第3讲不等式与不等式组(方程与不等式)讲义 (1) 祝林华
- 格式:doc
- 大小:101.00 KB
- 文档页数:4
2019版中考数学复习 第二章 方程(组)与不等式(组)讲义【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。
(系数不为0)的整式方程。
形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。
解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。
一般形式: ax+by=c ,有无数组解。
2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。
⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。
【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。
2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程) ③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。
不等式与不等式组全章教案第一章:不等式的概念与性质1.1 不等式的定义介绍不等式的基本概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。
通过实例理解不等式的表示方法,如2x > 3。
1.2 不等式的性质探讨不等式的基本性质,如不等式两边加(减)同一个数(式子)不等号方向不变等。
通过例题演示不等式性质的应用,并进行练习。
第二章:不等式的解法2.1 简单不等式的解法介绍解简单不等式的方法,如直接解、移项、合并同类项等。
通过例题讲解解简单不等式的步骤,并进行练习。
2.2 不等式组的解法介绍解不等式组的方法,如图像法、代数法等。
通过例题讲解解不等式组的步骤,并进行练习。
第三章:不等式应用题3.1 线性不等式应用题介绍线性不等式应用题的解法,如线性不等式表示的区域内的问题。
通过例题讲解线性不等式应用题的解法,并进行练习。
3.2 不等式组应用题介绍不等式组应用题的解法,如不等式组表示的区域内的问题。
通过例题讲解不等式组应用题的解法,并进行练习。
第四章:不等式的综合应用4.1 线性不等式的图像介绍线性不等式的图像表示方法,如斜率、截距等。
通过例题讲解线性不等式图像的绘制方法,并进行练习。
4.2 不等式组的图像介绍不等式组的图像表示方法,如可行域等。
通过例题讲解不等式组图像的绘制方法,并进行练习。
第五章:不等式的拓展与应用5.1 不等式的拓展知识介绍不等式的拓展知识,如拉格朗日乘数法等。
通过例题讲解不等式拓展知识的应用,并进行练习。
5.2 不等式在实际问题中的应用介绍不等式在实际问题中的应用,如优化问题等。
通过例题讲解不等式在实际问题中的应用方法,并进行练习。
第六章:不等式的标准形式6.1 不等式的标准形式介绍不等式的标准形式,包括一元不等式和多元不等式。
通过例题演示如何将不等式转换为标准形式,并进行练习。
6.2 不等式标准形式的重要性探讨不等式标准形式在解题和分析中的重要性。
通过例题展示不等式标准形式在解题中的应用,并进行练习。
不等式与不等式组全章教案第一章:不等式的概念与性质1.1 不等式的定义介绍不等式的概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。
通过实际例子,让学生理解不等式的表示方法,如2x > 7。
1.2 不等式的性质探讨不等式的基本性质,如两边加(减)同一个数(式子)不等号方向不变,两边乘(除)同一个正数不等号方向不变,两边乘(除)同一个负数不等号方向改变等。
通过例题和练习题,让学生熟练掌握不等式的性质。
第二章:不等式的解法2.1 解一元一次不等式介绍一元一次不等式的解法,如2x 3 > 7的解法。
通过步骤讲解和练习题,让学生掌握解一元一次不等式的方法。
2.2 解不等式组介绍不等式组的解法,理解“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则。
通过例题和练习题,让学生熟练解不等式组的方法。
第三章:实际问题与不等式3.1 实际问题转化为不等式引导学生将实际问题转化为不等式,如“小明比小红高”转化为“小明的身高>小红的身高”。
通过实际例子,让学生理解不等式在实际问题中的应用。
3.2 解不等式解决实际问题引导学生利用不等式解决实际问题,如“商店举行打折活动,商品原价大于500元才能享受8折优惠,求购买商品的最大支出”。
通过练习题,让学生掌握利用不等式解决实际问题的方法。
第四章:不等式的应用题4.1 应用题的类型及解法介绍不等式在应用题中的常见类型,如线性不等式、不等式组等。
通过例题和练习题,让学生熟悉不等式在应用题中的解法。
4.2 综合练习提供一系列综合练习题,让学生综合运用不等式的知识解决实际问题。
通过练习题,提高学生解决实际问题的能力。
第五章:不等式的复习与拓展5.1 不等式的复习复习本章所学的不等式的概念、性质、解法及应用题。
通过复习,巩固学生对不等式知识的理解和掌握。
5.2 不等式的拓展介绍不等式的一些拓展知识,如不等式的几何意义、不等式的变换等。
不等式与不等式组全章教案第一章:不等式的概念与性质1.1 不等式的定义介绍不等式的概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。
通过实际例子让学生感受不等式的意义和应用。
1.2 不等式的性质探讨不等式的基本性质,如:同向相加、反向相减、乘除性质等。
利用性质解简单的不等式问题,培养学生的逻辑思维能力。
第二章:一元一次不等式2.1 一元一次不等式的定义解释一元一次不等式的概念,理解不等式中的变量和系数。
通过实际例子让学生了解一元一次不等式的结构和特点。
2.2 一元一次不等式的解法介绍解一元一次不等式的方法,如:同向相加、反向相减、乘除性质等。
引导学生运用性质解一元一次不等式,提高学生的解题技能。
第三章:不等式组的解法3.1 不等式组的概念解释不等式组的意义,理解多个不等式的组合关系。
通过实际例子让学生感受不等式组的应用和重要性。
3.2 不等式组的解法介绍解不等式组的方法,如:同向相加、反向相减、乘除性质等。
引导学生运用性质解不等式组,提高学生的解题技能。
第四章:不等式的应用4.1 实际问题转化为不等式引导学生将实际问题转化为不等式,理解不等式在实际问题中的应用。
通过实际例子让学生感受不等式解决实际问题的过程和方法。
4.2 不等式的应用举例分析具体的不等式应用问题,引导学生运用不等式解决实际问题。
培养学生的实际问题解决能力和思维灵活性。
第五章:不等式的综合练习5.1 不等式综合练习题提供一系列不等式的综合练习题,巩固学生对不等式概念、性质和解法的理解。
引导学生运用所学的知识和方法解决实际问题,提高学生的解题技能。
5.2 解答与解析提供练习题的解答和解析,帮助学生理解解题过程和方法。
分析学生的解题错误和不足之处,指导学生改进解题策略。
第六章:不等式的几何意义6.1 不等式与数轴介绍不等式在数轴上的表示方法,理解不等式与数轴之间的关系。
通过实际例子让学生感受不等式在数轴上的表示和应用。
《不等式与不等式组》全章教案一、教学目标1. 知识与技能:(1)理解不等式的概念,掌握不等式的基本性质;(2)掌握不等式组的解法,能解决实际问题中的不等式组问题。
2. 过程与方法:(1)通过观察、实验、探究等活动,培养学生的抽象思维能力;(2)学会用不等式表示实际问题,提高解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生勇于探索、积极向上的科学精神;(2)培养学生合作交流、尊重他人的团队意识。
二、教学内容1. 不等式的概念与性质(1)不等式的概念:用“>”、“<”、“≥”、“≤”等不等号表示两个数之间的大小关系;(2)不等式的基本性质:不等式两边加(减)同一个数(或式子),不等号的方向不变;不等式两边乘(除)同一个正数,不等号的方向不变;不等式两边乘(除)同一个负数,不等号的方向改变。
2. 不等式的解法(1)同大取大;(2)同小取小;(3)大小小大中间找;(4)大大小小找不到。
3. 不等式组的概念与解法(1)不等式组:由多个不等式组成的集合;(2)不等式组的解法:分别求出每个不等式的解集,根据大小关系确定不等式组的解集。
三、教学重点与难点1. 教学重点:(1)不等式的概念与性质;(2)不等式的解法;(3)不等式组的解法。
2. 教学难点:(1)不等式组的解法;(2)解决实际问题中的不等式组问题。
四、教学方法1. 情境教学法:通过生活实例引入不等式概念,激发学生兴趣;2. 探究教学法:引导学生通过实验、观察、讨论等方式,发现不等式的性质;3. 案例教学法:分析实际问题,引导学生学会用不等式表示问题,并解决实际问题。
五、教学安排1. 第1-2课时:不等式的概念与性质;2. 第3-4课时:不等式的解法;3. 第5-6课时:不等式组的解法;4. 第7-8课时:不等式组在实际问题中的应用;六、教学评价1. 课堂评价:通过提问、回答、讨论等方式,了解学生对不等式与不等式组的基本概念、性质和解法的掌握情况;2. 作业评价:通过布置练习题,检验学生对不等式与不等式组知识的运用能力;3. 实践评价:通过解决实际问题,评价学生运用不等式与不等式组解决实际问题的能力。
不等式与不等式组全章教案一、教学目标1. 知识与技能:(1)理解不等式的概念,掌握不等式的基本性质;(2)理解不等式组的概念,掌握不等式组的解法;(3)能够运用不等式和不等式组解决实际问题。
2. 过程与方法:(1)通过观察、实验、探究等活动,培养学生的抽象思维能力;(2)利用不等式和不等式组模型解决实际问题,提高学生的应用能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生学习数学的积极性;(2)培养学生勇于探索、合作交流的精神,提高学生的综合素质。
二、教学内容1. 不等式的概念与性质(1)不等式的定义;(2)不等式的基本性质(同向相加、反向相减、同向相乘、反向相除)。
2. 不等式的解法(1)口诀法解一元一次不等式;(2)图像法解线性不等式组;(3)代数法解不等式。
三、教学重点与难点1. 教学重点:(1)不等式的概念与性质;(2)不等式的解法;(3)不等式组的解法。
2. 教学难点:(1)不等式组的解法;(2)利用不等式和不等式组解决实际问题。
四、教学策略与方法1. 教学策略:(1)采用问题驱动法,引导学生探索不等式的性质;(2)利用数形结合法,帮助学生理解不等式组的解法;(3)设计实际问题,培养学生运用不等式和不等式组解决问题的能力。
2. 教学方法:(1)讲解法:讲解不等式的概念、性质和解法;(2)实践法:让学生动手解不等式和不等式组;(3)讨论法:分组讨论,合作解决问题。
五、教学评价1. 过程性评价:观察学生在课堂上的参与程度、提问回答情况,了解学生对不等式和不等式组的理解程度;2. 终结性评价:布置课后练习题,检查学生对不等式和不等式组知识的掌握情况;3. 综合性评价:通过解决实际问题,评价学生运用不等式和不等式组解决问题的能力。
六、教学计划与安排1. 课时分配:(1)不等式的概念与性质:2课时;(2)不等式的解法:3课时;(3)不等式组的解法:3课时;(4)实际问题与不等式(不等式组):2课时。
不等式与不等式组一、知识结构图二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。
不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。
3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。
4、解不等式:求不等式的解集的过程,叫做解不等式。
⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(3215、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。
规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。
(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。
用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。
用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb ca >);如果0,><cb a ,不等号那么bc ac <(或cb ca <);不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。
用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb ca <);如果0,<<cb a ,那么bc ac >(或cb ca >);解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式。
不等式与不等式组全章教案一、教学目标知识与技能:使学生掌握不等式的概念、性质和基本运算,能够解一元一次不等式;理解不等式组的含义,学会解不等式组,并能解决实际问题。
过程与方法:通过观察、实验、探究、归纳等方法,让学生体会数学与现实生活的联系,提高学生解决实际问题的能力。
情感态度与价值观:培养学生积极参与数学学习的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的重要性。
二、教学内容1. 不等式的概念与性质(1)不等式的概念:介绍不等式的定义,让学生理解不等式表示两个数之间的大小关系。
(2)不等式的性质:讲解不等式的基本性质,如加减乘除不等式的性质,以及不等式两边乘以或除以同一个负数时不等号的方向改变等。
2. 不等式的基本运算(1)不等式的加减运算:讲解不等式加减运算的规则,让学生能够熟练进行不等式的加减运算。
(2)不等式的乘除运算:讲解不等式乘除运算的规则,让学生能够熟练进行不等式的乘除运算。
3. 一元一次不等式的解法(1)不等式的解集:讲解如何求解一元一次不等式的解集,让学生能够理解解集的含义。
(2)不等式的解法:讲解如何利用数轴求解一元一次不等式,让学生能够熟练运用数轴求解不等式。
4. 不等式组的解法(1)不等式组的概念:介绍不等式组的定义,让学生理解不等式组表示多个不等式之间的大小关系。
(2)不等式组的解法:讲解如何解不等式组,让学生能够熟练解不等式组,并求出解集。
三、教学重点与难点重点:不等式的概念、性质和基本运算,一元一次不等式的解法,不等式组的解法。
难点:不等式组的解法,特别是多个不等式组合时的解法。
四、教学方法与手段采用问题驱动法、案例分析法、合作学习法等,利用多媒体课件、黑板、教具等教学手段,生动形象地展示教学内容,引导学生主动参与学习过程。
五、教学安排本章内容安排如下:第1课时:不等式的概念与性质第2课时:不等式的基本运算(加减运算)第3课时:不等式的基本运算(乘除运算)第4课时:一元一次不等式的解法第5课时:一元一次不等式的应用第6课时:不等式组的解法(含练习)第7课时:不等式组的应用(含练习)第8课时:复习与总结第9课时:练习与提高第10课时:课堂小结与作业布置六、教学内容6. 不等式的应用(1)实际问题与不等式:通过生活实例,让学生了解如何将实际问题转化为不等式问题。
《不等式与不等式组》全章教案第一章:不等式的概念与性质1.1 不等式的定义理解不等式的概念,掌握不等式的基本形式。
学习不等式的读写方法,理解“大于”、“小于”、“大于等于”、“小于等于”等符号的含义。
1.2 不等式的性质学习不等式的基本性质,如传递性、反射性、同向相加等。
掌握不等式性质的证明方法,培养逻辑思维能力。
第二章:不等式的运算2.1 不等式的加减法学习不等式加减法的规则,理解同向相加、反向相减的原则。
掌握不等式加减法的运算技巧,提高解题速度。
2.2 不等式的乘除法学习不等式乘除法的规则,了解乘除法对不等式方向的影响。
掌握不等式乘除法的运算技巧,提高解题能力。
第三章:不等式的解法3.1 简单不等式的解法学习解简单不等式的方法,如直接解、移项、合并同类项等。
掌握解简单不等式的步骤,提高解题效率。
3.2 不等式组的解法学习解不等式组的方法,了解解不等式组的原则。
掌握解不等式组的步骤,提高解题能力。
第四章:不等式应用题4.1 线性不等式应用题学习线性不等式应用题的解法,如利润问题、分配问题等。
掌握线性不等式应用题的解题技巧,提高解题能力。
4.2 不等式组应用题学习不等式组应用题的解法,了解解题原则。
掌握不等式组应用题的解题技巧,提高解题能力。
第五章:不等式的拓展与提高5.1 不等式的转换与推导学习不等式的转换与推导方法,如不等式的等价变换、不等式的恒等变形等。
掌握不等式转换与推导的技巧,提高解题能力。
5.2 不等式的应用拓展学习不等式在实际问题中的应用,如优化问题、存在性问题等。
掌握不等式应用的拓展方法,提高解题能力。
第六章:不等式的综合应用6.1 不等式与函数的关系学习如何利用不等式描述函数的性质,如单调性、极值等。
掌握通过不等式分析函数图像的方法。
6.2 不等式与方程的结合学习如何将不等式与方程结合,解决实际问题。
掌握解不等式方程组的方法和技巧。
第七章:不等式的优化问题7.1 线性规划的基本概念学习线性规划的基本概念,了解优化问题的背景。
不等式及不等式组教案教学目标:1. 理解不等式的概念及其表示方法。
2. 学会解一元不等式。
3. 掌握不等式组的解法及其应用。
教学内容:第一章:不等式的概念及表示方法1.1 不等式的概念1.2 不等式的表示方法1.3 不等式的性质第二章:解一元不等式2.1 解一元不等式的基本步骤2.2 解一元不等式的注意事项2.3 解一元不等式的应用第三章:不等式组的解法3.1 不等式组的定义3.2 不等式组的解法步骤3.3 不等式组的解集表示方法第四章:不等式组的应用4.1 不等式组在实际问题中的应用4.2 不等式组的综合练习4.3 不等式组的问题拓展第五章:不等式与方程的关系5.1 不等式与方程的联系5.2 不等式与方程的区别5.3 不等式在方程解决中的应用教学方法:1. 采用讲授法讲解不等式的概念、性质及解法。
2. 利用案例分析法讲解不等式组的应用。
3. 运用练习法巩固所学知识,提高解题能力。
教学评估:1. 课堂练习:每章结束后进行课堂练习,检验学生对知识的掌握程度。
2. 课后作业:布置相关作业,巩固所学知识。
3. 单元测试:每个单元结束后进行测试,评估学生对该单元知识的掌握情况。
教学资源:1. 教案、PPT课件。
2. 练习题及答案。
3. 相关案例资料。
教学进度安排:1. 第一章:2课时2. 第二章:3课时3. 第三章:2课时4. 第四章:3课时5. 第五章:2课时第六章:不等式的进一步性质6.1 不等式的对称性6.2 不等式的传递性6.3 不等式的恒等变形第七章:不等式与函数的关系7.1 一次函数与不等式7.2 二次函数与不等式7.3 不等式在函数图像中的应用第八章:不等式解决实际问题8.1 应用不等式解决几何问题8.2 应用不等式解决经济问题8.3 应用不等式解决其他实际问题第九章:不等式的扩展与应用9.1 不等式与其他数学概念的关系9.2 不等式在科学研究中的应用9.3 不等式在生活中的应用10.2 不等式解题技巧的提高10.3 不等式在未来学习中的应用教学方法:1. 采用案例分析法,结合实际问题讲解不等式与函数的关系。
《不等式与不等式组》全章教案第一章:不等式的概念与性质1.1 不等式的定义学习不等式的基本概念,理解不等式的表示方法。
举例说明不等式的含义和应用。
1.2 不等式的性质学习不等式的基本性质,如传递性、同向可加性等。
进行不等式性质的证明和练习。
第二章:一元一次不等式2.1 一元一次不等式的解法学习一元一次不等式的解法,包括同号解法、异号解法和绝对值解法。
解决实际问题中的一元一次不等式。
2.2 一元一次不等式的应用学习一元一次不等式在实际问题中的应用。
解决实际问题中的一元一次不等式。
第三章:不等式组的概念与解法3.1 不等式组的定义学习不等式组的概念,理解不等式组的表示方法。
举例说明不等式组的含义和应用。
3.2 不等式组的解法学习不等式组的解法,包括大小小大中间找、大大小小找不到等方法。
解决实际问题中的不等式组。
第四章:二元一次不等式与不等式组4.1 二元一次不等式的解法学习二元一次不等式的解法,包括图像法、表格法等。
解决实际问题中的二元一次不等式。
4.2 不等式组的解法学习二元一次不等式组的解法,包括图像法、表格法等。
解决实际问题中的二元一次不等式组。
第五章:不等式的应用5.1 不等式在实际问题中的应用学习不等式在实际问题中的应用,如最大值、最小值问题等。
解决实际问题中的不等式。
5.2 不等式组的应用学习不等式组在实际问题中的应用。
解决实际问题中的不等式组。
第六章:不等式的性质与变换6.1 不等式的基本性质复习不等式的基本性质,如对称性、传递性等。
进行不等式性质的证明和练习。
6.2 不等式的变换学习不等式的变换规则,如加减乘除等。
进行不等式变换的练习。
第七章:不等式与函数7.1 不等式与一次函数学习一次函数的图像与不等式的关系。
解决实际问题中的一次函数不等式。
7.2 不等式与二次函数学习二次函数的图像与不等式的关系。
解决实际问题中的二次函数不等式。
第八章:不等式的综合应用8.1 不等式在几何中的应用学习不等式在几何问题中的应用,如线性不等式与平面区域等。
《不等式与不等式组》全章教案第一章:不等式的概念与性质1.1 不等式的定义理解不等式的基本概念,掌握不等式的书写方法。
了解不等式与等式的区别与联系。
1.2 不等式的性质学习不等式的基本性质,如对称性、传递性等。
通过实例演示不等式的性质,并能够运用性质解决实际问题。
第二章:不等式的解法2.1 简单不等式的解法学习解一元一次不等式,掌握解法步骤和注意事项。
练习解一些实际问题中的简单不等式。
2.2 不等式组的解法理解不等式组的概念,学习解不等式组的方法。
掌握解不等式组的步骤,能够正确解不等式组。
第三章:不等式与函数3.1 不等式与线性函数学习线性函数的图像与不等式之间的关系。
利用函数图像解决一些与不等式相关的问题。
3.2 不等式与二次函数学习二次函数的图像与不等式之间的关系。
利用二次函数图像解决一些与不等式相关的问题。
第四章:不等式的应用4.1 线性不等式的应用学习线性不等式在实际问题中的应用。
练习解决一些线性不等式应用问题。
4.2 线性不等式组的应用学习线性不等式组在实际问题中的应用。
练习解决一些线性不等式组应用问题。
第五章:不等式的综合练习5.1 不等式综合练习题设计一些综合练习题,巩固所学的不等式知识。
解答综合练习题,提高解题能力。
第六章:不等式的拓展6.1 不等式与绝对值理解绝对值不等式的概念,学习解绝对值不等式的方法。
练习解一些含有绝对值的不等式,掌握解题技巧。
6.2 不等式与分式学习分式不等式的概念,掌握解分式不等式的方法。
练习解一些含有分式的不等式,提高解题能力。
第七章:不等式与不等式组的问题解决7.1 不等式与实际问题学习如何将实际问题转化为不等式问题。
练习解决一些与不等式相关的实际问题。
7.2 不等式组与实际问题学习如何将实际问题转化为不等式组问题。
练习解决一些与不等式组相关的实际问题。
第八章:不等式的证明8.1 不等式的证明方法学习不等式的证明方法,如比较法、综合法等。
练习使用不同的方法证明一些简单的不等式。
不等式与不等式组教案第一章:不等式的概念与性质1.1 不等式的定义介绍不等式的概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。
举例说明不等式的形式,如2x > 7。
1.2 不等式的性质探讨不等式的基本性质,如:不等式两边加(减)同一个数(式子),不等号方向不变。
不等式两边乘(除)同一个正数,不等号方向不变。
不等式两边乘(除)同一个负数,不等号方向改变。
通过例题演示和练习,让学生熟练掌握不等式的性质。
第二章:一元一次不等式2.1 一元一次不等式的概念解释一元一次不等式的定义,形如ax > b 的不等式,其中a 和b 是已知数,x 是未知数。
2.2 一元一次不等式的解法介绍解一元一次不等式的方法,包括:将不等式转化为等价的形式。
移项,将未知数x 放在不等式的一边。
合并同类项,化简不等式。
确定未知数的取值范围。
通过例题演示和练习,让学生掌握解一元一次不等式的步骤。
第三章:不等式组3.1 不等式组的定义解释不等式组的概念,即由多个不等式组成的集合,用括号括起来表示。
3.2 不等式组的解法介绍解不等式组的方法,包括:分别解出每个不等式的解集。
确定不等式解集的交集,即为不等式组的解集。
通过例题演示和练习,让学生学会解不等式组的方法。
第四章:不等式的应用4.1 不等式在实际问题中的应用通过实际问题,让学生了解不等式在生活中的应用,如购物、分配等。
4.2 不等式组的实际应用举例说明不等式组在实际问题中的应用,如平面区域的限制条件等。
通过练习题,让学生学会将实际问题转化为不等式或不等式组,并求解。
第五章:不等式的综合练习5.1 综合练习题设计一些综合性的练习题,涵盖不等式的概念、性质、解法以及应用等方面。
5.2 练习题解答与解析提供练习题的解答和解析,帮助学生巩固所学知识,提高解题能力。
通过这些练习,使学生更好地掌握不等式的相关知识。
第六章:不等式的图形表示6.1 不等式的图像介绍如何将一元一次不等式表示在坐标系中,解释不等式与图像之间的关系。
不等式与不等式(组)
热点一:概念与基本性质
1. 下列四个命题:若a <b <0,则下列式子:①a +1<b +2;② ③a +b <ab ④ 11a b
< 中正确的是 .
热点二:含参不等式(组)
2.已知关于x 、y 的方程组⎩
⎨⎧=-=+m y x y x 212,当m 取_________时,这个方程组的解中,x 大于1,y 不小于-1.
3.已知关于x 的不等式组⎩
⎨⎧>--≥-0125a x x 无解,则a 的取值范围是 . 4.(2008 湖北) 若不等式组5300
x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是
_______________.
5.(2010 山东) 若关于x 的不等式0721x m x -<⎧⎨-⎩
,≤的整数解共有4个,则m 的取值范围是_________________.
6.(2010 浙江) 已知a 、b 为实数,则解可以为 – 2 < x < 2的不等式组是( )
A .⎩⎨⎧>>11bx ax
B . ⎩⎨⎧<>11bx ax
C . ⎩⎨⎧><11bx ax
D . ⎩
⎨⎧<<11bx ax
1a b >
热点三:方案设计
7.(2010 广西) 某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.
(1)该校初三年级共有多少人参加春游?
(2)请你帮该校设计一种最省钱
...的租车方案.
8.(2011四川内江)某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元.
(1)每台电脑机箱、液晶显示器的进价各是多少元?
(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?
9.(2009 四川)为了整治环境卫生,某地区需要一种消毒药水3250瓶,药业公司接到通知后马上采购两种专用包装箱,将药水包装后送往该地区.已知一个大包装箱价格为5元,可装药水10瓶;一个小包装箱价格为3元,可以装药水5瓶.该公司采购的大小包装箱共用了1700元,刚好能装完所需药水.
(1)求该药业公司采购的大小包装箱各是多少个?
(2)药业公司准备派A、B两种型号的车共10辆运送该批药水,已知A型车每辆最多可同时装运30大箱和10小箱药水;B型车每辆最多可同时装运20大箱和40小箱消毒药水,要求每辆车都必须同时装运大小包装箱的药水,求出一次性运完这批药水的所有车型安排方案.
(3)如果A型车比B型车省油,采用哪个方案最好?
10.(2011广东茂名)某养鸡场计划购买甲、乙两种小鸡苗共2 000只进行饲养,
已知甲种小鸡苗每只2元,乙种小鸡苗每只3元.
(1)若购买这批小鸡苗共用了4 500元,求甲、乙两种小鸡苗各购买了多少只?(2)若购买这批小鸡苗的钱不超过4 700元,问应选购甲种小鸡苗至少多少只?(3)相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96%且买小鸡的总费用最小,问应选购甲、乙两种小鸡苗各多少只?总费用最小是多少元?
11.(2010 内蒙古鄂尔多斯) 在实施“中小学校舍安全工程”之际,某市计划对
A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.
(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?
(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所.。