 ------------------7. 若函数f x i=[x 1 x a为偶函数,贝U a =x2J x +18. 设f (x )=-j^,g(x) = ----------------- ,则f(x)g(x)=J x+1 x9. 设〉:x _ -5或x _1,:: 2m - 3乞x乞2m 1,若〉是:的必要条件,则实数m的取值范围为x2210.的值域是1 111. 已知ab 0,且a • 4b = 1,贝U 的最大值为___________ .a bx|(1-2a ) ,xc112. 已知函数f x = a在R上是增函数,则实数a的取值范围4,x -1、选择题(本大题共4小题,每题3分,共12分,每题都给出代号为A,B,C,D的四个结论,其中有且只有一个结论是正确的,每题答对得 3分,否则一律得零15.证券公司提示:股市有风险,入市需谨慎。
小强买股票A 连续4个跌停(个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个 涨 停:比前一天收市价上涨10%).A. 3B. 4C. 5D. 616.给定实数x ,定义lx 1为不大于x 的最大整数,则下列结论中正确的是()A. x - lx 1 一 0B. x - lx I 1C. 令f x = x - lx 1,对任意实数x , f x • 1二f x 恒成立.D. 令f x \ = x - lx 1,对任意实数x , f -x ju f x 恒成立.三、解答题:本大题共 5小题,共52分.解答应写出必要的文字说明或推理、验算过程17. (本题满分8分)33已知m 2• m 5乞3「m 5,求实数m 的取值范围.18. (本题满分10分)分)4A. -x-1B. x 1C. -X 1D. x-1fx二如图,矩形草坪AMPN中,点C在对角线MN上,CD垂直AN于点D,CB垂直CD = AB =3米,AD = BC =2米,设 DN =x 米,BM = y 米,19. (本题满分10分,第1小题4分,第2小题6分)2设a 是实数,函数f x 二a-歹台x ・R .(1)若已知1,2为该函数图象上一点,求a 的值; (2)证明:对任意a ,f x 在R 上为增函数.20. (本题满分12分,第1小题3分,第2小题4分,第3小题5分) 已知函数f x =x 2-2ax ,a.(1 )若对任意的实数x 都有f 1 x =f 1 -x 成立,求实数a 的值; (2) 若f x 在区间1, •::上为单调增函数,求实数a 的取值范围; (3) 当x " 1,11时,求函数f x 的最大值.21. (本题满分12分,第1小题3分,第2小题4分,第3小题5分) 在区间D 上,如果函数f x 为减函数,而xf x 为增函数,则称f x 为D 上的于AM 于点B , 求这块矩形草坪AMPN 面积的最小值.1弱减函数,若f .X(1)判断f x在区间〔0,亠「]上是否是弱减函数;(2)当x・1,3 1时,不等式-< ^1_亠上恒成立,求实数a的取值范围;x J l+x 2x(3)若函数g(x)= f(x)+k x -1在[0,3]上有两个不同的零点,求实数k的取值范围•浦东新区2016学年度第一学期期末质量测试高一数学参考答案一、填空题I. (0,1) 2. 便宜没好货3. 1 4.(丄3) 5. -1 6.2 2(」:,2)一[3,二)7. -1 8. x,x (-1,0)(0,- : :)9. m_-3 或m_2 10. (0,4]II. 912. [-1,0)二、选择题13. A 14. B 15. C 16. D三、解答题17.(本题满分8分)3解:(1)设函数y二x5,函数为R上的单调递增函数............... 2•分•得, m _ -m 3 ............ 2•分.即,m22m - 3 乞0 ............. 2•分.得,(m - 1)( m 3)乞0所以,m的取值范围为:m,[_3,1]18 .(本题满分10分)—x 2 —解:. NCD "CMB xy=6 ................. 2•分3 yS AMPN -(x 2)(y 3)=Xy 3< 2y 6=12 3x 2 y ............. .3••分-12 2 3 x2 y 24 ...................... .2••分当且仅当3x=2y,即x=2,y=3时取得等号。
建平中学高一期末数学试卷2019.06一. 填空题1. 1和4的等差中项为2. 已知(1,2)a =,(,4)b x =,若a ∥b ,则实数x 的值为3. 设函数()arctan f x x =,则(1)f -的值为4. 已知数列{}n a 为等比数列,21a =,58a =,数列{}n a 的公比为5. 已知3sin()25a π+=,则cos a 的值为 6. 已知无穷等比数列{}n a 的首项为1,公比为12-,则其各项的和为 7. 131lim()312n n n n →∞++=-8. 已知[)0,2ϕπ∈,若方程sin 2sin()x x x θ-=-的解集为R ,则ϕ=9. 在锐角△ABC 中,角A 、B 、C 所对的边为a 、b 、c ,若△ABC 的面积为12,1b =, 2c =,则角A 的弧度为10. 数列{}n a 满足1111223(1)n a n n =++⋅⋅⋅+⨯⨯⨯+,设n S 为数列1{}n n a a +-的前n 项的 和,则10S = 11. 设n S 为数列{}n a 的前n 项和,若8142n n n S n =⎧=⎨≥⎩,*n ∈N ,则数列{}n a 的通项公式 为n a = 12. 已知等比数列1234,,,a a a a 满足1(0,1)a ∈,3(1,2)a ∈,4(2,4)a ∈,则6a 的取值范围为二. 选择题13. 已知基本单位向量(1,0)i =,(0,1)j =,则|34|i j -的值为( )A. 1B. 5C. 7D. 2514. 在学习等差数列时,我们由110a a d =+,211a a d =+,312a a d =+,⋅⋅⋅,得到等差 数列{}n a 的通项公式是1(1)n a a n d =+-,像这样由特殊到一般的推理方法叫做( )A. 不完全归纳法B. 数学归纳法C. 综合法D. 分析法15. 设n S 为数列{}n a 的前n 项和,4n n a S +=(*n ∈N ),则4S 的值为( )A. 3B. 72C. 154D. 不确定16. 小金同学在学校中贯彻着“边玩边学”的学风,他在“汉诺塔”的游戏中发现了数列递推的奥妙:有A 、B 、C 三个木桩,A 木桩上套有编号分别为 1,2,3,4,5,6,7的七个圆环,规定每次只能将一个圆环从一个木桩移动到另一个木桩,且任意一个木桩上不能出现“编号较大的圆环在编号较小的圆环之上”的情况,现要将这七个圆环全部套到B 木桩上,则所需的最少次数为( )A. 126B. 127C. 128D. 129三. 解答题17. 已知点G 是△ABC 的重心,2AD DC =.(1)用AB 和AC 表示AG ;(2)用AB 和AC 表示DG .18. 已知函数22()sin 2sin cos cos f x x x x x =++,x ∈R .(1)求函数()f x 的最小正周期;(2)函数()f x 的最小值和取到最小值时x 的取值.19.“我将来要当一名麦田里的守望者,有那么一群孩子在一大块麦田里玩,几千万的小孩子,附近没有一个大人,我是说---除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田,假设霍尔顿在一块呈凸四边形ABCD 的麦田里成为守望者,如图所示,为了分割麦田,他将BD 连接,设△BCD 中边AD 所对的角为A ,△BCD 中边BD 所对的角为C ,经测量已知2AB BC CD ===,AD =(1)霍尔顿发现无论边BD cos A C -为一个定值,请你验证霍尔顿的结论, 并求出这个定值;(2)霍尔顿发现麦田的生长与土地面积的平方呈正相关,记△ABD 与△BCD 的面积分别为1S 与2S ,为了更好地规划麦田,请你帮助霍尔顿求出2212S S +的最大值.20. 已知*1(,),()n n A A n n n +=∈N .(1)求122334A A A A A A ++的坐标;(2)设11()n n b A A n ++=∈N ,求数列{}n b 的通项公式; (3)设111(,)22n n a a B B +--=,1(22n n a C C +=(*n ∈N ),其中a 为常数, ||1a ≥,求112111lim()1n n n n n n n n n A A B B a A A C C n ++→∞++⋅++⋅++的值.21. 无穷数列{}n a 满足:1a 为正整数,且对任意正整数n ,1n a +为前n 项12,,...,n a a a 中等于n a 的项的个数.(1)若12019a =,求2a 和4a 的值;(2)已知命题p :存在正整数m ,使得12m ma a +=,判断命题p 的真假并说明理由; (3)若对任意正整数n ,都有2n n a a +≥ 恒成立,求1039a 的值.参考答案一. 填空题 1.52 2. 2 3. 4π- 4. 2 5. 35 6. 23 7. 1 8. 3π 9.6π 10. 512- 11. 181342n n n -=⎧⎨⨯≥⎩,*n ∈N 12. (4,64) 二. 选择题13. B 14. A 15. C 16. B三. 解答题17.(1)1()3AG AB AC =+;(2)1()3DG AB AC =-. 18.(1)π;(2)min ()0f x =,4x k ππ=-+,k ∈Z . 19.(1)1;(2)634. 20.(1)(6,6);(2)22(,)22n n n n n b ++=;(3)当1a =-时,112111lim 2()1n n n n n n n n n A A B B a A A C C n ++→∞++⋅++=-⋅++; 当1a ≠-时,112111lim 0()1n n n n n n n n n A A B B a A A C C n ++→∞++⋅++=⋅++.21.(1)21a =,42a =;(2)真命题,证明略;(3)1039519a =.。
建平中学2017学年度第一学期期末考试高一数学试题命题人:李萍 ■■■说明:⑴本场考试时间为90分钟,总分100分;⑵请认真答卷,并用规范文字书写.一、填空题(本大题有12小题,每小题3分,共36分)1.函数()f x =________ 2.1()2x f x -=,且1()8f m =,则m =________ 3.若函数()f x()g x x =()()f x g x +=________4.函数|1|y x =-的递增区间是_______5.设1()f x -为()21x f x x =+的反函数,则1(2)f -=________ 6.已知函数 1 ,0()(1)(2),0x x f x f x f x x +⎧=⎨--->⎩≤,则(3)f 的值等于________ 7.设幂函数()(1)(,)k f x a x a R k Q =-∈∈的图像经过点,则a k +=________8.已知函数()f x R ,则实数m 的取值范围是________9.已知函数()f x 为R 上的奇函数,当0x ≥时,()(1)f x x x =+,若()2f a =-,则实数a =____10.设A 、B 是两个非空集合.定义{|A B x x A B ⨯=∈且}x A B ∉.已知{|A x y ==,{|2,0}x B y y x ==>,则A B ⨯=________11.若函数()f x 为定义域D 上的单调函数,且存在区间[,]a b D ⊆(其中a b <),使得当[,]x a b ∈,()f x 的取值范围恰为[,]a b ,则称函数()f x 是D 上的正函数.若2()g x x m =+是(,0)-∞上的正函数,则实数m 的取值范围为________12.在平面直角坐标系中,若两点P 、Q 满足条件:①P 、Q 都在函数()y f x =的图像上;②P 、Q 两点关于直线y x =对称,则称点对{,}P Q 是函数()y f x =的一对“和谐点对”(注:点对{,}P Q 与 {,}Q P 看做同一对“和谐点对”).函数2232(0)()log (0)x x x f x x x ⎧++⎪=⎨>⎪⎩≤,则此函数的“和谐点对”有_______对. 二、选择题(本大题共4小题,每小题3分,共12分)13.下列四组函数中,表示同一函数的是( )A .1y x =-与y =B .y 与y = C .4lg y x =与22lg y x = D .lg 2y x =-与lg 100x y = 14.设()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 15.函数1()lg f x x x=-的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,10)16.已知两条直线1l :y m =和2l :8(0)21y m m =>+.1l 与函数2|log |y x =的图像从左到右相交于点A ,B .2l 与函数2|log |y x =的图像从左到右相交于C 、D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b ,当m 变化时,b a的最小值为( )A .B .C .D .三、解答题(本大题共5大题,共52分)17.(本题满分8分)已知9123270x x -⋅+≤,求函数222log log 2y x x =-+的值域.18.(本题满分10分,第⑴小题5分,第⑵小题5分) 已知函数2()1ax b f x x +=+是定义在(1,1)-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. ⑴求函数()f x 的解析式;⑵用定义证明:函数()f x 在(1,1)-上是增函数.19.(本题满分10分,第⑴小题5分,第⑵小题5分)运货卡车以每小时x 千米的速度匀速行驶1300千米,按交通法规则限制40100x ≤≤(单位:千米/小时),假设汽油的价格是每升7元,而汽车每小时耗油22360x ⎛⎫+ ⎪⎝⎭升,司机工资是每小时30元. ⑴求这次行车总费用y 关于x 的表达式;⑵当x 为何值时,这次行车的总费用最低,并求出最低费用的值.(精确到0.01) 20(本题满分10分,第⑴小题5分,第⑵小题5分)对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数: ①对任意的[0,1]x ∈,总有()0f x ≥;②当10x ≥,20x ≥,121x x +≤时,总有1212()()()f x x f x f x ++≥成立. 已知函数2()g x x =与()2x h x b =-是定义在[0,1]上的函数.⑴试问函数()g x 是否为G 函数?并说明理由;⑵若函数()h x 是G 函数,求实数b 组成的集合.21.(本题满分14分,第⑴小题4分,第⑵小题5分,第⑶小题5分) 已知函数2()21(0)g x ax ax b a =-++>在区间[2,3]上有最大值4和最小值1,设()()g x f x x =. ⑴求a 、b 的值;⑵若不等式(lg )lg 0f x k x -≥在x ∈上有解,求实数k 的取值范围; ⑶若2(21)3021x x f k k -+⋅-=-有三个不同的实数解,求实数k 的取值范围.。
浦东新区2016学年度第一学期教学质量检测高一数学试卷一、填空题:(本大题共12小题,每小题3分,共36分)1. 函数x y a =(0a >且1a ≠)的图象均过定点 .2. 请写出“好货不便宜”的等价命题: .3.若集合{}{}|1,|A x x B x x a =≤=≥满足{}1A B =,则实数a = .4.不等式2110x --<的解集是 .5.若()121f x x +=-,则()1f = .6.不等式302x x -≥-的解集为 . 7.若函数()()()1f x x x a =++为偶函数,则a = .8.设()()2f xg x x==,则()()f x g x ⋅= . 9.设:5x α≤-或1x ≥,:2321m x m β-≤≤+,若α是β的必要条件,则实数m 的取值范围为 .10.函数2212x y -⎛⎫= ⎪⎝⎭的值域是 .11.已知0ab >,且41a b +=,则11a b+的最大值为 . 12.已知函数()()12,14,1x a x f x a x x⎧-<⎪=⎨+≥⎪⎩在R 上是增函数,则实数a 的取值范围为 .二、选择题(本大题共4小题,每题3分,共12分,每题都给出代号为A,B,C,D的四个结论,其中有且只有一个结论是正确的,每题答对得3分,否则一律得零分)13.函数43y x =的大致图象是( )14.已知()f x 是R 上的奇函数,且当0x >时,()1f x x =-,则0x <时,()f x =( )A.1x --B. 1x +C. 1x -+D. 1x -15.证券公司提示:股市有风险,入市需谨慎。
小强买股票A 连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个 涨停:比前一天收市价上涨10%).A. 3B. 4C. 5D. 616.给定实数x ,定义[]x 为不大于x 的最大整数,则下列结论中正确的是( )A. []0x x -≥B. []1x x -<C. 令()[]f x x x =-,对任意实数x ,()()1f x f x +=恒成立.D.令()[]f x x x =-,对任意实数x ,()()f x f x -=恒成立.三、解答题:本大题共5小题,共52分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分8分)已知()()332553m m m +≤-,求实数m 的取值范围.18.(本题满分10分)如图,矩形草坪AMPN 中,点C 在对角线MN 上,CD 垂直AN 于点D ,CB 垂直于AM 于点B ,3CD AB ==米,2AD BC ==米,设DN x =米,BM y =米,求这块矩形草坪AMPN 面积的最小值.19.(本题满分10分,第1小题4分,第2小题6分)设a 是实数,函数()()2.21x f x a x R =-∈+ (1)若已知()1,2为该函数图象上一点,求a 的值;(2)证明:对任意a ,()f x 在R 上为增函数.20.(本题满分12分,第1小题3分,第2小题4分,第3小题5分) 已知函数()22f x x ax a =-+.(1)若对任意的实数x 都有()()11f x f x +=-成立,求实数a 的值;(2)若()f x 在区间[)1,+∞上为单调增函数,求实数a 的取值范围;(3)当[]1,1x ∈-时,求函数()f x 的最大值.21.(本题满分12分,第1小题3分,第2小题4分,第3小题5分)在区间D 上,如果函数()f x 为减函数,而()xf x 为增函数,则称()f x 为D 上的弱减函数,若()f x =. (1)判断()f x 在区间[)0,+∞上是否是弱减函数;(2)当[]1,3x ∈时,不等式42a a x x +≤≤恒成立,求实数a 的取值范围; (3)若函数()()1g x f x k x =+-在[]0,3上有两个不同的零点,求实数k 的取值范围.浦东新区2016学年度第一学期期末质量测试高一数学参考答案一、填空题1. (0,1)2. 便宜没好货3. 14. )23,21(5. 1-6. ),3[)2,(+∞⋃-∞7. 1- 8. ) 0()0 1(∞+-∈,,, x x 9.3-≤m 或2≥m 10. (0,4]11. 912. [1,0)-二、选择题13. A 14. B 15. C 16. D三、解答题17.(本题满分8分)解:(1)设函数53x y =,函数为R 上的单调递增函数 ………………2分 得,32+-≤+m m m ………………2分 即,03-22≤+m m ………………2分得,0)3)(1(≤+-m m所以,m 的取值范围为:]1,3[-∈m ………………2分18.(本题满分10分) 解:263x NCD CMB xy y∠=∠⇒=⇒=………………….2分 (2)(3)AMPN S x y =++326x y x y =+++1232x y =++ ………………….3分1224≥+=………………….2分当且仅当32x y =,即2,3x y ==时取得等号。
2016-2017学年第一学期期末考试高一数学试卷第Ⅰ卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|(1)0}M x x x =-=,那么A.0M ∈B.1M ∉C.1M -∈D. 0M ∉ 2.角90o化为弧度等于 A.3π B. 2π C. 4π D. 6π3.函数y =A.(0,)+∞B. ),1(+∞C. [0,)+∞D. ),1[+∞4.下列函数中,在区间(,)2ππ上为增函数的是A. sin y x =B. cos y x =C. tan y x =D. tan y x =-5.已知函数0x f (x )cos x,x ≥=<⎪⎩,则[()]=3f f π-A.12cos B. 12cos -C. 2D. 2±6.为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点A. 向左平行移动1个单位长度B. 向右平行移动1个单位长度C. 向左平行移动π个单位长度D. 向右平行移动π个单位长度7.设12log 3a =,0.21()3b =,132c =,则A.c b a << .B.a b c << .C.c a b <<D.b a c <<8.动点(),A x y 在圆221x y +=上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间0t =时,点A 的坐标是1(,)22,则当012t ≤≤时,动点A 的纵坐标y 关于(单位:秒)的函数的单调递增区间是 A. []0,1B. []1,7C. []7,12D. []0,1和[]7,12第Ⅱ卷(非选择题 共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在答题纸上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.若00<>ααcos ,sin ,则角α在第____________象限. 10.函数2()2f x x x =--的零点是____________. 11.sin11cos19cos11sin19+oooo的值是____________. 12.函数()21f x x =-在[0,2]x ∈上的值域为____________.13.已知函数)0,0)(sin()(πϕϕ<<>+=A x A x f 的最大值是1,其图象经过点1(,)32M π,则3()4f π= ____________.14.已知函数()f x 是定义在[3,0)(0,3]-U 上的奇函数, 当(0,3]x ∈时,()f x 的图象如图所示, 那么满足不等式()21x f x ≥- 的x 的取值范 围是____________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知集合{1,2,3,4,5,6}U =,{1,2,3,5}A =,{3,5,6}B =. (Ⅰ)求A B I ; (Ⅱ)求()U C A B U .16.(本小题满分13分)求下列各式的值. (Ⅰ)11219()lg1002-+-;(Ⅱ)21113322(2)(6)a b a b -÷)3(6561b a -.17.(本题满分13分)已知2α3ππ<<,4sin 5α=-. (Ⅰ)求cos α的值; (Ⅱ)求sin 23tan αα+的值.已知二次函数2()1()f x ax x R =+∈的图象过点(1,3)A -. (Ⅰ)求函数()f x 的解析式;(Ⅱ)证明()f x 在)0,(-∞上是减函数.19.(本小题满分14分)(Ⅰ)求函数()f x 的最小正周期及单调递增区间; (Ⅱ)求()f x 在区间已知元素为实数的集合S 满足下列条件:①0S ∉,1S ∉;②若a S ∈,则11S a∈-. (Ⅰ)若{2,2}S -⊆,求使元素个数最少的集合S ;(Ⅱ)若非空集合S 为有限集,则你对集合S 的元素个数有何猜测?并请证明你的猜测正确.参考答案及评分标准一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.9. 二; 10. 1,2-; 11. 12; 12. [1,3]-;13. 14. [3,2](0,1]--U . 15.(本小题满分13分)已知集合{1,2,3,4,5,6}U =,{1,2,3,5}A =,{3,5,6}B =. (Ⅰ)求A B I ; (Ⅱ)求()U C A B U .解:(Ⅰ) {3,5}A B =I . ---------------------------------------------------5分 (Ⅱ){4,6}U C A =,(){3,4,5,6}U C A B =U .----------------------------------------------------13分求下列各式的值. (Ⅰ)11219()lg1002-+-;(Ⅱ)21113322(2)(6)a b a b -÷)3(6561b a -.(Ⅰ)解:原式=3+2-2 ------------------------------------------3分(每式1分)=3. ------------------------------------------------5分 (Ⅱ)解:原式=653121612132)]3()6(2[-+-+-÷-⨯ba--------------------11分(每式2分)=4a. -----------------------------------------------------------13分 17.(本题满分13分)已知2α3ππ<<,4sin 5α=-. (Ⅰ)求cos α的值; (Ⅱ)求sin 23tan αα+的值. 解:(Ⅰ)因为2α3ππ<<,4sin 5α=-, 故3cos 5α=-. -------------------------------------------------6分 (Ⅱ)sin sin 23tan 2sin cos 3cos αααααα+=+⨯. 4()4352()()3355()5-=⨯-⨯-+⨯-24425=-------------------------------------13分 18.(本小题满分14分)已知二次函数2()1()f x ax x R =+∈的图象过点(1,3)A -. (Ⅰ)求函数()f x 的解析式;(Ⅱ)证明()f x 在)0,(-∞上是减函数.解:(Ⅰ)Q 二次函数2()1()f x ax x R =+∈的图象过点(1,3)A -.∴31)1(2=+-a 即2=a∴函数的解析式为2()21()f x x x R =+∈-----------------------------------------6分(Ⅱ)证明:设x 1,x 2是)0,(-∞上的任意两个不相等的实数, 且x 1<x 2则210x x x ∆=->222121()()21(21)y f x f x x x ∆=-=+-+=22212()x x -=21212()()x x x x -+Q )0,(,21-∞∈x x0,021<<∴x x 021<+∴x x又210x x x ∆=->0))((22112<+-∴x x x x即0<∆y∴函数f(x)在)0,(-∞上是减函数.--------- -----------14分19.(本小题满分14分)(Ⅰ)求函数()f x 的最小正周期及单调递增区间; (Ⅱ)求()f x 在区间解:(Ⅰ)因为2()cos cos f x x x x=+1cos 2222x x +=+112cos 2222x x =++1sin 262x π⎛⎫=++ ⎪⎝⎭.所以函数的周期为22T π==π. 由()222262k x k k ππππ-≤+≤π+∈Z ,解得33k x k πππ-≤≤π+.所以()f x 的单调递增区间为()[,]33k k k πππ-π+∈Z .------------- 6分 (Ⅱ)由(Ⅰ)知()1sin 262f x x π⎛⎫=++ ⎪⎝⎭. 因为63x ππ-≤≤,所以2666x ππ5π-≤+≤.所以1111sin 2122622x π⎛⎫-+≤++≤+ ⎪⎝⎭.即()302f x ≤≤. 故()f x 在区间[,]63ππ-上的最大值为32,最小值为0.---------------14分 20.(本小题满分13分)已知元素为实数的集合S 满足下列条件:①1,0S ∉;②若a S ∈,则11S a∈-. (Ⅰ)若{}2,2S -⊆,求使元素个数最少的集合S ;(Ⅱ)若非空集合S 为有限集,则你对集合S 的元素个数有何猜测?并请证明你的猜测正确. 解:((Ⅰ)()111121211211212S S S S ∈⇒=-∈⇒=∈⇒=∈----;()11131221312321132S S S S -∈⇒=∈⇒=∈⇒=-∈----,∴使{}2,2S -⊂的元素个数最少的集合S 为1132,1,,2,,232⎧⎫--⎨⎬⎩⎭.-------------5分(Ⅱ)非空有限集S 的元素个数是3的倍数. 证明如下:⑴设,a S ∈则0,1a ≠且1111111111a a S S S a S a a a a a-∈⇒∈⇒=∈⇒=∈----- ()*假设11a a =-,则()2101a a a -+=≠。
上海中学2016学年第一学期期末考试数学试卷2017.1一. 填空题1.函数2()lg(31)f x x =+的定义域为2. 函数2()f x x =(1x ≥)的反函数为1()f x -=3. 若幂函数()f x 的图像经过点1(27,)9,则该函数解析式为()f x = 4. 若对任意不等于1的正数a ,函数2()3x f x a +=-的图像都过点P ,则点P 的坐标是5. 已知2()f x ax bx =+是定义在[3,2]a a -上的偶函数,那么a = ,b =6. 方程224log (1)log (1)5x x +++=的解为8. 已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =+,则函数()f x 的解析式 为()f x = 9. 函数2|65|0.3xx y -+=的单调增区间为10. 设函数()y f x =存在反函数1()f x -,若满足1()()f x f x -=恒成立,则称()f x 为“自反函数”,如函数()f x x =,()g x b x =-,()kh x x=(0k ≠)等都是“自反函数”,试写 出一个不同于上述例子的“自反函数”y =二. 选择题13. 已知3()1f x ax bx =++(0ab ≠),若(2017)f k =,则(2017)f -=( ) A. k B. k - C. 1k - D. 2k -14. 定义在R 上的函数()y f x =在区间(,2)-∞上是增函数,且函数(2)y f x =+的图像关 于直线1x =对称,则( )A. (1)(5)f f <B. (1)(5)f f >C. (1)(5)f f =D. (0)(5)f f = 15. 汽车的“燃油效率”是指汽车每消耗1升汽油行使的里程,下图描述了甲、乙、丙三辆 汽车在不同速度下得燃油效率情况,下列叙述中正确的是( )A. 消耗1升汽油,乙车最多可行使5千米B. 以相同速度行使相同路程,三辆车中,甲车消耗汽油最多C. 甲车以80千米/小时的速度行使1小时,消耗10升汽油D. 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油A. [3,3)-B. (3,3]-C. (,3)-∞D. (3,)-+∞三. 解答题17. 在平面直角坐标系中,作出下列函数的图像; (1)13y x =; (2)||1()12x y =-;18. 已知集合226{|310330,}xx D x x R +=-⋅+≤∈,求函数2()log 2x f x =⋅ (x D ∈)的值域;19. 设函数()x x f x k a a -=⋅-(0a >且1a ≠)是奇函数; (1)求常数k 的值; (2)若8(1)3f =,且函数22()2()x xg x a a mf x -=+-在区间[1,)+∞上的最小值为2-,求 实数m 的值;(1)当2m =时,判断()f x 在(,0)-∞上的单调性并证明; (2)若对任意x R ∈,不等式(2)0xf >恒成立,求m 的取值范围; (3)讨论函数()y f x =的零点个数;参考答案一. 填空题1. 1(,1)3-2.(1)x ≥ 3. 23x - 4. (2,2)-- 5. 1,06. 3x =7. {0,2}8. 22,0,0x x x x x x ⎧-+≥⎪⎨+<⎪⎩ 9. (,1]-∞和[3,5]10. y =(0)x ≥ 11. (,6)(6,)-∞-+∞ 12. (,1)(1,)-∞-+∞二. 选择题13. D 14. C 15. D 16. B三. 解答题17. 略; 18. 1[,0]4-; 19.(1)1k =;(2)2m =;20.(1)递减;(2)14m >;(3)当11(,)(,)44m ∈-∞-+∞,1个零点;当11{,0,}44m ∈-,2个零点;当11(,0)(0,)44m ∈-,3个零点;21.(1)1(,1)2;(2)8a ≥;(3)2a =或3a =;。
如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!2016学年度第一学期高一数学学科期末考试卷(考试时间:90分钟 满分:100分 )一、填空题(本大题共12小题,满分36分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分. 1.已知幂函数()y f x =的图像过点1,22⎛⎫⎪ ⎪⎝⎭,则2log (2)f =__________。
2.设A 、B 是非空集合,定义{}*|,A B x x A B x A B =∈∉且U I ,{}22x x y x A -==,⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==-41x y y B ,则=*B A ________________。
3.关于x 的不等式2201a xx a ->--(1a ≠)的解集为_____________。
4.函数)01(312<≤-=-x y x的反函数是_______________________。
5.已知集合{}2,A x x x R =>∈,{}1,B x x x R =≥-∈,那么命题p “若实数2x >,则1x ≥-”可以用集合语言表述为“A B ⊆”。
则命题p 的逆否命题可以用关于,A B 的集合语言表述为_______________________。
6.已知关于x 的方程ax-=⎪⎭⎫⎝⎛1121有一个正根,则实数a 的取值范围是______________。
7.定义在(1,1)-上的奇函数()f x 也是减函数,且2(1)(1)0f t f t -++<,则实数t 的取值范围为_____________。
8.若偶函数()f x 在(]0-,∞单调递减,则满足1(21)()3f x f -<的x 取值范围是____________。
9.作为对数运算法则:lg()lg lg a b a b +=+(0,0a b >>)是不正确的。
但对一些特殊值是成立的,例如:lg(22)lg 2lg 2+=+。
2016-2017学年高一上学期期末数学试卷一.选择题(本大题共12小题,每小题5分,共60分)1.如果集合A={x|ax 2﹣2x ﹣1=0}只有一个元素则a 的值是( ) A .0B .0或1C .﹣1D .0或﹣12.sin36°cos6°﹣sin54°cos84°等于( )A .B .C .D .3.若tan α=2,tan β=3,且α,β∈(0,),则α+β的值为( )A .B .C .D .4.已知sin α+cos α=(0<α<π),则tan α=( )A .B .C .D .或5.设a=sin ,b=cos,c=tan,则( )A .b <a <cB .b <c <aC .a <b <cD .a <c <b6.已知x ∈[0,1],则函数的值域是( )A .B .C .D .7.若,则=( )A .B .C .﹣D .8.若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点(x 0,0)成中心对称,,则x 0=( )A .B .C .D .9.已知函数f (x )=的值域为R ,则实数a 的范围是( )A .[﹣1,1]B .(﹣1,1]C .(﹣1,+∞)D .(﹣∞,﹣1)10.将函数y=3sin (2x+)的图象向右平移个单位长度,所得图象对应的函数( )A .在区间(,)上单调递减 B .在区间(,)上单调递增C.在区间(﹣,)上单调递减D.在区间(﹣,)上单调递增11.函数f(x)=|sinx|+2|cosx|的值域为()A.[1,2] B.[,3] C.[2,] D.[1,]12.设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是()A.(2,3)B.C.D.二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题纸上)13.已知则= .14. = .15.已知,试求y=[f(x)]2+f(x2)的值域.16.设f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f()|对一切x∈R 恒成立,则以下结论正确的是(写出所有正确结论的编号).①;②|≥|;③f(x)的单调递增区间是(kπ+,kπ+)(k∈Z);④f(x)既不是奇函数也不是偶函数.二、解答题17.若,,,则= .18.已知函数f(x)=ax﹣(a,b∈N*),f(1)=且f(2)<2.(Ⅰ)求a,b的值;(Ⅱ)判断并证明函数y=f (x )在区间(﹣1,+∞)上的单调性.19.已知函数f (x )=2﹣3(ω>0)(1)若是最小正周期为π的偶函数,求ω和θ的值;(2)若g (x )=f (3x )在上是增函数,求ω的最大值.20.已知函数f (x )=2x 2﹣3x+1,,(A ≠0)(1)当0≤x ≤时,求y=f (sinx )的最大值;(2)若对任意的x 1∈[0,3],总存在x 2∈[0,3],使f (x 1)=g (x 2)成立,求实数A 的取值范围;(3)问a 取何值时,方程f (sinx )=a ﹣sinx 在[0,2π)上有两解?[附加题](共1小题,满分10分)21.已知函数f (x )=(1)求函数f (x )的零点;(2)若实数t 满足f (log 2t )+f (log 2)<2f (2),求f (t )的取值范围.2016-2017学年高一上学期期末数学试卷参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分)1.如果集合A={x|ax2﹣2x﹣1=0}只有一个元素则a的值是()A.0 B.0或1 C.﹣1 D.0或﹣1【考点】元素与集合关系的判断.【分析】根据集合A={x|ax2﹣2x﹣1=0}只有一个元素,可得方程ax2﹣2x﹣1=0只有一个根,然后分a=0和a≠0两种情况讨论,求出a的值即可.【解答】解:根据集合A={x|ax2﹣2x﹣1=0}只有一个元素,可得方程ax2﹣2x﹣1=0只有一个根,①a=0,,满足题意;②a≠0时,则应满足△=0,即22﹣4a×(﹣1)=4a+4=0解得a=﹣1.所以a=0或a=﹣1.故选:D.2.sin36°cos6°﹣sin54°cos84°等于()A.B.C.D.【考点】两角和与差的正弦函数.【分析】利用诱导公式与两角差的正弦即可求得答案.【解答】解:∵36°+54°=90°,6°+84°=90°,∴sin36°cos6°﹣sin54°cos84°=sin36°cos6°﹣cos36°sin6°=sin(36°﹣6°)=sin30°=,故选A.3.若tanα=2,tanβ=3,且α,β∈(0,),则α+β的值为()A.B.C.D.【考点】两角和与差的正切函数.【分析】由条件求得α+β的范围,再结合tan(α+β)=的值,可得α+β的值.【解答】解:∵tanα=2,tanβ=3,且α,β∈(0,),则α+β∈(0,π),再根据tan(α+β)===﹣1,∴α+β=.故选:C.4.已知sinα+cosα=(0<α<π),则tanα=()A.B.C.D.或【考点】同角三角函数间的基本关系.【分析】已知等式两边平方,利用同角三角函数间的基本关系化简,求出2sinαcosα的值小于0,得到sinα>0,cosα<0,再利用完全平方公式及同角三角函数间的基本关系求出sinα与cosα的值,即可求出tanα的值.【解答】解:将已知等式sinα+cosα=①两边平方得:(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+2sinαcosα=,∴2sinαcosα=﹣<0,∵0<α<π,∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,∴sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则tanα=﹣.故选B5.设a=sin,b=cos,c=tan,则()A.b<a<c B.b<c<a C.a<b<c D.a<c<b【考点】三角函数线.【分析】利用三角函数的诱导公式,结合三角函数的单调性进行比较即可.【解答】解:sin=cos(﹣)=cos(﹣)=cos,而函数y=cosx在(0,π)上为减函数,则1>cos>cos>0,即0<b<a<1,tan>tan=1,即b<a<c,故选:A6.已知x∈[0,1],则函数的值域是()A.B.C.D.【考点】函数单调性的性质;函数的值域.【分析】根据幂函数和复合函数的单调性的判定方法可知该函数是增函数,根据函数的单调性可以求得函数的值域.【解答】解:∵函数y=在[0,1]单调递增(幂函数的单调性),y=﹣在[0,1]单调递增,(复合函数单调性,同增异减)∴函数y=﹣在[0,1]单调递增,∴≤y≤,函数的值域为[,].故选C.7.若,则=()A.B.C.﹣D.【考点】三角函数的化简求值.【分析】利用诱导公式、二倍角的余弦公式,求得要求式子的值.【解答】解:∵=cos(﹣α),则=2﹣1=2×﹣1=﹣,故选:C.8.若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点(x,0)成中心对称,,则x=()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象的对称性,得出结论.【解答】解:∵函数图象的两条相邻的对称轴之间的距离为==,∴ω=2,∴f(x)=sin(2x+).令2x+=kπ,k∈Z,求得x=kπ﹣,故该函数的图象的对称中心为(kπ﹣,0 ),k∈Z.根据该函数图象关于点(x,0)成中心对称,结合,则x=,故选:B.9.已知函数f(x)=的值域为R,则实数a的范围是()A.[﹣1,1] B.(﹣1,1] C.(﹣1,+∞)D.(﹣∞,﹣1)【考点】分段函数的应用.【分析】利用函数的单调性,函数的值域列出不等式组求解即可.【解答】解:函数f(x)=,当x≥3时,函数是增函数,所以x<3时,函数也是增函数,可得:,解得a>﹣1.故选:C.10.将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间(,)上单调递减B.在区间(,)上单调递增C.在区间(﹣,)上单调递减D.在区间(﹣,)上单调递增【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据左加右减上加下减的原则,即可直接求出将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数的解析式,进而利用正弦函数的单调性即可求解.【解答】解:将函数y=3sin(2x+)的图象向右平移个单位长度,所得函数的解析式:y=3sin[2(x﹣)+]=3sin(2x﹣).令2kπ﹣<2x﹣<2kπ+,k∈Z,可得:kπ+<x<kπ+,k∈Z,可得:当k=0时,对应的函数y=3sin(2x﹣)的单调递增区间为:(,).故选:B.11.函数f(x)=|sinx|+2|cosx|的值域为()A.[1,2] B.[,3] C.[2,] D.[1,]【考点】三角函数值的符号;函数的值域.【分析】先将函数y=|sinx|+2|cosx|的值域⇔当x∈[0,]时,y=sinx+2cosx的值域,利用两角和与差的正弦函数化简,由正弦函数的性质求出函数的值域.【解答】解:∵函数y=|sinx|+2|cosx|的值域⇔当x∈[0,]时,y=sinx+2cosx的值域,∴y=sinx+2cosx=(其中θ是锐角,、),由x∈[0,]得,x+θ∈[θ, +θ],所以cosθ≤sin(x+θ)≤1,即≤sin(x+θ)≤1,所以,则函数y=|sinx|+2|cosx|的值域是[1,],故选:D.12.设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0](x+2)=0(a>1)时,f(x)=()x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga恰有3个不同的实数根,则a的取值范围是()A.(2,3)B.C.D.【考点】函数奇偶性的性质;根的存在性及根的个数判断.【分析】根据题意f(x﹣2)=f(x+2),可得f(x+4)=f(x),周期T=4,且是偶函数,当x(x+2)∈[﹣2,0]时,f(x)=()x﹣1,可以做出在区间(﹣2,6]的图象,方程f(x)﹣loga(x+2)的图象恰有3个不同的=0(a>1)恰有3个不同的实数根,即f(x)的图象与y=loga交点.可得答案.【解答】解:由题意f(x﹣2)=f(x+2),可得f(x+4)=f(x),周期T=4,当x∈[﹣2,0]时,f(x)=()x﹣1,∴可得(﹣2,6]的图象如下:从图可看出,要使f(x)的图象与y=log(x+2)的图象恰有3个不同的交点,a则需满足,解得:.故选C.二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题纸上)13.已知则= 0 .【考点】分段函数的解析式求法及其图象的作法;函数的值.【分析】因为,所以可以直接求出:,对于,用表达式的定义得,从而得出要求的答案.【解答】解:∵∴而=∴故答案为:014. = ﹣4.【考点】三角函数的化简求值.【分析】切化弦后通分,利用二倍角的正弦与两角差的正弦即可化简求值.【解答】解:原式====﹣4.故答案为:﹣4.15.已知,试求y=[f(x)]2+f(x2)的值域[1,13] .【考点】函数的值域.【分析】根据,求出y=[f(x)]2+f(x2)的定义域,利用换元法求解值域.【解答】解:由题意,,则f(x2)的定义域为[,2],故得函数y=[f(x)]2+f(x2)的定义域为[,2].∴y=(2+log2x)2+2+2log2x.令log2x=t,(﹣1≤t≤1).则y=(2+t)2+2t+2=t2+6t+6.开口向上,对称轴t=﹣3.∴当t=﹣1时,y取得最小值为1.当t=1时,y取得最大值为13,故得函数y的值域为[1,13].故答案为[1,13].16.设f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f()|对一切x∈R 恒成立,则以下结论正确的是①②④(写出所有正确结论的编号).①;②|≥|;③f(x)的单调递增区间是(kπ+,kπ+)(k∈Z);④f(x)既不是奇函数也不是偶函数.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】利用辅助角公式化简f(x),根据f(x)≤|f()|可得,a,b的值.然后对个结论依次判断即可.【解答】解:由f(x)=asin 2x+bcos 2x=sin(2x+φ).∵f(x)≤|f()|对一切x∈R恒成立∴当x=时,函数取得最大值,即2×+φ=,解得:φ=.故得f(x)=sin(2x+).则f()=sin(2×+)=0,∴①对.②f()=sin(2×+)=f()=sin(2×+)=,∴|≥|,∴②对.由2x+,(k∈Z)解得: +kπ≤x≤+kπ,(k∈Z)∴f(x)的单调递增区间是(kπ,kπ+)(k∈Z);∴③不对f(x)的对称轴2x+=+kπ,(k∈Z);∴③解得:x=kπ+,不是偶函数,当x=0时,f(0)=,不关于(0,0)对称,∴f(x)既不是奇函数也不是偶函数.故答案为①②④.二、解答题17.若,,,则=.【考点】角的变换、收缩变换;同角三角函数间的基本关系;两角和与差的余弦函数.【分析】根据条件确定角的范围,利用平方关系求出相应角的正弦,根据=,可求的值.【解答】解:∵∴∵,∴,∴===故答案为:18.已知函数f(x)=ax﹣(a,b∈N*),f(1)=且f(2)<2.(Ⅰ)求a,b的值;(Ⅱ)判断并证明函数y=f(x)在区间(﹣1,+∞)上的单调性.【考点】利用导数研究函数的单调性.【分析】(Ⅰ)由,,,从而求出b=1,a=1;(Ⅱ)由(1)得,得函数在(﹣1,+∞)单调递增.从而有f(x1)﹣f(x2)=,进而,故函数在(﹣1,+∞)上单调递增.【解答】解:(Ⅰ)∵,,由,∴,又∵a,b∈N*,∴b=1,a=1;(Ⅱ)由(1)得,函数在(﹣1,+∞)单调递增.证明:任取x1,x2且﹣1<x1<x2,=,∵﹣1<x1<x2,∴,∴,即f(x1)<f(x2),故函数在(﹣1,+∞)上单调递增.19.已知函数f(x)=2﹣3(ω>0)(1)若是最小正周期为π的偶函数,求ω和θ的值;(2)若g(x)=f(3x)在上是增函数,求ω的最大值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,利用周期公式ω,根据偶函数的性质,求θ的值.(2)根据g(x)=f(3x)求出g(x)的解析式,g(x)在上是增函数,可得,即可求解ω的最大值.【解答】解:(1)由=2(ω>0)∵又∵y=f(x+θ)是最小正周期为π的偶函数,∴,即ω=2,且,解得:∵,∴当l=0时,.故得为所求;(2)g(x)=f(3x),即g(x)=2(ω>0)∵g(x)在上是增函数,∴,∵ω>0,∴,故得,于是k=0,∴,即ω的最大值为,此时.故得ω的最大值为.20.已知函数f(x)=2x2﹣3x+1,,(A≠0)(1)当0≤x≤时,求y=f(sinx)的最大值;(2)若对任意的x1∈[0,3],总存在x2∈[0,3],使f(x1)=g(x2)成立,求实数A的取值范围;(3)问a取何值时,方程f(sinx)=a﹣sinx在[0,2π)上有两解?【考点】三角函数的最值;二次函数的性质;正弦函数的图象.【分析】(1)由已知可得,y=f(sinx)=2sin2x﹣3sinx+1设t=sinx,由x可得0≤t≤1,从而可得关于 t的函数,结合二次函数的性质可求(2)依据题意有f(x1)的值域是g(x2)值域的子集,要求 A的取值范围,可先求f(x1)值域,然后分①当A>0时,g(x2)值域②当A<0时,g(x2)值域,建立关于 A的不等式可求A的范围.(3)2sin2x﹣3sinx+1=a﹣sinx化为2sin2x﹣2sinx+1=a在[0,2π]上有两解令t=sinx则2t2﹣2t+1=a在[﹣1,1]上解的情况可结合两函数图象的交点情况讨论.【解答】解:(1)y=f(sinx)=2sin2x﹣3sinx+1设t=sinx,x,则0≤t≤1∴∴当t=0时,y max =1(2)当x 1∈[0,3]∴f (x 1)值域为当x 2∈[0,3]时,则有①当A >0时,g (x 2)值域为②当A <0时,g (x 2)值域为而依据题意有f (x 1)的值域是g (x 2)值域的子集则或∴A ≥10或A ≤﹣20(3)2sin 2x ﹣3sinx+1=a ﹣sinx 化为2sin 2x ﹣2sinx+1=a 在[0,2π]上有两解 换t=sinx 则2t 2﹣2t+1=a 在[﹣1,1]上解的情况如下:①当在(﹣1,1)上只有一个解或相等解,x 有两解(5﹣a )(1﹣a )≤0或△=0∴a ∈[1,5]或②当t=﹣1时,x 有惟一解③当t=1时,x 有惟一解故a ∈(1,5)∪{}.[附加题](共1小题,满分10分)21.已知函数f (x )=(1)求函数f (x )的零点;(2)若实数t 满足f (log 2t )+f (log 2)<2f (2),求f (t )的取值范围.【考点】分段函数的应用;函数零点的判定定理.【分析】(1)分类讨论,函数对应方程根的个数,综合讨论结果,可得答案.(2)分析函数的奇偶性和单调性,进而可将不等式化为|log 2t|<2,解得f (t )的取值范围.【解答】解:(1)当x <0时,解得:x=ln =﹣ln3,当x ≥0时,解得:x=ln3,故函数f (x )的零点为±ln3; (2)当x >0时,﹣x <0,此时f (﹣x )﹣f (x )===0,故函数f (x )为偶函数,又∵x ≥0时,f (x )=为增函数,∴f (log 2t )+f (log 2)<2f (2)时,2f (log 2t )<2f (2), 即|log 2t|<2, ﹣2<log 2t <2,∴t ∈(,4)故f (t )∈(,)。
2016-2017学年上海市浦东新区高一(上)期末数学试卷一、填空题(本大题满分36分)本大题共有12题,只要求直接填写结果,每个空格填对得3分,否则一律得零分.1.(3.00分)函数y=a x(a>0且a≠1)的图象均过定点.2.(3.00分)请写出“好货不便宜”的等价命题:.3.(3.00分)若集合A={x|x≤1},B={x|x≥a}满足A∩B={1},则实数a=.4.(3.00分)不等式2|x﹣1|﹣1<0的解集是.5.(3.00分)若f(x+1)=2x﹣1,则f(1)=.6.(3.00分)不等式的解集为.7.(3.00分)设函数f(x)=(x+1)(x+a)为偶函数,则a=.8.(3.00分)已知函数f(x)=,g(x)=,则f(x)•g(x)=.9.(3.00分)设α:x≤﹣5或x≥1,β:2m﹣3≤x≤2m+1,若α是β的必要条件,求实数m的取值范围.10.(3.00分)函数的值域是.11.(3.00分)已知ab>0,且a+4b=1,则的最小值为.12.(3.00分)已知函数f(x)=是R上的增函数,则a的取值范围是.二、选择题(本大题满分12分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,每题答对得3分,否则一律得零分.13.(3.00分)函数y=x的大致图象是()A.B.C.D.14.(3.00分)已知f(x)是R上的奇函数,且当x>0时,f(x)=x﹣1,则x <0时f(x)=()A.﹣x﹣1B.x+1C.﹣x+1D.x﹣115.(3.00分)证券公司提示:股市有风险,入市需谨慎.小强买的股票A连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个涨停:比前一天收市价上涨10%).()A.3B.4C.5D.616.(3.00分)给定实数x,定义[x]为不大于x的最大整数,则下列结论中不正确的是()A.x﹣[x]≥0B.x﹣[x]<1C.令f(x)=x﹣[x],对任意实数x,f(x+1)=f(x)恒成立D.令f(x)=x﹣[x],对任意实数x,f(﹣x)=f(x)恒成立三、解答题(本大题满分52分)本大题共有5题,解答下列各题必须写出必要的步骤.17.(8.00分)已知,求实数m的取值范围.18.(10.00分)如图,矩形草坪AMPN中,点C在对角线MN上.CD垂直于AN 于点D,CB垂直于AM于点B,|CD|=|AB|=3米,|AD|=|BC|=2米,设|DN|=x 米,|BM|=y米.求这块矩形草坪AMPN面积的最小值.19.(10.00分)设a是实数,函数f(x)=a﹣(x∈R),(1)若已知(1,2)为该函数图象上一点,求a的值.(2)证明:对于任意a,f(x)在R上为增函数.20.(12.00分)已知函数f(x)=x2﹣2ax+1.(1)若对任意的实数x都有f(1+x)=f(1﹣x)成立,求实数a的值;(2)若f(x)在区间[1,+∞)上为单调递增函数,求实数a的取值范围;(3)当x∈[﹣1,1]时,求函数f(x)的最大值.21.(12.00分)在区间D上,如果函数f(x)为减函数,而xf(x)为增函数,则称f(x)为D上的弱减函数.若f(x)=(1)判断f(x)在区间[0,+∞)上是否为弱减函数;(2)当x∈[1,3]时,不等式恒成立,求实数a的取值范围;(3)若函数g(x)=f(x)+k|x|﹣1在[0,3]上有两个不同的零点,求实数k 的取值范围.2016-2017学年上海市浦东新区高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题满分36分)本大题共有12题,只要求直接填写结果,每个空格填对得3分,否则一律得零分.1.(3.00分)函数y=a x(a>0且a≠1)的图象均过定点(0,1).【分析】根据指数函数的性质判断即可.【解答】解:∵a0=1,a>0且a≠1,∴函数y=a x(a>0且a≠1)的图象均过定点(0,1),故答案为:(0,1).【点评】本题考查了指数函数的性质,是一道基础题.2.(3.00分)请写出“好货不便宜”的等价命题:便宜没好货.【分析】写出原命题的逆否命题,可得答案.【解答】解:“好货不便宜”即“如果货物为好货,则价格不便宜”,其逆否命题为:“如果价格便宜,则货物不是好货”,即“便宜没好货”,故答案为:便宜没好货【点评】本题考查的知识点是四种命题,难度不大,属于基础题.3.(3.00分)若集合A={x|x≤1},B={x|x≥a}满足A∩B={1},则实数a=1.【分析】由A,B,以及两集合的交集,确定出a的值即可.【解答】解:∵A={x|x≤1},B={x|x≥a},且A∩B={1},∴a=1,故答案为:1【点评】此题考查了交集以及运算,熟练掌握交集的定义是解本题的关键.4.(3.00分)不等式2|x﹣1|﹣1<0的解集是.【分析】先去掉绝对值然后再根据绝对值不等式的解法进行求解.【解答】解:①若x≥1,∴2(x﹣1)﹣1<0,∴x<;②若x<1,∴2(1﹣x)﹣1<0,∴x>;综上<x<.故答案为:<x<.【点评】此题考查绝对值不等式的解法,运用了分类讨论的思想,解题的关键是去掉绝对值,此类题目是高考常见的题型.5.(3.00分)若f(x+1)=2x﹣1,则f(1)=﹣1.【分析】f(1)=f(0+1),由此利用f(x+1)=2x﹣1,能求出结果.【解答】解:∵f(x+1)=2x﹣1,∴f(1)=f(0+1)=2×0﹣1=﹣1.故答案为:﹣1.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.6.(3.00分)不等式的解集为(﹣∞,2)∪[3,+∞).【分析】首先将不等式化为整式不等式,然后求解集.【解答】解:原不等式等价于(x﹣3)(x﹣2)≥0且x﹣2≠0,所以不等式的解集为(﹣∞,2)∪[3,+∞);故答案为:(﹣∞,2)∪[3,+∞)【点评】本题考查了分式不等式的解法;关键是正确等价转化为整式不等式.7.(3.00分)设函数f(x)=(x+1)(x+a)为偶函数,则a=﹣1.【分析】因为函数为偶函数,则根据偶函数定义f(﹣x)=f(x)得到等式解出a 即可.【解答】解:∵函数为偶函数得f(1)=f(﹣1)得:2(1+a)=0∴a=﹣1.故答案为:﹣1.【点评】此题考查学生应用函数奇偶性的能力.8.(3.00分)已知函数f(x)=,g(x)=,则f(x)•g(x)=x,x ∈(﹣1,0)∪(0,+∞).【分析】直接将f(x),g(x)代入约分即可.【解答】解:∵函数f(x)=,g(x)=,∴f(x)•g(x)=x,x∈(﹣1,0)∪(0,+∞),故答案为:x,x∈(﹣1,0)∪(0,+∞).【点评】本题考查了求函数的解析式问题,考查函数的定义域问题,是一道基础题.9.(3.00分)设α:x≤﹣5或x≥1,β:2m﹣3≤x≤2m+1,若α是β的必要条件,求实数m的取值范围m≤﹣3或m≥2.【分析】根据充分必要条件的定义以及集合的包含关系求出m的范围即可.【解答】解:α:x≤﹣5或x≥1,β:2m﹣3≤x≤2m+1,若α是β的必要条件,则2m﹣3≥1或2m+1≤﹣5,故m≥2或m≤﹣3,故答案为:m≥2或m≤﹣3.【点评】本题考查了充分必要条件,考查集合的包含关系,是一道基础题.10.(3.00分)函数的值域是(0,4].【分析】换元得出设t=x2﹣2≥﹣2,y=()t,求解即可得出答案.【解答】解:设t=x2﹣2≥﹣2,∵y=()t为减函数,∴0<()t≤()﹣2=4,故函数的值域是(0,4],故答案为:(0,4].【点评】本题简单的考察了指数函数的单调性的运用,属于容易题.11.(3.00分)已知ab>0,且a+4b=1,则的最小值为9.【分析】把“1”换成4a+b,整理后积为定值,然后用基本不等式求最小值【解答】解:∵ab>0,且a+4b=1,∴=()(a+4b)=1+4++≥5+2=9,当且仅当a=,b=时取等号,∴的最小值为9,故答案为:9.【点评】本题考查了基本不等式在求最值中的应用,解决本题的关键是“1”的代换.12.(3.00分)已知函数f(x)=是R上的增函数,则a的取值范围是[﹣1,0).【分析】由条件利用函数的单调性的性质,可得1﹣2a>1,且a<0,由此求得a的取值范围.【解答】解:由于函数f(x)=是R上的增函数,∴,求得﹣1≤a<0,故答案为:[﹣1,0).【点评】本题主要考查函数的单调性的性质,属于基础题.二、选择题(本大题满分12分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,每题答对得3分,否则一律得零分.13.(3.00分)函数y=x的大致图象是()A.B.C.D.【分析】根据函数的奇偶性和函数值得变化趋势即可判断.【解答】解:y=f(﹣x)===f(x),∴函数y=x为偶函数,∴图象关于y轴对称,故排除C,D,∵>1,∴当x>0时,y=x的变化是越来越快,故排除B故选:A.【点评】本题考查了函数图象的识别,属于基础题.14.(3.00分)已知f(x)是R上的奇函数,且当x>0时,f(x)=x﹣1,则x <0时f(x)=()A.﹣x﹣1B.x+1C.﹣x+1D.x﹣1【分析】根据x>0时函数的表达式,可得x<0时f(﹣x)=﹣x﹣1,再利用奇函数的定义,即可算出当x<0时函数f(x)的表达式.【解答】解:设x<0,则﹣x>0,∵当x>0时,f(x)=x﹣1,∴当x<0时,f(﹣x)=﹣x﹣1,又∵f(x)是R上的奇函数,∴f(x)=﹣f(﹣x),∴当x<0时,f(x)=﹣f(﹣x)=x+1,故选:B.【点评】本题考查了函数求解析式和函数的奇偶性,一般将变量设在所要求解的范围内,利用奇偶性转化为已知范围进行求解.属于基础题.15.(3.00分)证券公司提示:股市有风险,入市需谨慎.小强买的股票A连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个涨停:比前一天收市价上涨10%).()A.3B.4C.5D.6【分析】设小强买的股票A时买入价格为a,连续4个跌停后价格为a(1﹣10%)4=0.6561a,设至少需要x个涨停,才能不亏损,则0.6564a(1+10%)x≥a,由此能求出结果.【解答】解:设小强买的股票A时买入价格为a,连续4个跌停后价格为a(1﹣10%)4=0.6561a,设至少需要x个涨停,才能不亏损,则0.6564a(1+10%)x≥a,整理得:1.1x≥1.5235,∵1.15=1.6105,1.14=1.4641.∴至少需要5个涨停,才能不亏损.故选:C.【点评】本题考查函数在生产生活中的应用,是基础题,解题时要认真审题,注意函数性质的合理运用.16.(3.00分)给定实数x,定义[x]为不大于x的最大整数,则下列结论中不正确的是()A.x﹣[x]≥0B.x﹣[x]<1C.令f(x)=x﹣[x],对任意实数x,f(x+1)=f(x)恒成立D.令f(x)=x﹣[x],对任意实数x,f(﹣x)=f(x)恒成立【分析】利用[x]为不大于x的最大整数,结合函数性质求解.【解答】解:在A中,∵[x]为不大于x的最大整数,∴x﹣[x]≥0,故A正确;在B中,∵[x]为不大于x的最大整数,∴x﹣[x]<1,故B正确;在C中,∵[x]为不大于x的最大整数,f(x)=x﹣[x],∴对任意实数x,f(x+1)=f(x)恒成立,故C正确;在D中,∵[x]为不大于x的最大整数,f(x)=x﹣[x],∴f(﹣3.2)=﹣3.2﹣[﹣3.2]=﹣3.2+4=0.8,f(3.2)=3.2﹣[3.2]=3.2﹣3=0.2,∴对任意实数x,f(x+1)=f(x)不成立,故D错误.故选:D.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意函数性质的合理运用.三、解答题(本大题满分52分)本大题共有5题,解答下列各题必须写出必要的步骤.17.(8.00分)已知,求实数m的取值范围.【分析】根据函数的单调性得到关于m的不等式,解出即可.【解答】解:(1)设函数,函数为R上的单调递增函数…(2分)得,m2+m≤﹣m+3…(2分)即,m2+2m﹣3≤0…(2分)得,(m﹣1)(m+3)≤0所以,m的取值范围为:m∈[﹣3,1]…(2分)【点评】本题考查了幂函数的单调性问题,考查不等式问题,是一道基础题.18.(10.00分)如图,矩形草坪AMPN中,点C在对角线MN上.CD垂直于AN于点D,CB垂直于AM于点B,|CD|=|AB|=3米,|AD|=|BC|=2米,设|DN|=x 米,|BM|=y米.求这块矩形草坪AMPN面积的最小值.【分析】由题意,表示出矩形的面积,利用基本不等式,即可求得结论.【解答】解:由题意….(2分)S AMPN=(x+2)(y+3)=xy+3x+2y+6=12+3x+2y….(5分)….(2分)当且仅当3x=2y,即x=2,y=3时取得等号.….(7分)面积的最小值为24平方米.….(8分)【点评】本题考查根据题设关系列出函数关系式,考查利用基本不等式求最值,解题的关键是确定矩形的面积.19.(10.00分)设a是实数,函数f(x)=a﹣(x∈R),(1)若已知(1,2)为该函数图象上一点,求a的值.(2)证明:对于任意a,f(x)在R上为增函数.【分析】(1)代值计算即可求出a(2)运用函数的定义判断证明函数的单调性,先在取两个值x1,x2后进行作差变形,确定符号,最后下结论即可.【解答】解:(1).(2)证明:设任意x1,x2∈R,x1<x2,则f(x1)﹣f(x2)===,由于指数函数y=2x在R上是增函数,且x1<x2,所以即,又由2x>0,得,,∴f(x1)﹣f(x2)<0即f(x1)<f(x2),所以,对于任意a,f(x)在R上为增函数.【点评】本题考查了函数值,通过证明一个函数在给定区间上为增函数,考查了用定义证明函数单调性的知识,属于基础题20.(12.00分)已知函数f(x)=x2﹣2ax+1.(1)若对任意的实数x都有f(1+x)=f(1﹣x)成立,求实数a的值;(2)若f(x)在区间[1,+∞)上为单调递增函数,求实数a的取值范围;(3)当x∈[﹣1,1]时,求函数f(x)的最大值.【分析】(1)由题意可得x=1为对称轴,求得f(x)的对称轴方程,即可得到a;(2)求得f(x)的递增区间,[1,+∞)为它的子区间,可得a的范围;(3)由函数图象开口向上,对称轴x=a,可得最大值只能在端点处取得,讨论a=0,a>0,a<0,即可得到所求最大值.【解答】解:(1)由对任意的实数x都有f(1+x)=f(1﹣x)成立,知函数f(x)=x2﹣2ax+1的对称轴为x=a,即a=1;(2)函数f(x)=x2﹣2ax+1的图象的对称轴为直线x=a,由f(x)在[a,+∞)上为单调递增函数,y=f(x)在区间[1,+∞)上为单调递增函数,得,a≤1;(3)函数图象开口向上,对称轴x=a,可得最大值只能在端点处取得.当a<0时,x=1时,函数取得最大值为:2﹣2a;当a>0时,x=﹣1时,函数取得最大值为:2+2a;当a=0时,x=1或﹣1时,函数取得最大值为:2.【点评】本题考查二次函数的图象和性质的运用,主要是单调性和最值,注意运用分类讨论的思想方法,考查运算能力,属于中档题.21.(12.00分)在区间D上,如果函数f(x)为减函数,而xf(x)为增函数,则称f(x)为D上的弱减函数.若f(x)=(1)判断f(x)在区间[0,+∞)上是否为弱减函数;(2)当x∈[1,3]时,不等式恒成立,求实数a的取值范围;(3)若函数g(x)=f(x)+k|x|﹣1在[0,3]上有两个不同的零点,求实数k 的取值范围.【分析】(1)利用初等函数的性质、弱减函数的定义,判断是[0,+∞)上的弱减函数.(2)根据题意可得,再利用函数的单调性求得函数的最值,可得a的范围.(3)根据题意,当x∈(0,3]时,方程只有一解,分离参数k,换元利用二次函数的性质,求得k的范围.【解答】解:(1)由初等函数性质知,在[0,+∞)上单调递减,而在[0,+∞)上单调递增,所以是[0,+∞)上的弱减函数.(2)不等式化为在x∈[1,3]上恒成立,则,而在[1,3]单调递增,∴的最小值为,的最大值为,∴,∴a∈[﹣1,].(3)由题意知方程在[0,3]上有两个不同根,①当x=0时,上式恒成立;②当x∈(0,3]时,则由题意可得方程只有一解,根据,令,则t∈(1,2],方程化为在t∈(1,2]上只有一解,所以.【点评】本题主要考查新定义,函数的单调性的应用,函数的零点与方程根的关系,属于中档题.。
浦东新区2016 学年度第一学期教学质量检测高一英语试卷(本试卷满分100分,考试时间90分钟)(考生注意:请按照要求把答案分别做在答题卡或答题纸上)II. Grammar and VocabularySection ADirections: After reading the passage below, fill in the blanks to make the passage coherent and grammatically correct. For the blanks with a given word, fill in each blank with the proper form of the given word; for the other blanks, use one world that best fits each other.Anvitha Vijay is the Apple’s youngest app developer. When you were 9 years old, what were you busy (16)_____ ___(do)? There were a whole lot of things you did but coding was definitely not one of them. However, this small girl (17)__________is aged 9 is the star of Apple’s Worldwide Developers Conference (WWDC). She developed an iPad/iPhone app about animals in Melboume, Australia and (18)__________ (apply) for one of the popular scholarships to attend Apple’s annual developer conference.(19)__________ the youngest developer to attend Apple’s WWDC, Vijay is among one of 350 mostly high school and college students invited by Apple to attend the conference for free. Vijay did not join any classes but learned coding all by (20)________ by following online guides and YouTube tutorials.She showed interest in apps and coding after her younger sister (21)________( bear) . (22)_________ she would see the little one learning new words daily, she decided to come up with apps for children. She’s developed multiple apps, the most popular of (23)________is just Smartkins Animals.Vijay works in the WWDC room like other people by walking up to developers at WWDC and handing out her business card, which has her name and a motto: “ I want to make a difference in people’s lives through technology”. Back home , she used her mom’s iPhone ( under her mom’s name) because you have to wait (24)________you are 13 to get an iTunes account.Asked to name her favourite app beside the ones she developed , she cites the White Tiles 4 app, which was developed in China in 2014. What does she want to be when she grows up? “ I want to be an innovator, (25)_________(build) things that people will love and benefit from,” she said.The lives of rich people seem to be getting better and better. Rich people ____26___have better homes than poor people. Now, a new study finds that the rich may even have better stress than poor people. The American Psychological Association says it is part of our body's fight-or-flight _____27____. When faced with danger, stress can create ____28_____ to fight off an attacker.Many problems with life or work can cause stress. Stressors are the bills that you can't pay; the childcare that falls through at the last minute; or the car that won't start. These stressors add to what _____29____ call chronic(长期的) stress. According to a new survey, this is the stress facing many poor people in the United States. The APA website notes that chronic stress can affect a person's mental and physical health. And chronic stress is poor people stress. Poor people often ____30_____ stressful conditions beyond their control.For some people, there is often no light at the end of tunnel. The day-to-day stress never lets up. And it is wears down the body. It harms the _____31____ defenses against disease, puts pressure on the heart, makes muscles tired and can cause depression. It is difficult to plan for tomorrow when you can barely make ends meet today. Poorpeople often do not have time, energy or _____32____ to plan and successfully complete long-term goals.Rich people also have stress and face difficulties. But their situations are very different. Of course, rich people can have terrible things happen to them. But they are usually better prepared. They may have more ___33______ contacts that often reach far back to college and even high school. The rich also have ____34_____ to support. This can greatly reduce stress.III. Reading ComprehensionSection AChinese emojis(表情符号) In Everyday Use AbroadThis is not the first time the Chinese emoji takes the world stage. Earlier this year, one emoji from the Chinese basketball celebrity Yao Ming has been ____35___ through the Middle East region. In Luxor, a city in southern Egypt, Yao's smiling emoji has emerged ___36____ in local traffic signs to remind people the road ahead is one-way.And you may be surprised to find that many locals do not know Yao Ming but are ____37__ with his emoji and nickname "Chinese Funny Face". ____38___, the emoji has been picked up by the Egyptian English-language daily newspaper Egyptian Gazette as the title picture for its humorous column Serious but Funny.What's more, due to the huge ____39___ of Chinese Sina Weibo, the Chinese version of Twitter, many renowned western celebrities like Leonardo DiCaprio and Madonna have ___40____ their personal accounts on the platform.Many Chinese fans are excited about this and now choose to greet them with their own funny pictures, a behavior arousing the ___41____ of foreign media. American private Internet media company BuzzFeed reported on the cultural phenomenon.As a newly emerging online language, emojis have risen to become an ___42____ part of people's daily life. Emojis are able to help people ___43___ their views in a more vivid and precise fashion. Also, it can help foreigners learn about Chinese culture and learn the language.As Chinese emojis have slowly entered the world stage, how to properly use "the fifth innovation in China", a humorous name for emojis, ___44____ hurting others and how to turn them into commercial advantages still need answers.35. A. spread B. explored C. experienced D. examined36.A. fortunately B. adequately C. frequently D. properly37. A. patient B. familiar C. popular D. strict38.A. By contrast B. In conclusion C. What’s more D. For example39.A. problem B. variety C. influence D. profit40.A. opened B. bought C. shared D. linked41.A. awareness B. complaint C. responsibility D. attention42.A. subtle B. mixed C. usual D. essential43.A. create B. express C. accept D. test44.A. without B. except C. by D. inSection B( A )Growing up, I was always totally in love with fashion. I’m the type of girl who follows Fashion Weck trends and spends much money on clothes. And while I have dreamed about building a career in fashion, I’m well aware that it’s not easy to make a name for yourself in the field. Despite this, I decided against studying medicine to followmy dream and went to West Virginia University for Fashion Design.When I got a part-time job at Girl’s Lift last summer holiday. I was excited to be able to write articles for the website, sit in on editorial meetings and help pick the cover for the August/ September issue. But when GL editor-in-chief Karen asked if anyone wanted to help out in the fashion room for all the clothes, accessories ,shoes and beauty products used for shoots(拍摄). I jumped at the opportunity. After spending so much time with the clothes, I knew I just had to go onsite for the shoot. My parents always told me to speak up when I want something, so I gathered up the courage to ask Karen if I could help out on the shoot. Not only did she say yes, but she told me that I could help out at another the following week.The next day , when the photographer asked me to help him test the lightning for a few shoots, I was super excited. When one of the two models didn’t show up , I was asked to step in for her. Before I knew it, I was sitting in hair and makeup , being fitted for my clothes for the rest of my life. Never in a million years did I think I would be in a magazine. Let alone on four pages of a major fashion magazine. I am really grateful for this opportunity, but it would never have happened if I didn’t speak up and ask to be a part of it.45. The writer’s dream is to ___________.A. become a model for Fashion WeekB. take up a job in fashionC. study in West Virginal UniversityD. be an expert on medicine46. The underlined word “ issue” in paragraph two means ________.A. problemB. subjectC. magazineD. newspaper47. We can infer from the passage that _______ encourage the writer a lot in her life.A. her parentsB. the modelsC. the photographerD. Karen48. What does the passage intend to tell us?A. It’s amazing to appear in a fashion magazine.B. It’s not easy to become famous in one’s career.C. Speak up for what you want and you will get it soon.D. Stick to your dream and try everything you can for it.BPollution is a disaster for the soil. When chemicals go into the ground, they slowly reduce the fertility of the soil and make it unsuitable for farming. They may also change the structure of the soil , which gets more easily destroyed by water and air.For ordinary consumers, the influence of soil pollution can be felt most strongly in the supermarket. Exposure(暴露) to soil pollution can pollute foods grown in the field, harming people’s health.One example of this is the “ poisonous rice event” that surfaced in 2013. Some rice from Hunan province was found to contain higher levels of cadmium(镉), a kind of metal likely to cause cancer, because Hunan has some of the worst soil pollution in China, according to CBC News. All the samples collected from this area were heavily polluted by cadmium. Sometimes, the cadmium level is 20 times higher than the national standard.According to scientists, high levels of cadmium have been linked to organ(器官) failure, weakening of bones and cancer. “ Cadmium is likely to store up in the kidney and liver,” Chen Nengchang, a scholar at the Guangdong Institute of Eco-environment and Soil Sciences, told The New York Times. “ When the amount reaches a certain point, it will cause a serious health risk for the organs.”Unfortunately, fixing the problem was not as simple as destroying a few piles of rice. Since the outer covering of rice are often used to feed farm animals, the meat we eat and the milk we drink may both be at risk.Luckily both the government and Chinese consumers have becomes more and more aware of this kind of pollutions, and aim to fight the situation with combined effort. There are many things we, as individual, can do tohelp. Eating organic foods are one of them.Organic food is not only better for our health but also for our environment, especially the soil. To grow organic food, farmers stop using all artificial chemicals------including fertilizers, and pesticides. This production method does not cause any risk of soil pollution, unlike traditional farming, which uses tons of artificial chemicals. By consuming organic foods, we support healthier soil.49. Which of the following is NOT mentioned about the influence of soil pollution?A. The production of the crops will decrease greatly.B. The soil will be poor in quality and improper for farming.C. The foods grown in the polluted field harm people’s health.D. The soil will become more easily destroyed by water and air.50. What happened to the rice from Hunan province in 2013?A. It caused cancer or death.B. Some contained more vitamins.C. It was reported as an advertisement.D. Some had higher levels of cadmium.51. The underlined “ the problem” in paragraph 5 refers to _________.A. the polluted soilB. the failing organC. the poisonous riceD. the sick farm animals.52. What can be learned about organic food according to the text?A. The government has realized the importance of it.B. It is good for both our health and the environment.C. Its production method is easier than the traditional one.D. Farmers used fewer fertilizers and pesticides when growing it.Section CEach week, the BBC Autos editors select their favourite transport-related news stories, features and videos from around the web. This week, we noticed a trend toward offering creative solutions to global transportation problems.______________53__ _____________.Carry on without your carry-onIn an effort to save money and increase customer spending, United Airlines will restrict some passengers’ access to overhead compartments. The Huffington Post reports that United will be the first US airline to limit “basic economy” flyers to a single free carry-on bag that can fit under a seat. _______54 __. In addition, customers buying these low-fare tickets will be unable to accrue airline miles and will be randomly assigned seating the day of the flight.______55. _____. As BBC Autos reported back in October, airlines are struggling with reducing cargo weight.Because heavier bags — and heavier passengers — result in significantly higher fuel bills, airlines such as Samoa Air have implemented a “fat tax” that means overweight passengers have to pay more for a ticket.Grandad’s Coke pool rust-removal stunt goes wrongNot only are fizzy drinks(起泡饮料) capable of rotting teeth, they can also remove rust(锈). One Latvian grandfather decided to put cola to the ultimate rust-removal test by submerging his car in a pool of Coca-Cola. In a video posted online, the unnamed daredevil grandad fills a lined pit with 6,000 two-litre bottles of Coke. He then settles into the driver’s seat and speeds into the hole, smashing the front of his red Audi. Whether or not the rust was removed is unknown, but the Daily Mail contends that “_____56. ________”第II 卷I. Translation1. 他因为各种各样的原因错过了那次考试。
上海市浦东新区2016-2017学年高一上学期数学期末考试试卷一、填空题1. ( 1分 ) 函数y=a x (a >0且a≠1)的图象均过定点________2. ( 1分 ) 请写出“好货不便宜”的等价命题:________.3. ( 1分 ) 若集合A={x|x≤1},B={x|x≥a}满足A∩B={1},则实数a=________.4. ( 1分 ) 不等式2|x ﹣1|﹣1<0的解集是________.5. ( 1分 ) 若f (x+1)=2x ﹣1,则f (1)=________.6. ( 1分 ) 不等式 的解集为________.7. ( 1分 ) 设函数f (x )=(x+1)(x+a )为偶函数,则a=________.8. ( 1分 ) 已知函数f (x )= ,g (x )= ,则f (x )•g (x )=________.9. ( 1分 ) 设α:x ≤﹣5或x ≥ 1,β:2m ﹣3 ≤ x ≤ 2m+1,若α是β的必要条件,求实数m 的取值范围________.10. ( 1分 ) 函数 的值域是________.11. ( 1分 ) 已知ab >0,且a+4b=1,则 的最小值为________. 12. ( 1分 ) 已知函数f (x )= 是R 上的增函数,则a 的取值范围是________.x −3x −2≥02y =12⎛⎝⎜⎞⎠⎟x 2−21a +1b{1−2a ()x (x <1)a x +4(x ≥1)二、选择题13. ( 2分 ) 函数的大致图象是( )A. B.C. D.14. ( 2分 ) 已知f (x )是R 上的奇函数,且当x >0时,f (x )=x ﹣1,则x <0时f (x )=( )A. ﹣x ﹣1B. x+1C. ﹣x+1 D. x ﹣115. ( 2分 ) 证券公司提示:股市有风险,入市需谨慎.小强买的股票A 连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个涨停:比前一天收市价上涨10%).( )A. 3B. 4C. 5D. 6y =x 4316. ( 2分 ) 给定实数x ,定义[x]为不大于x 的最大整数,则下列结论中不正确的是( )A. x ﹣[x]≥0B. x ﹣[x]<1C. 令f (x )=x ﹣[x],对任意实数x ,f (x+1)=f (x )恒成立D. 令f (x )=x ﹣[x],对任意实数x ,f (﹣x )=f (x )恒成立三、解答题17. ( 5分 ) 已知 ,求实数m 的取值范围.18. ( 5分 ) 如图,矩形草坪AMPN 中,点C 在对角线MN 上.CD 垂直于AN 于点D ,CB 垂直于AM 于点B ,|CD|=|AB|=3米,|AD|=|BC|=2米,设|DN|=x 米,|BM|=y 米.求这块矩形草坪AMPN 面积的最小值.m 2+m ()35≤3−m ()3519. ( 10分 ) 设a 是实数,函数f (x )=a ﹣ (x ∈ R ), (1)若已知(1,2)为该函数图象上一点,求a 的值.(2)证明:对于任意a ,f (x )在R 上为增函数.20. ( 15分 ) 已知函数f (x )=x 2﹣2ax+1.(1)若对任意的实数x 都有f (1+x )=f (1﹣x )成立,求实数 a 的值; (2)若f (x )在区间 [1,+∞]上为单调递增函数,求实数a 的取值范围; (3)当x ∈ [﹣1,1]时,求函数f (x )的最大值.22x +121. ( 15分 ) 在区间D 上,如果函数f (x )为减函数,而xf (x )为增函数,则称f (x )为D 上的弱减函数.若f (x )=(1)判断f (x )在区间[0,+∞)上是否为弱减函数;(2)当x ∈[1,3]时,不等式 恒成立,求实数a 的取值范围; (3)若函数g (x )=f (x )+k|x|﹣1在[0,3]上有两个不同的零点,求实数k 的取值范围.a x ≤≤a +42x答案解析部分一、<b >填空题</b>1.【答案】(0,1)【考点】指数函数的图像与性质【解析】【解答】解:∵a0=1,a>0且a≠1,∴函数y=a x(a>0且a≠1)的图象均过定点(0,1),故答案为:(0,1).【分析】根据指数函数的性质判断即可.2.【答案】便宜没好货【考点】四种命题【解析】【解答】解:“好货不便宜”即“如果货物为好货,则价格不便宜”,其逆否命题为:“如果价格便宜,则货物不是好货”,即“便宜没好货”,故答案为:便宜没好货【分析】写出原命题的逆否命题,可得答案.3.【答案】1【考点】交集及其运算【解析】【解答】解:∵A={x|x≤1},B={x|x≥a},且A∩B={1},∴a=1,故答案为:1【分析】由A,B,以及两集合的交集,确定出a的值即可.4.【答案】【考点】绝对值不等式的解法【解析】【解答】解:①若x≥1,∴2(x﹣1)﹣1<0,∴x<;②若x<1,∴2(1﹣x)﹣1<0,∴x>;综上<x<.故答案为:<x<.【分析】先去掉绝对值然后再根据绝对值不等式的解法进行求解.5.【答案】﹣1【考点】函数的值【解析】【解答】解:∵f(x+1)=2x﹣1,∴f(1)=f(0+1)=2×0﹣1=﹣1.故答案为:﹣1.【分析】f(1)=f(0+1),由此利用f(x+1)=2x﹣1,能求出结果.6.【答案】(﹣∞,2)∪[3,+∞)【考点】其他不等式的解法【解析】【解答】解:原不等式等价于(x﹣3)(x﹣2)≥0且x﹣2≠0,所以不等式的解集为(﹣∞,2)∪[3,+∞);故答案为:(﹣∞,2)∪[3,+∞)【分析】首先将不等式化为整式不等式,然后求解集.7.【答案】﹣1【考点】函数奇偶性的性质【解析】【解答】解:∵函数为偶函数得f(1)=f(﹣1)得:2(1+a)=0 ∴a=﹣1.故答案为:﹣1.【分析】因为函数为偶函数,则根据偶函数定义f(﹣x)=f(x)得到等式解出a即可.8.【答案】x,x∈(﹣1,0)∪(0,+∞)【考点】函数解析式的求解及常用方法【解析】【解答】解:∵函数f(x)= ,g(x)= ,∴f(x)•g(x)=x,x∈(﹣1,0)∪(0,+∞),故答案为:x,x∈(﹣1,0)∪(0,+∞).【分析】直接将f(x),g(x)代入约分即可.9.【答案】m≥2或m≤﹣3【考点】必要条件、充分条件与充要条件的判断【解析】【解答】解:α:x≤﹣5或x≥1,β:2m﹣3≤x≤2m+1,若α是β的必要条件,则2m﹣3≥1或2m+1≤﹣5,故m≥2或m≤﹣3,故答案为:m≥2或m≤﹣3.【分析】根据充分必要条件的定义以及集合的包含关系求出m的范围即可.10.【答案】(0,4].【考点】函数的值域【解析】【解答】解:设t=x2﹣2≥﹣2,∵y=()t为减函数,∴0<()t≤()﹣2=4,故函数的值域是(0,4],故答案为:(0,4].【分析】换元得出设t=x2﹣2≥﹣2,y=()t,求解即可得出答案.11.【答案】9【考点】基本不等式【解析】【解答】解:∵ab>0,且a+4b=1,∴=()(a+4b)=1+4+ + ≥5+2 =9,当且仅当a= ,b= 时取等号,∴的最小值为9,故答案为:9.【分析】把“1”换成4a+b,整理后积为定值,然后用基本不等式求最小值12.【答案】[﹣1,0)【考点】函数单调性的性质【解析】【解答】解:由于函数f(x)= 是R上的增函数,∴,求得﹣1≤a<0,故答案为:[﹣1,0).【分析】由条件利用函数的单调性的性质,可得1﹣2a>1,且a<0,由此求得a的取值范围.二、<b >选择题</b>13.【答案】A【考点】函数的图象【解析】【解答】解:y=f(﹣x)= = =f(x),∴函数y=x 为偶函数,∴图象关于y轴对称,故排除C,D,∵>1,∴当x>0时,y=x 的变化是越来越快,故排除B故选:A【分析】根据函数的奇偶性和函数值得变化趋势即可判断.14.【答案】B【考点】函数奇偶性的性质【解析】【解答】解:设x<0,则﹣x>0,∵当x>0时,f(x)=x﹣1,∴当x<0时,f(﹣x)=﹣x﹣1,又∵f(x)是R上的奇函数,∴f(x)=﹣f(﹣x),∴当x<0时,f(x)=﹣f(﹣x)=x+1,故选B.【分析】根据x>0时函数的表达式,可得x<0时f(﹣x)=﹣x﹣1,再利用奇函数的定义,即可算出当x<0时函数f(x)的表达式.15.【答案】C【考点】函数的值【解析】【解答】解:设小强买的股票A时买入价格为a,连续4个跌停后价格为a(1﹣10%)4=0.6561a,设至少需要x个涨停,才能不亏损,则0.6564a(1+10%)x≥a,整理得:1.1x≥1.5235,∵1.15=1.6105,1.14=1.4641.∴至少需要5个涨停,才能不亏损.故选:C.【分析】设小强买的股票A时买入价格为a,连续4个跌停后价格为a(1﹣10%)4=0.6561a,设至少需要x个涨停,才能不亏损,则0.6564a(1+10%)x≥a,由此能求出结果.16.【答案】D【考点】函数解析式的求解及常用方法,函数的值【解析】【解答】解:在A中,∵[x]为不大于x的最大整数,∴x﹣[x]≥0,故A正确;在B中,∵[x]为不大于x的最大整数,∴x﹣[x]<1,故B正确;在C中,∵[x]为不大于x的最大整数,f(x)=x﹣[x],∴对任意实数x,f(x+1)=f(x)恒成立,故C正确;在D中,∵[x]为不大于x的最大整数,f(x)=x﹣[x],∴f(﹣3.2)=﹣3.2﹣[﹣3.2]=﹣3.2+4=0.8,f(3.2)=3.2﹣[3.2]=3.2﹣3=0.2,∴对任意实数x,f(x+1)=f(x)不成立,故D错误.故选:D.【分析】利用[x]为不大于x的最大整数,结合函数性质求解.三、<b >解答题</b>17.【答案】解:设函数,函数为R上的单调递增函数得,m2+m≤﹣m+3即,m2+2m﹣3≤0得,(m﹣1)(m+3)≤0所以,m的取值范围为:m∈[﹣3,1]【考点】幂函数的性质【解析】【分析】根据函数的单调性得到关于m的不等式,解出即可.18.【答案】解:由题意.S AMPN=(x+2)(y+3)=xy+3x+2y+6=12+3x+2y..当且仅当3x=2y,即x=2,y=3时取得等号..面积的最小值为24平方米.【考点】基本不等式在最值问题中的应用【解析】【分析】由题意,表示出矩形的面积,利用基本不等式,即可求得结论.19.【答案】(1)解:.(2)证明:设任意x1,x2∈R,x1<x2,则f(x1)﹣f(x2)== = ,由于指数函数y=2x在R上是增函数,且x 1<x2,所以即,又由2x>0,得,,∴f(x1)﹣f(x2)<0即f(x1)<f(x2),所以,对于任意a,f(x)在R上为增函数.【考点】函数的图象【解析】【分析】(1)代值计算即可求出a(2)运用函数的定义判断证明函数的单调性,先在取两个值x1,x2后进行作差变形,确定符号,最后下结论即可.20.【答案】(1)解:由对任意的实数x都有f(1+x)=f(1﹣x)成立,知函数f(x)=x2﹣2ax+1的对称轴为x=a,即a=1;(2)解:函数f(x)=x2﹣2ax+1的图象的对称轴为直线x=a,由f(x)在[a,+∞)上为单调递增函数,y=f(x)在区间[1,+∞)上为单调递增函数,得,a≤1;(3)解:函数图象开口向上,对称轴x=a,可得最大值只能在端点处取得.当a<0时,x=1时,函数取得最大值为:2﹣2a;当a>0时,x=﹣1时,函数取得最大值为:2+2a;当a=0时,x=1或﹣1时,函数取得最大值为:2.【考点】函数的最值及其几何意义,二次函数的性质【解析】【分析】(1)由题意可得x=1为对称轴,求得f(x)的对称轴方程,即可得到a;(2)求得f(x)的递增区间,[1,+∞)为它的子区间,可得a的范围;(3)由函数图象开口向上,对称轴x=a,可得最大值只能在端点处取得,讨论a=0,a>0,a<0,即可得到所求最大值.21.【答案】(1)解:由初等函数性质知,在[0,+∞)上单调递减,而在[0,+∞)上单调递增,所以是[0,+∞)上的弱减函数.(2)解:不等式化为在x∈[1,3]上恒成立,则,而在[1,3]单调递增,∴的最小值为,的最大值为,∴,∴a∈[﹣1,].(3)解:由题意知方程在[0,3]上有两个不同根,①当x=0时,上式恒成立;②当x∈(0,3]时,则由题意可得方程只有一解,根据,令,则t∈(1,2],方程化为在t∈(1,2]上只有一解,所以.【考点】函数单调性的性质【解析】【分析】(1)利用初等函数的性质、弱减函数的定义,判断是[0,+∞)上的弱减函数.(2)根据题意可得,再利用函数的单调性求得函数的最值,可得a的范围.(3)根据题意,当x∈(0,3]时,方程只有一解,分离参数k,换元利用二次函数的性质,求得k的范围.。
浦东新区2016学年度第一学期教学质量检测高一数学试卷一、填空题:(本大题共12小题,每小题3分,共36分)1. 函数x y a =(0a >且1a ≠)的图象均过定点 .2. 请写出“好货不便宜”的等价命题: .3.若集合{}{}|1,|A x x B x x a =≤=≥满足{}1A B =,则实数a = .4.不等式2110x --<的解集是 .5.若()121f x x +=-,则()1f = .6.不等式302x x -≥-的解集为 . 7.若函数()()()1f x x x a =++为偶函数,则a = .8.设()()2f xg x x==,则()()f x g x ⋅= . 9.设:5x α≤-或1x ≥,:2321m x m β-≤≤+,若α是β的必要条件,则实数m 的取值范围为 .10.函数2212x y -⎛⎫= ⎪⎝⎭的值域是 .11.已知0ab >,且41a b +=,则11a b+的最大值为 . 12.已知函数()()12,14,1x a x f x a x x⎧-<⎪=⎨+≥⎪⎩在R上是增函数,则实数a 的取值范围为 .二、选择题(本大题共4小题,每题3分,共12分,每题都给出代号为A,B,C ,D 的四个结论,其中有且只有一个结论是正确的,每题答对得3分,否则一律得零分)13.函数43y x =的大致图象是( )14.已知()f x 是R 上的奇函数,且当0x >时,()1f x x =-,则0x <时,()f x =( )A.1x -- B. 1x + C. 1x -+ D. 1x -15.证券公司提示:股市有风险,入市需谨慎。
小强买股票A 连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个 涨停:比前一天收市价上涨10%).A. 3 B. 4 C . 5 D . 616.给定实数x ,定义[]x 为不大于x 的最大整数,则下列结论中正确的是( ) A. []0x x -≥B. []1x x -<C. 令()[]f x x x =-,对任意实数x ,()()1f x f x +=恒成立.D.令()[]f x x x =-,对任意实数x ,()()f x f x -=恒成立.三、解答题:本大题共5小题,共52分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分8分)已知()()332553m m m +≤-,求实数m 的取值范围.18.(本题满分10分)如图,矩形草坪AMPN 中,点C 在对角线MN 上,CD 垂直AN 于点D ,CB 垂直于AM 于点B ,3CD AB ==米,2AD BC ==米,设DN x =米,BM y=米,求这块矩形草坪AMPN 面积的最小值.19.(本题满分10分,第1小题4分,第2小题6分)设a 是实数,函数()()2.21x f x a x R =-∈+ (1)若已知()1,2为该函数图象上一点,求a 的值;(2)证明:对任意a ,()f x 在R 上为增函数.20.(本题满分12分,第1小题3分,第2小题4分,第3小题5分) 已知函数()22f x x ax a =-+.(1)若对任意的实数x 都有()()11f x f x +=-成立,求实数a 的值;(2)若()f x 在区间[)1,+∞上为单调增函数,求实数a 的取值范围; (3)当[]1,1x ∈-时,求函数()f x 的最大值.21.(本题满分12分,第1小题3分,第2小题4分,第3小题5分)在区间D 上,如果函数()f x 为减函数,而()xf x 为增函数,则称()f x 为D上的弱减函数,若()f x =. (1)判断()f x 在区间[)0,+∞上是否是弱减函数;(2)当[]1,3x ∈时,不等式42a a x x +≤≤恒成立,求实数a 的取值范围; (3)若函数()()1g x f x k x =+-在[]0,3上有两个不同的零点,求实数k 的取值范围.浦东新区2016学年度第一学期期末质量测试高一数学参考答案一、填空题1. (0,1) 2. 便宜没好货 3. 1 4. )23,21(5. 1- 6. ),3[)2,(+∞⋃-∞7. 1- 8. ) 0()0 1(∞+-∈,,, x x 9.3-≤m 或2≥m 10. (0,4] 11. 912. [1,0)-二、选择题13. A 14. B 15. C 16. D三、解答题17.(本题满分8分)解:(1)设函数53x y =,函数为R 上的单调递增函数 ………………2分 得,32+-≤+m m m ………………2分 即,03-22≤+m m ………………2分 得,0)3)(1(≤+-m m所以,m 的取值范围为:]1,3[-∈m ………………2分18.(本题满分10分) 解:263x NCD CMB xy y∠=∠⇒=⇒=………………….2分 (2)(3)AMPN S x y =++326xy x y =+++1232x y =++ ………………….3分1224≥+=………………….2分当且仅当32x y =,即2,3x y ==时取得等号。
2017-2018学年上海市浦东新区建平中学高一(上)期末数学试卷1.(填空题,3分)已知全集U=R,集合A={x|y=πx},则∁U A=___ .在(-∞,0)内的零点为x=___ .2.(填空题,3分)函数f(x)=x−1x3.(填空题,3分)关于x的方程2x=3x的解集为___ .为奇函数,则实数a的值为___ .4.(填空题,3分)函数f(x)=1x+a5.(填空题,3分)集合A={x|x<a},B={x|x<1},若A⊆B,则实数a的取值范围为___ .6.(填空题,3分)比较两数大小:210000___ e5031(在横线处填“>”或“=”或“<”).7.(填空题,3分)函数y=f(x)的定义域为(0,1),则函数y=f(2x)的定义域为___ .8.(填空题,3分)函数f(x)=x-2的单调递减区间是___ .9.(填空题,3分)已知函数y=f(x)过定点(0,2),则函数y=f(x-2)过定点___ .10.(填空题,3分)不等式|x|-a≥0对任意x∈[-1,2]恒成立,则实数a的最大值为___ .−a在(0,6)内有两个零点,则实数a的取值11.(填空题,3分)若函数f(x)=(2−x)x−2√x−1范围为___ .)=0恰有四个互异的实根,记为x1,x2,12.(填空题,3分)方程f(x+2018)+f(2019x−2020x−1x3,x4,则(x1-1)(x2-1)(x2-1)(x4-1)+2018的值为___ .13.(单选题,3分)在下列四个说法中,与“不经冬寒,不知春暖”意义相同的是()A.若经冬寒,必知春暖B.不经冬寒,但知春暖C.若知春暖,必经冬寒D.不知春暖,但历冬寒14.(单选题,3分)已知实数x,y满足x>y,下列不等式中一定成立的是()A.x3>y3B.x2>y2C.x0=y0D.x-1>y-115.(单选题,3分)函数y=f(x)的定义域为[-2,+∞),函数y=g(x)为R上的奇函数,的定义域可能为()则函数F(x)=√g(x)A.[-2,0)∪(0,+∞)B.[-2,-1)∪(-1,0)C.[-2,-1)∪(1,+∞)D.[-2,-1]∪(0,1]16.(单选题,3分)在股票等金融交易过程中,常用两种曲线来描述价格变化的情况:一种是即时价格曲线y=f(x),另一种是平均价格曲线y=g(x),如f(2)=3表示交易开始后2小时的即时价格为2元;g(2)=3则表示交易2小时内的平均价格为3元,下面给出了四个图象,实线表示y=f(x),虚线表示y=g(x),其中可能正确的是()A.B.C.D.17.(问答题,8分)不等式x+2>0的解集为集合A,不等式|x-1|≤1的解集为集合B,求x−1A∩B.18.(问答题,8分)解关于x的方程:log2(x+3)-2log4x=2.19.(问答题,10分)“秃发”是一种常见的毛发疾病,随着发病人群年龄结构的年变化,逐渐引起了社会的广泛关注.一个人出生时头发数量约为100000根,数学徐老师建立了“秃发”函,其中a称数模型作预估:一个人x(x∈N*)岁时的头发根数为f(x)=100000−ax−50000x为“脱发指数”.(1)杜老师5岁时有74375根头发,请依据模型求出杜老师的“脱发指数”a的值;(2)徐老师的学生认为“秃发”函数模型中有两个缺点:① 头发的根数应该为整数;② 头发的根数不能为负数;徐老师感觉很有道理,将模型作了两处修正,请写出修正后(1)问中杜老师的“秃发”函数模型,并求出杜老师几岁时头发最多.20.(问答题,12分)设函数f(x)=−2x+a2x+1+b(实数a,b为常数).(1)当a=b=1时,证明f(x)在R上单调递减;(2)若b=-2,且f(x)为偶函数,求实数a的值;(3)小金同学在求解函数f(x)=−2x+a2x+1+b的对称中心时,发现函数f(x)是一个复合函数,设g(x)=−x+a2x+b,h(x)=2x,则f(x)=g(h(x)),显然g(x)有对称中心,设为(m,n),h(x)有反函数h-1(x),若g(h(x))的对称中心为(h-1(m),h-1(n)),请问小金的做法是否正确?如果正确,请给出证明,并直接写出当b=2a时f(x)的对称中心;如果错误,请举出反例,并用正确的方法直接写出当b=2a时f(x)的对称中心.。
上海中学2016学年第一学期高一期末试卷一、填空题(本大题共有12题,满分36分)考生应在答题纸相应編号的空格内直接填写结果,毎填对得3分.1.函数2()lg(31)f x x =+的定义域是__________.2.函数2()(1)f x x x =的反函数为1()f x -=______.3.若幂函数()f x 的图像经过点127,9⎛⎫ ⎪⎝⎭,则该函数解析式为()f x =______.4.若对任意不等于1的正数a ,函数2()3x f x a -=-的图象都过点P ,则点P 的坐标是______.5.已知2()f x ax bx =+是定义在[]3,2a a -上的偶函数,那么=a ______,b =______.6.方程224log (1)log (1)5x x +++=的解集为_________________.7.已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则函数()()sgn sgn y x x =+的值域为______.8.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =+,则函数()f x 的解析式为()f x =______.9.函数2650.3x x y -+=的单调增区间为______.10.设函数()y f x =存在反函数1()f x -,若满足1()()f x f x -=恒成立,则称()f x 为“自反函数”,如函数()f x x =,()g x b x =-,()(0)kh x k x =≠等都是“自反函数”,试写出一个不同于上述例子的“自反函数”y =______.11.方程2210x x +-=的解可视为函数2y x =+的图像与函数1y x =的图像交点的横坐标,若方程440x ax +-=的各个实根1x ,2x ,L ,(4)k x k 所对应的点4,i i x x ⎛⎫ ⎪⎝⎭(1,2,,)i k = 均在直线y x =的同侧,则实数a 的取值范围是______.12.对于函数()y f x =,若存在定义域D 内某个区间[,]a b ,使得()y f x =在[,]a b 上的值域也是[,]a b ,则称函数()y f x =在定义域D 上封闭.如果函数()(0)1||kxf x k x =≠+在R 上封闭,那么实数k 的取值范围是______.二、选择题(本大题共有4题,满分16分)每题有且仅有一个正确答案,考生应在答题纸的相应编号的空格内填写答案,每题填对得4分,否则一律得零分.13.已知3()1(0)f x ax bx ab =++≠,若(2017)f k =,则(2017)f -=A.k B.k - C.1k - D.2k-14.定义在R 上的函数()y f x =在区间(,2)-∞上是增函数,且函数(2)y f x =+的图像关于直线1x =对称,则()A.(1)(5)f f <B.(1)(5)f f >C.(1)(5)f f = D.(0)(5)f f =15.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油16.设函数()22,0log ,0x x f x x x ⎧+≤⎪=⎨⎪⎩,若关于x 的方程()f x a =有四个不同的解1234,,,x x x x ,且1234x x x x <<<,则()3122341x x x x x ++的取值范围是()A.()3,∞-+ B.(),3-∞ C.[)3,3- D.(]3,3-三、解答题(本大题共有5题,满分48分)解答下列各题必须在答题纸相应編号的相应区域內写出必要的步骤.17.在平面直角坐标系中,作出下列函数的图像.(1)13y x =;(2)||112x y ⎛⎫=- ⎪⎝⎭.18.已知集合{}226|310330,xx D x x +=-⋅+∈R ,求函数2()log ()22x f x x =⋅∈D 的值域.19.设函数()x xf x ka a -=-(a>0且a≠1)是奇函数.(1)求常数k 的值;(2)若已知f (1)=,且函数22()2()x x g x a a mf x -=+-在区间[1,+∞])上的最小值为—2,求实数m 的值.20.已知函数()||1m f x x x=+-.(1)当2m =时,判断()f x 在(,0)-∞上的单调性并证明;(2)若对任意x R ∈,不等式(2)0x f >恒成立,求m 的取值范围;(3)讨论函数()y f x =的零点个数.21.已知a ∈R ,函数2()log [(3)34]f x a x a =-+-.(1)当2a =时,解不等式10f x ⎛⎫<⎪⎝⎭;(2)若函数()24y f x x =-的值域为R ,求a 的取值范围;(3)若关于x 的方程21()log 20f x a x ⎛⎫-+=⎪⎝⎭的解集中恰好只有一个元素,求a 的取值范围.上海中学2016学年第一学期高一期末试卷一、填空题(本大题共有12题,满分36分)考生应在答题纸相应編号的空格内直接填写结果,毎填对得3分.1.函数2()lg(31)f x x =+的定义域是__________.【答案】1,13⎛⎫- ⎪⎝⎭【分析】根据函数的解析式,列出使解析式有意义的不等式组,求出解集即可.【详解】要使函数()f x=()2lg 31x +有意义,则10310x x ->⎧⎨+>⎩,解得113x -<<,即函数()f x()2lg 31x +的定义域为1,13⎛⎫- ⎪⎝⎭.故答案为1,13⎛⎫- ⎪⎝⎭.【点睛】本题考查了根据函数解析式求定义域的应用问题,是基础题目.2.函数2()(1)f x x x =的反函数为1()fx -=______.1)x ≥【分析】由2y x =解出x =再交换,x y 的位置,注明定义域即可得到反函数.【详解】由2y x =且1x ≥得x =,所以1()1)f x x -=≥.故答案为1)x ≥.【点睛】本题考查了求反函数,属于基础题.3.若幂函数()f x 的图像经过点127,9⎛⎫ ⎪⎝⎭,则该函数解析式为()f x =______.【答案】23x -【分析】设幂函数()f x x α=,由1(27)9f =可解得.【详解】设幂函数()f x x α=,依题意可得1(27)9f =,所以1279α=,解得23α=-.所以()f x =23x -.故答案为:23x -【点睛】本题考查了幂函数的解析式,属于基础题.4.若对任意不等于1的正数a ,函数2()3x f x a -=-的图象都过点P ,则点P 的坐标是______.【答案】()2,2-【分析】根据指数函数x y a =的图象恒过定点(0,1)以及图象的平移变换可得答案.【详解】因为函数x y a =的图象恒过定点(0,1),所以将函数x y a =的图象向右平移2个单位,向下平移3个单位后所得函数23x y a -=-的图象恒过定点(2,2)-,所以点P 的坐标为(2,2)-.故答案为:(2,2)-.【点睛】本题考查了指数型函数过定点,函数图象的平移变换,属于基础题.5.已知2()f x ax bx =+是定义在[]3,2a a -上的偶函数,那么=a ______,b =______.【答案】①.1②.0【分析】由题可得定义域关于原点O 对称,所以321a a a -=-⇒=,再根据偶函数的定义得0b =.【详解】因为2()f x ax bx =+是定义在[]3,2a a -上的偶函数,所以32a a -=-且()()f x f x -=恒成立,所以1a =,22ax bx ax bx -=+恒成立,所以1a =,20bx =恒成立,所以1,0a b ==.故答案为(1)1;(2)0【点睛】考查了函数奇偶性的定义以及奇偶函数的定义域特征,属于基础题.6.方程224log (1)log (1)5x x +++=的解集为_________________.【答案】{}3【分析】直接利用对数运算公式化简得到答案.【详解】将224log (1)log (1)5x x +++=化简为:2212log (1)log (1)52x x +++=即2log (1)2,3x x +==故答案为{}3【点睛】本题考查了对数方程,属于简单题型.7.已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则函数()()sgn sgn y x x =+的值域为______.【答案】{}0,2【分析】分三段求出各段的值域,再相并即可得到答案.【详解】当0x >时,sgn()|sgn()|112y x x =+=+=,当0x =时,sgn()|sgn()|000y x x =+=+=,当0x <时,sgn()|sgn()|1|1|2y x x =-+=+-=,所以函数()()sgn sgn y x x =+的值域为:{0,2}.故答案为{0,2}.【点睛】本题考查了分段函数的值域,属于基础题.8.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =+,则函数()f x 的解析式为()f x =______.【答案】22,0,0x x x x x x ⎧-+≥⎨+<⎩【分析】根据()f x 为奇函数,求出0x =,0x >的解析式后,可得分段函数()f x 的解析式.【详解】因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-,当0x =时,(0)(0)f f =-,所以(0)0f =,当0x >时,222()()[()()]()f x f x x x x x x x =--=--+-=--=-+,所以()f x =22,0,0x x x x x x ⎧-+≥⎨+<⎩.故答案为:22,0,0x x x x x x ⎧-+≥⎨+<⎩.【点睛】本题考查了函数的奇函数的性质,分段函数的解析式,属于基础题.9.函数2650.3xx y -+=的单调增区间为______.【答案】(,1]-∞和[3,5].【分析】首先通过函数图象讨论2|65|y x x =-+的递减区间,再根据指数函数0.3x y =递减以及复合函数的同增异减原则可得.【详解】作出函数2|65|y x x =-+的图象如图所示:观察函数图象可知,函数2|65|y x x =-+的递增区间为[1,3]和[5,)+∞,递减区间为(,1]-∞和[3,5],因为指数函数0.3x y =在定义域内递减,根据复合函数的同增异减原则可得2650.3x x y -+=的递增区间为(,1]-∞和[3,5].故答案为:(,1]-∞和[3,5].【点睛】本题考查了二次函数,指数函数的单调性,复合函数的同增异减原则,属于基础题.10.设函数()y f x =存在反函数1()f x -,若满足1()()f x f x -=恒成立,则称()f x 为“自反函数”,如函数()f x x =,()g x b x =-,()(0)kh x k x=≠等都是“自反函数”,试写出一个不同于上述例子的“自反函数”y =______.【答案】1)x ≤≤【分析】根据题意,只要写出一个满足条件的函数即可,如1)y x =≤≤.【详解】根据题意,设1)y x =≤≤,则221y x =-,所以221x y =-,所以x =(01y ≤≤),交换,x y 得反函数1)y x =≤≤.故答案为:1)x ≤≤.【点睛】本题考查了求反函数的解析式,属于基础题.11.方程2210x x +-=的解可视为函数2y x =+的图像与函数1y x=的图像交点的横坐标,若方程440x ax +-=的各个实根1x ,2x ,L ,(4)k x k 所对应的点4,i i x x ⎛⎫⎪⎝⎭(1,2,,)i k = 均在直线y x =的同侧,则实数a 的取值范围是______.【答案】()(),66,-∞-+∞ 【分析】原方程等价于34x a x +=,分别作出3y x a =+和4y x=的图象,分0a >和a<0讨论,利用数形结合即可得到结论.【详解】因为方程440x ax +-=等价于34x a x+=,原方程的实根是3y x a =+与曲线4y x=的交点的横坐标,曲线3y x a =+是由曲线3y x =纵向平移||a 个单位而得到,若交点4,i i x x ⎛⎫ ⎪⎝⎭(1,2,,)i k = 均在直线y x =的同侧,因y x =与4y x =的交点为(2,2),(2,2)--,所以结合图象可得:3022a x a x >⎧⎪+>-⎨⎪≥-⎩或322a x a x <⎧⎪+<⎨⎪≤⎩恒成立,所以32a x >--在[2,)-+∞上恒成立,或32a x <-+在(,2]-∞上恒成立,所以3max (2)a x >--=3(2)26---=,或33min (2)226a x <-+=-+=-,即实数a 的取值范围是()(),66,-∞-+∞ .故答案为:()(),66,-∞-+∞ .【点睛】本题考查了数形结合思想,等价转化思想,函数与方程,幂函数的图象,属于中档题.12.对于函数()y f x =,若存在定义域D 内某个区间[,]a b ,使得()y f x =在[,]a b 上的值域也是[,]a b ,则称函数()y f x =在定义域D 上封闭.如果函数()(0)1||kxf x k x =≠+在R 上封闭,那么实数k 的取值范围是______.【答案】()(),11,-∞-+∞U 【分析】先用定义证明函数1||x y x =+在[0,)+∞上递增,再根据奇偶性可得函数1||xy x =+在R 上为增函数,然后讨论0k >和0k <可得()f x 的单调性,当0k >时,依题意可得,a b 是1||kxx x =+的两个不同的实数解,由此可解得1k >.当0k <时,依题意可得()()f a bf b a =⎧⎨=⎩,由此可推出1k <-.【详解】.设120x x ≤<,则121221121212(1)(1)11(1)(1)x x x x x x y y x x x x +-+-=-=++++1212(1)(1)x x x x -=++,因为120x x ≤<,所以12y y <,所以函数1||xy x =+在[0,)+∞上递增,又函数1||x y x =+为奇函数,所以函数1||xy x =+在R 上为增函数,当0k >时,函数()1||kx f x x =+为增函数,因为()y f x =在[,]a b 上的值域也是[,]a b ,所以()()f a af b b =⎧⎨=⎩,即11kaa a kb b b⎧=⎪+⎪⎨⎪=⎪+⎩,即,a b 是1||kxx x =+的两个不同的实数解,解得0x =或||1x k =-,由||10x k =->得1k >,当0k <时,()1||kx f x x =+为递减函数,因为()y f x =在[,]a b 上的值域也是[,]a b ,所以()()f a b f b a =⎧⎨=⎩,即11kaba kb ab⎧=⎪+⎪⎨⎪=⎪+⎩,因为0,k a b <<,所以0a b <<,所以ka b abkb a ab =-⎧⎨=+⎩,所以()k a b a b +=+,因为0k <,所以0a b +=,即=-b a ,所以()ka a a a =---,所以1011k a =-<-=-,即1k <-.综上所述:1k <-或1k >.故答案为:()(),11,-∞-+∞U .【点睛】本题考查了对新概念的理解转化能力,函数的单调性,奇偶性,函数的定义域和值域,本题是较难题.二、选择题(本大题共有4题,满分16分)每题有且仅有一个正确答案,考生应在答题纸的相应编号的空格内填写答案,每题填对得4分,否则一律得零分.13.已知3()1(0)f x ax bx ab =++≠,若(2017)f k =,则(2017)f -=A.kB.k -C.1k -D.2k-【答案】D【分析】由(2017)f k =可得3201720171a b k ++=,即3(20172017)1a b k -+=-,将其代入到(2017)f -=3201720171a b --+即可得到答案.【详解】因为3()1(0)f x ax bx ab =++≠,所以3201720171a b k ++=,即3(20172017)1a b k -+=-,所以(2017)f -=3201720171a b --+=3(20172017)1112a b k k -++=-+=-.故选:D.【点睛】本题考查了整体替换法,求函数值,属于基础题.14.定义在R 上的函数()y f x =在区间(,2)-∞上是增函数,且函数(2)y f x =+的图像关于直线1x =对称,则()A.(1)(5)f f <B.(1)(5)f f >C.(1)(5)f f =D.(0)(5)f f =【答案】C【分析】根据平移变换可得,()y f x =的图像关于直线3x =对称,根据对称性可得答案.【详解】因为(2)y f x =+的图像关于直线1x =对称,所以()y f x =的图像关于直线3x =对称,故(1)(5)f f =.故选:C.【点睛】本题考查了函数的图象的平移变换以及函数的对称性,本题为基础题.15.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油【答案】D【详解】解:对于A ,由图象可知当速度大于40km /h 时,乙车的燃油效率大于5km /L ,∴当速度大于40km /h 时,消耗1升汽油,乙车的行驶距离大于5km ,故A 错误;对于B ,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B 错误;对于C ,由图象可知当速度为80km /h 时,甲车的燃油效率为10km /L ,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km ,燃油为8升,故C 错误;对于D ,由图象可知当速度小于80km /h 时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故D 正确故选D .考点:1、数学建模能力;2、阅读能力及化归思想.16.设函数()22,0log ,0x x f x x x ⎧+≤⎪=⎨⎪⎩,若关于x 的方程()f x a =有四个不同的解1234,,,x x x x ,且1234x x x x <<<,则()3122341x x x x x ++的取值范围是()A.()3,∞-+ B.(),3-∞ C.[)3,3- D.(]3,3-【答案】D【分析】由题意,根据图象得到12x a +=-,22x a +=,23log x a =-,24log x a =,(02)a <≤,推出312234()2214a a x x x x x ++=-.令2a t =,(]1,4t ∈,而函数2y t t=-.即可求解.【详解】()3122234414422222a a a a a x x x x x --++=-⋅+=-⋅【点睛】方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.三、解答题(本大题共有5题,满分48分)解答下列各题必须在答题纸相应編号的相应区域內写出必要的步骤.17.在平面直角坐标系中,作出下列函数的图像.(1)13y x =;(2)||112x y ⎛⎫=- ⎪⎝⎭.【答案】(1)见解析,(2)见解析【分析】(1)直接作出幂函数的图象;(2)根据图像变换规律将指数函数先关于y 轴对称,再向下平移一个单位即可.【详解】(1)幂函数13y x =的图象如下:(2)先作出1()2x y =的图象,再去掉y 轴左边图象,保留y 轴右边图象,并将y 轴右边图象翻折到左边,然后向下平移一个单位即可得到.图象如下:【点睛】考查了幂函数、指数函数的图像以及图像的变换,本题为基础题.18.已知集合{}226|310330,x x D x x +=-⋅+∈R ,求函数22()log ()22x x f x x =⋅∈D 的值域.【答案】1,04⎡⎤-⎢⎥⎣⎦【分析】首先解指数不等式得到[2,4]D =,再化简函数表达式,换元变成二次函数求值域可得到答案.【详解】由226310330x x +-⋅+,得2(3)9037290x x -⋅+≤,所以(39)(381)0x x --≤,所以9381x ≤≤,所以24x ≤≤.所以[2,4]D =因为22()log [2,4])22x x f x x =⋅∈,所以()()22()log 1log 2y f x x x ==--,令2log t x =,因为[2,4]x ∈,所以t ∈[1,2],则232y t t =-+,t ∈[1,2],所以32t =时,min 14y =-,1t =或2t =时,max 0y =,函数2()log [2,4])22x f x x =⋅∈的值域为1[,0]4-.【点睛】本题考查了指数不等式,对数的运算以及复合函数的值域问题.本题为中档题,19.设函数()x x f x ka a -=-(a>0且a≠1)是奇函数.(1)求常数k 的值;(2)若已知f (1)=,且函数22()2()x x g x a a mf x -=+-在区间[1,+∞])上的最小值为—2,求实数m 的值.【答案】(1);(2).【详解】试卷分析:(1)函数()x x f x ka a -=-的定义域为R ,∵函数()x x f x ka a -=-(a>0且a≠1)是奇函数∴f (0)=k -1=0,∴k=1.(2)∵f (1)=,∴=,解得a=3或∵a>0且a≠1,∴a=3g (x )=32x +3-2x -2m (3x -3-x )=(3x -3-x )2-2m (3x -3-x )+2(x≥1)令3x -3-x =t (t≥),则y=t 2-2mt+2=(t—m )2—m 2+2)当m≥时,min y =—m 2+2=-2,解得m=2或m=-2,舍去当m<时,min y =()2-2m×+2=-2,解得m=∴m=.试卷解析:(1)函数()x x f x ka a -=-的定义域为R∵函数()x x f x ka a -=-(a>0且a≠1)是奇函数∴f (0)=k -1=0∴k=1(2)∵f (1)=∴=,解得a=3或∵a>0且a≠1∴a=3g (x )=32x +3-2x -2m (3x -3-x )=(3x -3-x )2-2m (3x -3-x )+2(x≥1)令3x -3-x =t (t≥)则y=t 2-2mt+2=(t—m )2—m 2+2当m≥时,min y =—m 2+2=-2,解得m=2或m=-2,舍去当m<时,min y =()2-2m×+2=-2,解得m=∴m=考点:指数函数的应用.20.已知函数()||1m f x x x=+-.(1)当2m =时,判断()f x 在(,0)-∞上的单调性并证明;(2)若对任意x R ∈,不等式(2)0x f >恒成立,求m 的取值范围;(3)讨论函数()y f x =的零点个数.【答案】(1)()f x 在(,0)-∞上的单调递减,证明见解析;(2)14m >;(3)见解析.【分析】(1)当2m =时,利用函数单调性的定义可判断()f x 在(,0)-∞上的单调性,并用定义法证明.(2)利用分离参数的方法将不等式(2)0x f >恒成立,化为22(2)x x m >-,然后求最值即可.(3)函数()y f x =的零点个数,即方程||(0)m x x x x =-+≠的实根的个数,可数形结合分析得出答案.【详解】(1)当2m =,0x <时,2()1f x x x=-+-在(,0)-∞单调递减.证明:任取120x x <<,12121222()()1(1)f x f x x x x x -=-+---+-211222()+()x x x x =--=2121122()()+x x x x x x -=-212121+2=()x x x x x x -⋅由120x x <<,有210x x ->,210x x >,所以212121+2()0x x x x x x -⋅>,即12())0(f x f x ->.则12()()f x f x >,所以当2m =时,()f x 在(,0)-∞上的单调递减.(2)不等式(2)0x f >恒成立,即|2|102x x m +->所以22(2)x x m >-在x R ∈上恒成立.而221112(2)=(2)244x x x ---+≤(当12=2x 即=1x -时取得等号),所以14m >.(3)由()0f x =即||0(0)x x x m x -+=≠,所以22(0)=(0)x x x m x x x x x x ⎧-+>=-+⎨+<⎩,设22(0)g()(0)x x x x x x x ⎧-+>=⎨+<⎩作出函数g()x的图象,如下.由图可知:当14m >或14m <-时,有1个零点;当14m =或0m =或14m =-时,有2个零点;当104m -<<或104m <<时,有3个零点;【点睛】本题考查函数单调性的判断,以及不等式恒成立问题的求解,利用参数分离的方法解决恒成立问题是基本方法,属于中档题.21.已知a ∈R ,函数2()log [(3)34]f x a x a =-+-.(1)当2a =时,解不等式10f x ⎛⎫< ⎪⎝⎭;(2)若函数()24y f x x =-的值域为R ,求a 的取值范围;(3)若关于x 的方程21()log 20f x a x ⎛⎫-+= ⎪⎝⎭的解集中恰好只有一个元素,求a 的取值范围.【答案】(1)1,12⎛⎫ ⎪⎝⎭(2)[8,)+∞(3){}1,12,32⎛⎤ ⎥⎝⎦【分析】(1)根据对数函数的单调性可解得,注意真数大于零;(2)化简得到22log (3)4(3)34y a x a x a ⎡⎤=---+-⎣⎦的值域为R ,故2(3)4(3)34a x a x a ---+-能够取到一切大于0的实数,由于二次项系数含参,故需要分类讨论,当3a =时,显然不符合题意;故只能3a >,再结合0∆≥即得答案.(3)化简对数方程得到2(3)(4)10a x a x -+--=,在120a x +>的条件下只有一个根,然后分类讨论即可得到答案.【详解】(1)2a =时,不等式10f x ⎛⎫<⎪⎝⎭等价于21o 2(l g )0x +>-,所以1021x <-<,所以112x<<,所以112x <<,所以不等式10f x ⎛⎫<⎪⎝⎭的解集为1(,1)2.(2)因为函数()24y f x x =-的值域为R ,即22log (3)4(3)34y a x a x a ⎡⎤=---+-⎣⎦的值域为R ,故2(3)4(3)34a x a x a ---+-能够取到一切大于0的实数,当3a =时,2(3)4(3)345a x a x a ---+-=,不符合题意;当3a <时,222(3)4(3)34(3)(4)34(3)(2)8a x a x a a x x a a x a ---+-=--+-=--+-8a ≤-不符合题意,当3a >时,根据二次函数的图象和性质可得216(3)4(3)(34)0a a a ∆=----≥,解得8a ≥;综上所述:a 的取值范围是[8,)+∞.(3)关于x 的方程21()log 20f x a x ⎛⎫-+= ⎪⎝⎭的解集中恰好只有一个元素,所以221log [(3)34]log (2)a x a a x -+-=+的解集中恰好只有一个元素,即120a x +>且1(3)342a x a a x-+-=+的解集中恰好只有一个元素,所以2(3)(4)10a x a x -+--=,即[(3)1](1)0a x x --+=,①当3a =时,解得=1x -,此时121650a x+=-+=>,满足题意;②当2a =时,121x x ==-,此时1230a x +=>也满足题意;③当3a ≠且2a ≠时,两根为113x a =-,21x =-,当13x a =-时,由12330a a x +=->得1a >,当=1x -时,由12210a a x +=->得12a >,因为13x a =-和=1x -只能取一个值,所以只能取=1x -,所以330a -≤且210a ->,解得112a <≤.综上所述:a 的取值范围是1(,1]{2,3}2⋃.【点睛】考查了对数不等式,复合函数的值域问题和对数方程的问题.,分类讨论思想,本题为较难题。
2016-2017学年上海市浦东新区建平中学高一(上)期末数学试卷一、填空题:(每小题3分,共36分)1.(3分)集合A={﹣1,a},B={4,a2},若 A U B={0,﹣1,4},则 a 的值为.2.(3分)函数f (x )=,g (x )=,则f (x)⋅g (x )=.3.(3分)全集U=R,且A={x|﹣x2+x+6≥0},B={x||x﹣3|﹣4>0},则∁U(A∩B)=.4.(3分)函数g (x)=1﹣2x,f[g(x)]=则,f ()=.5.(3分)不等式x﹣1>x4的解集是.6.(3分)命题“若一个函数定义域不对称,则该函数不是偶函数.”的逆否命题是.7.(3分)函数y=x2+3(x≤0)的反函数是.8.(3分)若f (x)=(m﹣1)x2﹣mx+3(x∈R)是偶函数,则函数g (x )=的零点是.9.(3分)函数y=的值域是.10.(3分)函数y=|(log2|x﹣1|)|(x<1)的单调递增区间是.11.(3分)已知关于x 的不等式在[2,5]有实数解,则实数a的取值范围为.12.(3分)把指数函数y=2x图像向下平移1个单位得到函数y=h (x)的图像,函数+a(m>0,m≠1)满足g (7)﹣g (1)=若函数f (x )=在(﹣∞,+∞)上是减函数,则实数a 的取值范围是.二、选择题:(每小题3分,共12分)13.(3分)如果x<0<y,则下列各式中成立的是()14.(3分)设p,q 是两个命题:p:log(|x|﹣1)>0,q:22+x﹣22﹣x≤15,则p 是q 的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件15.(3分)设函数f (x )=,g (x)=ax2+bx (a,b∈R,a≠0),若y=f (x)的图象与y=g (x)图象有且仅有两个不同的公共点A(x1,y1),B (x2,y2),则下列判断正确的是()A.当a<0 时,x1+x2<0,y1+y2>0B.当a<0 时,x1+x2<0,y1+y2<0C.当a>0 时,x1+x2<0,y1+y2>0D.当a>0 时,x1+x2>0,y11+y2>016.(3分)学生李明用手机加了一个有关高中数学学习的微信群,群里面许多数学爱好者经常发一些有关高中数学学习的心得和经验,但是,这些心得和经验的正确性无法保证,下面是李明搜集到的有关函数的一些结论:(1)若函数y=f (﹣x)有反函数,则其反函数可表示为y=f﹣1(﹣x);(2)函数y=f (x )在其定义域内的最大值为M,最小值为m,则其值域为[m,M];(3)定义在R 上的函数y=f (x),若对任意的实数x,y 等式 f (x)﹣f (y)=均成立,则函数y=f (x)一定是奇函数;(4)定义在R 上的函数y=f (x),若对任意的实数x 都有 f (x)﹣f (|x|)=0,则函数y=f (x)一定没有反函数.李明的同学们对以上四个结论有以下不同判断,其中判断正确的是()A.都是错误的B.只有一个是正确的C.两对两错D.只有一个是错误的三、解答题(10+10+10+12,共52分)17.(10分)解下列不等式或方程(1)18.(10分)已知m 为实常数,求函数y=log22x﹣2m log2x﹣3的最小值.19.(10分)已知函数y=.(1)判断该函数奇偶性并证明;(2)利用函数单调性定义证明该函数在(﹣∞,+∞)上为增函数.20.(10分)已知某市最低工资标准为每月1800 元,为了解决该市房价过高的问题,政府计划对低收入的本市户籍居民购买第一套住房的,每月提供一定金额的贷款补贴,补贴规则:个人每月收入不高于6000 元的,对贷款进行补贴,补贴标准为:贷款月还款额×,其中k 是一个与月工资收入有关的常数,且贷款月还款额不得高于5000 元,贷款月还款额高于5000 元的,只对5000 元部分进行补贴.高于5000 元部分不予补贴,已知月工资收入不高于3000 元时k=1000.(1)若某人工资为2000 元,贷款月还款额为5000 元,则他每月获得的贷款补贴是多少元?(2)对于月工资收入不高于3000 元的贷款买房的居民中.若贷款月还款额均为5000 元,则实际月收入最高为多少元?(结果均保留整数位,均不考虑扣税问题)21.(12分)对于函数y=f (x)和y=g (x ),若存在区间A,使|f(x)﹣g(x)|≤1 在区间 A 上恒成立,则称区间 A 是函数y=f (x)和y=g (x )的“公共邻域”.设函数f (x)=a x+3a (a>0,a≠1)的反函数为y=f﹣1(x),函数y=g (x )的图象与函数y=f﹣1(x)的图象关于点(a,0)对称.(1)求函数y=f﹣1(x)和y=g (x )的解析式;(2)若a=2,求函数y=g (﹣x)+f﹣1(x)的定义域;(3)是否存在实数a,使得区间[a+2,a+3]是y=f﹣1(x)和y=g (﹣x)的“公共邻域”,若存在,求出a 的取值范围;若不存在,说明理由.2016-2017学年上海市浦东新区建平中学高一(上)期末数学试卷参考答案与试题解析一、填空题:(每小题3分,共36分)1.(3分)集合A={﹣1,a},B={4,a2},若A U B={0,﹣1,4},则a 的值为0.【解答】解:集合A={﹣1,a},B={4,a2},若AUB={0,﹣1,4},则a=a2=0,∴a的值为0.故答案为:0.2.(3分)函数f (x )=,g (x )=,则f (x)⋅g (x )= 2(x﹣1)(x≠﹣3,x≠0).【解答】解:f (x )=,g (x )=,∴f (x)⋅g (x )=•=2(x﹣1),故答案为:2(x﹣1).,(x≠﹣3,x≠0).3.(3分)全集U=R,且A={x|﹣x2+x+6≥0},B={x||x﹣3|﹣4>0},则∁U(A∩B)={x|x<﹣2或x≥﹣1} .【解答】解:全集U=R,A={x|﹣x2+x+6≥0}={x|x2﹣x﹣6≤0}={x|﹣2≤x≤3},B={x||x﹣3|﹣4>0}={x||x﹣3|>4}={x|x>7或x<﹣1},A∩B={x|﹣2≤x<﹣1},∴∁U(A∩B)={x|x<﹣2或x≥﹣1}.故答案为:{x|x<﹣2或x≥﹣1}.【解答】解:∵函数g (x)=1﹣2x,f[g(x)]=,∴f ()=f[g()]==﹣1.故答案为:﹣1.5.(3分)不等式x﹣1>x4的解集是∅.【解答】解:根据题意,令g(x)=x4﹣x+1,x﹣1>x4⇒x4﹣x+1<0⇒g(x)<0,则g(x)的导数为g′(x)=4x3﹣1,令g′(x)=4x3﹣1=0,解可得x=,分析可得:当x<,有g′(x)=4x3﹣1<0,即函数g(x)在(﹣∞,)为减函数,当x>,有g′(x)=4x3﹣1>0,即函数g(x)在(,+∞)为增函数,则函数g(x)在最小值为g()=﹣+1>1,则有g(x)>0恒成立,不等式x﹣1>x4的解集为∅;故答案为:∅6.(3分)命题“若一个函数定义域不对称,则该函数不是偶函数.”的逆否命题是若一个函数是偶函数,则该函数的定义域对称..【解答】解:命题的逆否命题为:若一个函数是偶函数,则该函数的定义域对称.故答案为:若一个函数是偶函数,则该函数的定义域对称.7.(3分)函数y=x2+3(x≤0)的反函数是y=﹣(x≥3).【解答】解:∵y=x2+3(x≤0),∴x=﹣,y≥3,故反函数为y=﹣(x≥3),8.(3分)若f (x)=(m﹣1)x2﹣mx+3(x∈R)是偶函数,则函数g (x )=的零点是﹣1.【解答】解:若函数f(x)是偶函数,则f(﹣x)=f(x),即(m﹣1)x2+mx+3=(m﹣1)x2﹣mx+3,则mx=﹣mx,即m=﹣m,得m=0,则g(x)==x+1,(x≠1),由g(x)=0得x=﹣1,则为函数g(x)的零点是﹣1,故答案为:﹣19.(3分)函数y=的值域是(0,1] .【解答】解:由f(x)=x2+2x+2=(x+1)2+1,可得f(x)的最小值为1,∴y=的值域为(0,1].故答案为:(0,1].10.(3分)函数y=|(log2|x﹣1|)|(x<1)的单调递增区间是(0,1).【解答】解:函数y=|(log2|x﹣1|)|(x<1)=|log2(1﹣x)|,令t=log2(1﹣x),则y=|t|,t<0,解得0<x<1,由t在(0,1)递减,y在(﹣∞,0)递减,由复合函数的单调性:同增异减,可得所求增区间为(0,1).故答案为:(0,1).11.(3分)已知关于x 的不等式在[2,5]有实数解,则实数a的取值【解答】解:根据题意,⇒>0⇒[(a﹣1)x﹣(a+1)](x+1)>0,分5种情况讨论:①,当a=1时,不等式可以变形为x+1<0,即x<﹣1,在[2,5]无解,不合题意,②,当a>1或时,不等式变形为(x﹣)(x+1)>0,其解集为{x|x<﹣1或x>},若不等式即(x﹣)(x+1)>0在[2,5]有实数解,则有<5,解可得:a>,③,当0<a<1时,有不等式变形为(x﹣)(x+1)<0,其解集为{x|x<或x>﹣1},不等式即(x﹣)(x+1)>0在[2,5]有实数解,④,当a=0时,不等式可以变形为0>1,无解,不符合题意;⑤,当a<0时,不等式变形为(x﹣)(x+1)<0,其解集为{x|x<﹣1或x >},若不等式即(x﹣)(x+1)>0在[2,5]有实数解,则有<5,解可得:a>,又由a<0,则a存在,综合可得:a的取值范围是{a|a>或0<a<1}.12.(3分)把指数函数y=2x图像向下平移1个单位得到函数y=h (x)的图像,函数+a(m>0,m≠1)满足g (7)﹣g (1)=若函数f (x )=在(﹣∞,+∞)上是减函数,则实数a由+a,且g (7)﹣g (1)=,得=,∴m=.则g(x)=.由f (x )=在(﹣∞,+∞)上是减函数,得f (x )=在(﹣∞,+∞)上是减函数,∴,解得a≤0.∴实数 a 的取值范围是(﹣∞,0].故答案为:(﹣∞,0].二、选择题:(每小题3分,共12分)13.(3分)如果x<0<y,则下列各式中成立的是()A.|x|<|y|B.|x\>|y|C.|x|=|y| D.以上都有可能【解答】解:由x<0<y,可得:|x|<|y|,|x|>|y|,|x|=|y|,因此以上都有可能.故选:D.14.(3分)设p,q 是两个命题:p:log(|x|﹣1)>0,q:22+x﹣22﹣x≤15,则p 是q 的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:由log(|x|﹣1)>0得0<|x|﹣1<1,即1<|x|<2,得1<x <2或﹣2<x<﹣1,由22+x﹣22﹣x≤15得4•2x﹣≤15,即4(2x)2﹣15•2x﹣4≤0,即(2x﹣4)(4•2x+1)≤0,得2x≤4,则x≤2,则p 是q 的充分不必要条件,15.(3分)设函数f (x )=,g (x)=ax2+bx (a,b∈R,a≠0),若y=f (x)的图象与y=g (x)图象有且仅有两个不同的公共点A(x1,y1),B (x2,y2),则下列判断正确的是()A.当a<0 时,x1+x2<0,y1+y2>0B.当a<0 时,x1+x2<0,y1+y2<0C.当a>0 时,x1+x2<0,y1+y2>0D.当a>0 时,x1+x2>0,y11+y2>0【解答】解:当a<0时,作出两个函数的图象,若y=f(x)的图象与y=g(x)图象有且仅有两个不同的公共点,必然是如图的情况,因为函数f(x)=是奇函数,所以A与A′关于原点对称,显然x2>﹣x1>0,即x1+x2>0,﹣y1>y2,即y1+y2<0,同理,当a>0时,有x1+x2<0,y1+y2>0故选:C.16.(3分)学生李明用手机加了一个有关高中数学学习的微信群,群里面许多数学爱好者经常发一些有关高中数学学习的心得和经验,但是,这些心得和经验的正确性无法保证,下面是李明搜集到的有关函数的一些结论:(1)若函数y=f (﹣x)有反函数,则其反函数可表示为y=f﹣1(﹣x);(2)函数y=f (x )在其定义域内的最大值为M,最小值为m,则其值域(3)定义在R 上的函数y=f (x),若对任意的实数x,y 等式 f (x)﹣f (y)=均成立,则函数y=f (x)一定是奇函数;(4)定义在R 上的函数y=f (x),若对任意的实数x 都有 f (x)﹣f (|x|)=0,则函数y=f (x)一定没有反函数.李明的同学们对以上四个结论有以下不同判断,其中判断正确的是()A.都是错误的B.只有一个是正确的C.两对两错D.只有一个是错误的【解答】解:对于(1),设(x,y)是f(﹣x)的任意一点,则y=f(﹣x),∴﹣x=f﹣1(y),即x=﹣f﹣1(y),∴y=f(﹣x)的反函数为y=﹣f﹣1(x).故(1)错误.对于(2),若f(x)在定义域上不连续,则结论不成立,故(2)错误.对于(3),令y=x,可得f (x)﹣f (x)==0,∴f(0)=0,再令x=0可得:0﹣f(y)=,即f(﹣y)=﹣f(y)恒成立,∴f(x)是奇函数,故(3)正确.对于(4),若f (x)﹣f (|x|)=0,即f(|x|)=f(x),∴f(x)是偶函数,∴f(x)没有反函数,故(4)正确.故选:C.三、解答题(10+10+10+12,共52分)17.(10分)解下列不等式或方程(1)(2).【解答】解:(1)可化为,整理可得,即(x﹣1)(x﹣2)<0,解得1<x<2,不等式解集为{x|1<x<2};∴x2﹣3x﹣6=4,解得x=5或x=﹣2.18.(10分)已知m 为实常数,求函数y=log22x﹣2m log2x﹣3的最小值.【解答】解:令t=log2x,由,知t≥﹣1.∴y=log22x﹣2m log2x﹣3化为y=t2﹣2m t﹣3,其对称轴方程为t=>0.∴当t=2m﹣1时,y有最小值为(2m﹣1)2﹣2m•2m﹣1﹣3=﹣22m﹣2﹣3.19.(10分)已知函数y=.(1)判断该函数奇偶性并证明;(2)利用函数单调性定义证明该函数在(﹣∞,+∞)上为增函数.【解答】解:函数的定义域是R,令y=f(x),(1)f(﹣x)==﹣=﹣f(x),故函数y=f(x)是奇函数;(2)设x1<x2,则f(x1)﹣f(x2)=﹣=∵x1<x2,∴x1﹣x2<0,x2﹣x1>0,∴<a0=1,>a0=1,故﹣<0,故f(x1)﹣f(x2)<0,故f(x)在R递增.20.(10分)已知某市最低工资标准为每月1800 元,为了解决该市房价过高的问题,政府计划对低收入的本市户籍居民购买第一套住房的,每月提供一定金额的贷款补贴,补贴规则:个人每月收入不高于6000 元的,对贷款进行补贴,补贴标准为:贷款月还款额×,其中k 是一个与月工资收入有关的常数,且贷款月还款额不得高于5000 元,贷款月还款额高于5000 元的,只对5000 元部分进行补贴.高于5000 元部分不予补贴,已知月工资收入不高于3000 元时k=1000.(1)若某人工资为2000 元,贷款月还款额为5000 元,则他每月获得的贷款补贴是多少元?(2)对于月工资收入不高于3000 元的贷款买房的居民中.若贷款月还款额均为5000 元,则实际月收入最高为多少元?(结果均保留整数位,均不考虑扣税问题)【解答】解:(1)∵个人每月收入不高于6000 元的,对贷款进行补贴,补贴标准为:贷款月还款额×,其中k 是一个与月工资收入有关的常数,且贷款月还款额不得高于5000 元,贷款月还款额高于5000 元的,只对5000 元部分进行补贴.高于5000 元部分不予补贴,月工资收入不高于3000 元时k=1000.某人工资为2000 元,贷款月还款额为5000 元,∴他每月获得的贷款补贴是:5000×=2500.(2)设月工资收入为x元,(1800≤x≤3000),则实际月收入:y=x+5000×≥2=4472元,当且仅当x=2236元时等号成立,∴当x=3000时,实际月收入最高为4667元.21.(12分)对于函数y=f (x)和y=g (x ),若存在区间A,使|f(x)﹣g(x)|≤1 在区间 A 上恒成立,则称区间 A 是函数y=f (x)和y=g (x )的“公共邻域”.设函数f (x)=a x+3a (a>0,a≠1)的反函数为y=f﹣1(x),函数y=g (x )的图象与函数y=f﹣1(x)的图象关于点(a,0)对称.(1)求函数y=f﹣1(x)和y=g (x )的解析式;(2)若a=2,求函数y=g (﹣x)+f﹣1(x)的定义域;(3)是否存在实数a,使得区间[a+2,a+3]是y=f﹣1(x)和y=g (﹣x)的“公共邻域”,若存在,求出a 的取值范围;若不存在,说明理由.【解答】解:(1)设y=a x+3a,则a x=y﹣3a,两边取对数得:x=log a(y﹣3a),所以f﹣1(x)=log a(x﹣3a);由函数y=g (x )的图象与函数y=f﹣1(x)的图象关于点(a,0)对称,可得g(x)=﹣log a(2a﹣x﹣3a),即为g(x)=﹣log a(﹣x﹣a);(2)a=2,函数y=g (﹣x)+f﹣1(x)=﹣log2(x﹣2)+log2(x﹣6),由x﹣2>0,且x﹣6>0,可得x>6,则函数的定义域为(6,+∞);(3)假设存在实数a,使得区间[a+2,a+3]是y=f﹣1(x)和y=g (﹣x)的“公共邻域”,因为x∈[a+2,a+3]时,函数有意义,所以(a+2)﹣3a=2﹣2a>0,所以0<a<1,由区间[a+2,a+3]是y=f﹣1(x)和y=g (﹣x)的“公共邻域”,可得|log a(x﹣3a)+log a(x﹣a)|≤1,设h(x)=log a(x﹣3a)+log a(x﹣a)=log a(x2﹣4ax+3a2),二次函数u=x2﹣4ax+3a2的对称轴为x=2a<2,所以u=x2﹣4ax+3a2在x∈[a+2,a+3]上为增函数,当x=a+2时,取得最小值4(1﹣a),当x=a+3时取得最大值3(3﹣2a),从而可得y=h(x)在闭区间[a+2,a+3]上的最小值与最大值分别为:log a3(3﹣2a),log a4(1﹣a),当x∈[a+2,a+3]时,恒有|log a(x﹣3a)+log a(x﹣a)|≤1成立的充要条件为:,即为,解得0<a≤.则存在实数a,且0<a≤,使得区间[a+2,a+3]是y=f﹣1(x)和y=g (﹣x)的“公共邻域”.。