闵行区2014-2015学年八年级第二学期期末数学试卷2015.6
- 格式:doc
- 大小:234.50 KB
- 文档页数:6
八年级期末数学试卷一、请仔细地选一选(以下每道题只有一个正确的选项,请把正确选项的代号填入答题栏内,每小题3分,共30分)1.(3分)下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+92.(3分),,,,a+中,分式的个数有()A.2个B.3个C.4个D.5个3.(3分)(2006•襄阳)不等式组的解集在数轴上应表示为()A.B.C.D.4.(3分)下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡直角都相等.其中真命题的个数的是()A.1个B.2个C.3个D.4个5.(3分)下列图形中,是相似形的是()A.所有平行四边形B.所有矩形C.所有菱形D.所有正方形6.(3分)△ABC∽△A′B′C′,且相似比为2:3,则它们的面积比等于()A.2:3 B.3:2 C.4:9 D.9:47.(3分)方程的解为增根,则增根可能是()A.x=2 B.x=0 C.x=﹣1 D.x=0或x=﹣18.(3分)在比例尺为l:300000的某市地图上,A,B两地相距5cm,则A、B之间的实际距离为()A.15km B.1.5km C.15000km D.1500000km9.(3分)为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计、下列判断:①这种调查方式是抽样调查;②800名学生的数学成绩是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个10.(3分)(1999•南京)甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.二、请认真填一填(每小题3分,共15分)11.(3分)(2006•衡阳)化简:结果是_________.12.(3分)(2004•芜湖)对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:=10,S甲2=0.02;机床乙:乙=10,S乙2=0.06,由此可知:_________(填甲或乙)机床性能好.甲13.(3分)不等式3(x+1)≥5x﹣3的正整数解是_________.14.(3分)已知=,则分式的值是_________.15.(3分)如图,P是△ABC中边AB上一点,连接CP,有如下条件:①∠ACP=∠B,②∠APC=∠ACB,③AC2=AP•AB,④=,其中能判定△ACP∽△ABC的条件是_________(填序号).三、解答题(16、19、21题个8分,17题6分,18、22题个10分,20题5分,共55分)16.(8分)将下列各式分解因式:(1)x2y2+6xy+9(2)2x3﹣18x.17.(6分)(2006•武汉)先化简,再求值:,其中x=4.18.(10分)解下列不等式组,并把解集在数轴上表示出来(1);(2).19.(8分)6月5日是世界环保日,为了让学生增强环保意识,了解环保知识,某中学政教处举行了一次八年级“环保知识竞赛”,共有900名学生参加了这次活动,为了了解该次竞赛成绩情况,从中抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,请你根据下面还未完成的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围的人数最多?(不要求说明理由).(4)若成绩在90分以上(不含90分)为优秀,则该校八年级参赛学生成绩优秀的约为多少人?频率分布表分组频数频率50.5﹣60.5 4 0.0860.5﹣70.5 8 0.1670.5﹣80.5 10 0.2080.5﹣90.5 16 0.3290.5﹣100.5合计20.(5分)看图填空:如下图左,∠A+∠D=180°(已知)∴_________∥_________(_________)∴∠1=_________(_________)∵∠1=65°(已知)∴∠C=65°.21.(8分)在“情系玉树”捐款活动中,某同学对八年级的(1)、(2)两班的捐款情况进行统计得到如下三条信息:信息一:(1)班共捐款300元,(2)班共捐款232元;信息二:(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的;信息三:(1)班比(2)多2人;请你根据以上三条信息,求出(1)班平均每人捐款多少元?22.(10分)如图,在矩形ABCD中,AB=4,AD=10.一把三角尺的直角顶点P在AD上滑动时(点P与A、D 不重合),一直角边始终经过点C,另一直角边与AB交于点E.(1)证明△DPC∽△AEP;(2)当∠CPD=30°时,求AE的长;(3)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.期末数学试卷参考答案与试题解析一、请仔细地选一选(以下每道题只有一个正确的选项,请把正确选项的代号填入答题栏内,每小题3分,共30分)1.(3分)下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+9考点:因式分解-运用公式法.分析:能用平方差公式分解因式的式子特点是:两项平方项,符号相反.解答:解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故错误;D、﹣x2+9能用平方差公式分解因式,故正确.故选D.点评:本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.2.(3分),,,,a+中,分式的个数有()A.2个B.3个C.4个D.5个考点:分式的定义.专题:存在型.分析:根据分式的定义进行解答即可.解答:解:这一组式子中,,a+中分母含有未知数,故是分式.故选A.点评:本题考查的是分式的定义,解答此题的关键是熟知π是一个常数,这是此题的易错点.3.(3分)(2006•襄阳)不等式组的解集在数轴上应表示为()A.B.C.D.考点:在数轴上表示不等式的解集.分析:根据不等式画出数轴,实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.解答:解:不等式组的解集是≤x<2,在数轴上可表示为:故应选B.点评:本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(3分)下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡直角都相等.其中真命题的个数的是()A.1个B.2个C.3个D.4个考点:命题与定理.专题:应用题.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:①对顶角相等,是真命题,②只有在两直线平行时,同位角才相等,假命题,③等角的余角相等,是真命题,④直角都等于90°,是真命题,真命题有3个,故选C.点评:本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假,关键是要熟悉课本中的性质定理,难度适中.5.(3分)下列图形中,是相似形的是()A.所有平行四边形B.所有矩形C.所有菱形D.所有正方形考点:相似图形.专题:常规题型.分析:根据相似图形的定义,对选项进行一一分析,排除错误答案.解答:解:A、所有平行四边形,属于形状不唯一确定的图形,不一定相似,故错误;B、所有矩形,属于形状不唯一确定的图形,不一定相似,故错误;C、所有菱形,属于形状不唯一确定的图形,不一定相似,故错误;D、所有正方形,形状相同,但大小不一定相同,符合相似定义,故正确.故选D.点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形.6.(3分)△ABC∽△A′B′C′,且相似比为2:3,则它们的面积比等于()A.2:3 B.3:2 C.4:9 D.9:4考点:相似三角形的性质.分析:根据相似三角形的面积比等于相似比的平方解题.解答:解:∵△ABC∽△A′B′C′,且相似比为2:3∴它们的面积比为4:9故选C.点评:本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比.(2)相似三角形面积的比等于相似比的平方.(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.7.(3分)方程的解为增根,则增根可能是()A.x=2 B.x=0 C.x=﹣1 D.x=0或x=﹣1考点:分式方程的增根.专题:计算题.分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x(x+1)=0,得到x=0或﹣1即可.解答:解:∵原方程有增根,∴最简公分母x(x+1)=0,解得x=0或﹣1.故选D.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.(3分)在比例尺为l:300000的某市地图上,A,B两地相距5cm,则A、B之间的实际距离为()A.15km B.1.5km C.15000km D.1500000km考点:比例线段.分析:首先设A、B之间的实际距离为xcm,然后根据本比例尺的性质,即可得方程:,解此方程即可求得答案,注意统一单位.解答:解:设A、B之间的实际距离为xcm,根据题意得:=,解得:x=1500000,∵1500000cm=15km.∴A、B之间的实际距离为15km.故选A.点评:此题考查了比例尺的性质.此题比较简单,解题的关键是根据比例尺的性质列方程,注意统一单位.9.(3分)为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计、下列判断:①这种调查方式是抽样调查;②800名学生的数学成绩是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.解答:解:这种调查方式是抽样调查;故①正确;总体是我校八年级800名学生期中数学考试情况;故②正确;个体是每名学生的数学成绩;故③正确;样本是所抽取的200名学生的数学成绩,故④错误样本容量是200,故⑤错误,故选C.点评:解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.(3分)(1999•南京)甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.考点:由实际问题抽象出分式方程.专题:应用题.分析:关键描述语是:“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”;等量关系为:甲班植80棵树所用的天数=乙班植70棵树所用的天数.解答:解:若设甲班每天植x棵,那么甲班植80棵树所用的天数应该表示为:,乙班植70棵树所用的天数应该表示为:.所列方程为:.故选D.点评:列方程解应用题的关键步骤在于找相等关系.本题应该抓住“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”的关键语.二、请认真填一填(每小题3分,共15分)11.(3分)(2006•衡阳)化简:结果是1.考点:分式的加减法.专题:计算题.分析:本题考查了分式的加减运算.分母互为相反数,把分母化成同分母的分式,然后进行加减运算.解答:解:原式=﹣==1.故答案为1.点评:本题考查了分式的加减运算,注意将结果化为最简分式.12.(3分)(2004•芜湖)对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:=10,S甲2=0.02;机床乙:乙=10,S乙2=0.06,由此可知:甲(填甲或乙)机床性能好.甲考点:方差;算术平均数.分析:根据方差的意义可知,方差越小,稳定性越好,由此即可求出答案.解答:解:因为甲的方差小于乙的方差,甲的稳定性好,所以甲机床的性能好.故填甲.点评:一般地设n个数据,x1,x2,…x n的平均数为,则差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.(3分)不等式3(x+1)≥5x﹣3的正整数解是1,2,3.考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式的解集,然后求其正整数解.解答:解:∵不等式3(x+1)≥5x﹣3的解集是x≤3,∴正整数解是1,2,3.点评:本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.(3分)已知=,则分式的值是.考点:比例的性质;分式的值.分析:根据比例的性质,两內项之积等于两外项之积用a表示出b,然后代入比例式进行计算即可得解.解答:解:∵=,∴b=a,∴==.故答案为:.点评:本题考查了比例的性质,熟记两內项之积等于两外项之积并用a表示出b是解题的关键.15.(3分)如图,P是△ABC中边AB上一点,连接CP,有如下条件:①∠ACP=∠B,②∠APC=∠ACB,③AC2=AP•AB,④=,其中能判定△ACP∽△ABC的条件是①②③(填序号).考点:相似三角形的判定.分析:根据图形,∠A为△ACP和△ABC的公共角,然后根据相似三角形的判定方法对各小题分析判断后利用排除法求解.解答:解:由图可知,∠A为△ACP和△ABC的公共角,①∠ACP=∠B,符合两角对应相等,两三角形相似,②∠APC=∠ACB,符合两角对应相等,两三角形相似,③由AC2=AP•AB可得=,符合两边对应成比例,夹角相等,两三角形相似,④=,夹角为∠B,可判定△CBP∽△ABC,所以能判定△ACP∽△ABC的条件是①②③.故答案为:①②③.点评:本题考查了相似三角形的判定,熟记三角形的判定方法是解题的关键.三、解答题(16、19、21题个8分,17题6分,18、22题个10分,20题5分,共55分)16.(8分)将下列各式分解因式:(1)x2y2+6xy+9(2)2x3﹣18x.考点:提公因式法与公式法的综合运用.分析:(1)直接利用完全平方公式分解因式即可;(2)先提取公因式2x,再对余下的多项式利用平方差公式继续分解.解答:解:(1)x2y2+6xy+9=(xy+3)2;(2)2x3﹣18x,=2x(x2﹣9),=2x(x+3)(x﹣3).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.(6分)(2006•武汉)先化简,再求值:,其中x=4.考点:分式的化简求值.专题:计算题.分析:先化简,把“1”看做分母是“1”,化到最简后再把x=4代入求值.解答:解:原式==x﹣3,当x=4时,原式=1.点评:此题主要考查分式的化简与求值,比较简单.18.(10分)解下列不等式组,并把解集在数轴上表示出来(1);(2).考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:(1)先求出两个不等式的解集,然后表示在数轴上,再求其公共解;(2)先求出两个不等式的解集,然后表示在数轴上,再求其公共解.解答:解:(1),由①得,x>2,由②得,x>4,在数轴上表示如下:所以,不等式组的解集是x>4;(2),由①得,x≥1,由②得,x<2,在数轴上表示如下:所以,不等式组的解集是1≤x<2.点评:本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19.(8分)6月5日是世界环保日,为了让学生增强环保意识,了解环保知识,某中学政教处举行了一次八年级“环保知识竞赛”,共有900名学生参加了这次活动,为了了解该次竞赛成绩情况,从中抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,请你根据下面还未完成的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围的人数最多?(不要求说明理由).(4)若成绩在90分以上(不含90分)为优秀,则该校八年级参赛学生成绩优秀的约为多少人?频率分布表分组频数频率50.5﹣60.5 4 0.0860.5﹣70.5 8 0.1670.5﹣80.5 10 0.2080.5﹣90.5 16 0.3290.5﹣100.5合计考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)根据50.5﹣60.5频数为4,频率为0.08,求出总人数,即可求出90.5﹣100.5的人数,以及频率.(2)根据各组频数即可补全条形图;(3)根据条形图的高度可得答案;(4)先计算出样本的优秀率,再乘以900即可.解答:解:(1)∵50.5﹣60.5频数为4,频率为0.08,∴总人数为:4÷0.08=50人,∴90.5﹣100.5的人数为:50﹣4﹣8﹣10﹣16=12(人),频率为:12÷50=0.24,填表即可;(2)根据(1)中数据补全频数分布直方图,如图所示;(3)由频率分布表或频率分布直方图可知,竞赛成绩落在80.5﹣90.5这个范围内的人数最多;(4)12÷50×100%×900=216(人).答:该校成绩优秀学生约为216人.点评:此题主要考查了频数分布直方图,频率,用样本估计总体,读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.20.(5分)看图填空:如下图左,∠A+∠D=180°(已知)∴AB∥CD(同旁内角互补,两直线平行)∴∠1=∠C(两直线平行,内错角相等)∵∠1=65°(已知)∴∠C=65°.考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的判定定理“同旁内角互补,两直线平行”判定AB∥CD,然后由平行线的性质推知∠1=∠C;最后根据已知条件∠1=65°,利用等量代换求得∠C=65°.解答:解:∵∠A+∠D=180°(已知)∴AB∥CD(同旁内角互补,两直线平行),∴∠1=∠C(两直线平行,内错角相等),∵∠1=65°(已知)∴∠C=65°(等量代换).故答案是:AB、CD、同旁内角互补,两直线平行、∠C、两直线平行,内错角相等.点评:本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.21.(8分)在“情系玉树”捐款活动中,某同学对八年级的(1)、(2)两班的捐款情况进行统计得到如下三条信息:信息一:(1)班共捐款300元,(2)班共捐款232元;信息二:(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的;信息三:(1)班比(2)多2人;请你根据以上三条信息,求出(1)班平均每人捐款多少元?考点:分式方程的应用.专题:应用题.分析:根据(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的,则若设(1)班平均每人捐款x元,则(2)班平均每人捐款元.根据:(1)班比(2)多2人即可列方程求解.解答:解:设(1)班平均每人捐款x元,则(2)班平均每人捐款元,根据题意得:,解得:x=5,经检验x=5是原方程的解.答:(1)班平均每人捐款5元.点评:本题主要考查了利用方程解决实际问题,正确把信息一,二转化为相等关系是解题的关键.22.(10分)如图,在矩形ABCD中,AB=4,AD=10.一把三角尺的直角顶点P在AD上滑动时(点P与A、D 不重合),一直角边始终经过点C,另一直角边与AB交于点E.(1)证明△DPC∽△AEP;(2)当∠CPD=30°时,求AE的长;(3)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.考点:相似三角形的判定与性质;矩形的性质.分析:(1)根据等角的余角相等,得∠1=∠3,根据两个角对应相等即可证明相似;(2)根据30°直角三角形的性质,得PC=8,再根据勾股定理求得DP的长,总而利用相似三角形的对应边的比相等即可求解;(3)根据相似三角形周长的比等于相似比进行分析.解答:解:(1)证明:在△DPC、△AEP中,∠1与∠2互余,∠2与∠3互余,∴∠1=∠3,(1分)又∠A=∠D=90°,(1分),∴△DPC∽△AEP.(1分)(2)∵∠2=30°,CD=4,∴PC=8,PD=(2分),又∵AD=10,∴AP=AD﹣PD=10﹣4,由(1),得=10﹣12;(3)存在这样的点P,使△DPC的周长等于△AEP周长的2倍,(1分)∵相似三角形周长的比等于相似比,设=2,解得DP=8.(2分)点评:此题综合考查了相似三角形的判定和性质.。
闵行区2016学年第二学期八年级质量调研考试数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题2分,满分12分)1.B ; 2.A ; 3.D ; 4.A ; 5.D ; 6.C .二、填空题(本大题共12题,每题2分,满分24分)7.1; 8.223y x =+; 9.增大; 10.-1.783; 11.x = 10; 12.AC uuu r ; 13.14; 14.9; 15.6或 16.矩形; 17.105; 18.4.三、计算题(本大题共8题,满分58分)19.解:设21x y x-=. 则原方程可化为 32y y -=.………………………………………………(1分) 解得 13y =,21y =-.……………………………………………………(1分)当13y =时,得213x x-=.解得 11x =-.……………………………(1分) 当21y =-时,得211x x -=-.解得 213x =.……………………………(1分) 经检验:11x =-,213x =是原方程的根.…………………………………(1分) ∴ 原方程的根是 11x =-,213x =.……………………………………(1分)20.解:由②,得 22320x xy y -+=.……………………………………………(1分)即得 20x y -=,0x y -=. ……………………………………………(1分) 则原方程组可化为212,20x y x y +=⎧⎨-=⎩; 212,0.x y x y +=⎧⎨-=⎩………………………………………………(2分) 解这两个方程组,得116,3x y =⎧⎨=⎩; 224,4.x y =⎧⎨=⎩…………………………………………………………(2分) 21.(1)BA uu r 、CD uu u r ; …………………………………………………………………(2分) (2)GF uu u r 、EH uuu r 、HE u u u r ;…………………………………………………………(3分)(3)作图正确,2分;结论正确,1分.22.解:(1)由图得:点A(-2,0),点B(0,2).……………………………(2分)由直线y k x b=+经过点A、B,得20,2.k bb-+=⎧⎨=⎩……………………(1分)解得1,2. kb=⎧⎨=⎩∴所求直线表达式为2y x=+.……………………………………(1分)(2)图略.……………………………………………………………………(2分)(3)当x > 0时,y k x b=+的函数值大于22y x=-+的函数值.………(2分)23.解:在Rt△ABC中,∵∠B = 90º,AD = 2,AB = 3,∴5AC=.…………………………………………………(2分)∵AD // BC,∠B = 90º,∴∠BAD = 180º-∠B = 90º.………………………………………………(2分)又∵DE⊥AC,∴1122BOCS AD AB AC DE∆=⨯⨯=⨯⨯.……………………………………(2分)又∵AD = 2,AB = 3,AC = 5,∴DE =65.…………………………………………………………………(2分)∴DE的长为65.24.解:设现在计划每天加固x米.…………………………………………………(1分)根据题意,得22402240220x x-=-.………………………………………(2分)解得1160x=,2140x=-.………………………………………………(2分)经检验:1160x=,2140x=-是原方程的根,2750x=-不合题意,舍去.(1分)∴原方程的根为x = 160,且符合题意.∴22416064-=(米).……………………………………………………(1分)答:现在计划的基础上,每天加固的长度还要再增加64米.…………(1分)25.证明:(1)∵点F、G是边AC的三等分点,∴AF = FG = GC.…………………………………………………(1分)又∵点D是边AB的中点,∴DH // BG.………………………………………………………(1分)同理:EH // BF.……………………………………………………(1分)∴四边形FBGH是平行四边形.…………………………………(1分)(2)联结BH,交AC于点O.∵四边形FBGH是平行四边形,∴ BO = HO ,FO = GO .…………………………………………(1分) 又∵ AF = FG = GC ,∴ AF+FO = GC+GO .即:AO = CO .……………………………(1分) ∴ 四边形ABCH 是平行四边形.…………………………………(1分) ∴ A H // BC . ∴ ∠HAC =∠BCA .∵ AC 平分∠BAH ,∴ ∠HAC =∠BAC .∴ ∠BAC =∠BCA .…………………………………………………(1分) ∴ AB = BC .…………………………………………………………(1分) 又∵ 四边形ABCH 是平行四边形,∴ 四边形ABCH 是菱形.…………………………………………(1分)26.解:(1)∵ 正方形ABCD ,正方形DEFG ,∴ ∠ADC =∠EDG = 90º,AD = CD ,DE = DG .……………………(1分) ∴ ∠ADC -∠EDC =∠EDG -∠EDC .即:∠ADE =∠CDG .…………………………………………………(1分)在△ADE 和△CDG 中,,,,AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩∴ △ADE ≌△CDG .…………………………………………………(1分)∴ AE = CG .……………………………………………………………(1分)(2)∵ 正方形ABCD 的边长为2,∴ AB = BC = CD = 2,∠BCD =90º.…………………………………(1分) ∵ 动点E 从点A 出发,沿着A -B -C 的方向以每秒钟1个单位长度的速度匀速运动,且运动的时间为x 秒.∴ 4EC x =-.…………………………………………………………(1分)∴ 11(4)2422ECD y S EC CD x x ∆==⨯⨯=⨯-⨯=-重叠部分.……………(1分)∴ 所求函数解析式为4y x =-.自变量x 的取值范围是24x ≤≤.……………………………………(1分)(3)当点E 在AB 上时,点G 在直线BC 上,当点E与B点重合时,点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;∴点F运动的路径长为2分)。
2015-2016学年上海市闵行区八年级(下)期末数学试卷一、选择题:(本大题共6题,每题3分,满分18分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列方程中,不是分式方程的是()A.B.C.D.2.函数y=﹣2x+3的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限3.如果点C是线段AB的中点,那么下列结论中正确的是()A.B.C.D.4.小杰两手中仅有一只手中有硬币,他让小敏猜哪只手中有硬币.下列说法正确的是()A.第一次猜中的概率与重放后第二次猜中的概率不一样B.第一次猜不中后,小杰重放后再猜1次肯定能猜中C.第一次猜中后,小杰重放后再猜1次肯定猜不中D.每次猜中的概率都是0.55.如图,在梯形ABCD中,AB∥CD,AD=DC=CB,AC⊥BC,那么下列结论不正确的是()A.AC=2CD B.DB⊥AD C.∠ABC=60°D.∠DAC=∠CAB6.下列命题中,假命题是()A.有一组对角是直角且一组对边平行的四边形是矩形B.有一组对角是直角且一组对边相等的四边形是矩形C.有两个内角是直角且一组对边平行的四边形是矩形D.有两个内角是直角且一组对边相等的四边形是矩形二、填空题(本大题共12题,每题2分,满分24分)7.一次函数y=﹣3x﹣5的图象在y轴上的截距为.8.已知直线y=kx+b经过点(﹣2,2),并且与直线y=2x+1平行,那么b= .9.如果一次函数y=(m﹣2)x+m的函数值y随x的值增大而增大,那么m的取值范围是.10.关于x的方程a2x+x=1的解是.11.方程的解为.12.如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,那么当y<0时,自变量x 的取值范围是.13.2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是.14.如果一个八边形的每一个内角都相等,那么它的一个内角的度数等于度.15.在▱ABCD中,如果∠A+∠C=140°,那么∠B= 度.16.如图,在△ABC中,点D、E分别是边AB、AC的中点,已知DE=6cm,则BC= cm.17.在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD.如果AD=4,BC=10,那么梯形ABCD的面积等于.18.如图,在△ABC中,AB=AC,点M、N分别在边AB、AC上,且MN⊥AC.将四边形BCNM沿直线MN 翻折,点B、C的对应点分别是点B′、C′,如果四边形ABB′C′是平行四边形,那么∠BAC= 度.三、计算题(本大题共8题,满分58分)19.解方程:.20.解方程组:.21.已知:如图,在△ABC中,设,.(1)填空: = ;(用、的式子表示)(2)在图中求作.(不要求写出作法,只需写出结论即可.)22.已知直线y=kx+b经过点A(﹣3,﹣8),且与直线的公共点B的横坐标为6.(1)求直线y=kx+b的表达式;(2)设直线y=kx+b与y轴的公共点为点C,求△BOC的面积.23.已知:如图,在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE=DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.24.某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时从学校出发.已知先遣队每小时比大部队多行进1千米,预计比大部队早半小时到达目的地.求先遣队与大部队每小时各行进了多少千米.25.已知:如图,在□ABCD中,E为边CD的中点,联结AE并延长,交边BC的延长线于点F.(1)求证:四边形ACFD是平行四边形;(2)如果∠B+∠AFB=90°,求证:四边形ACFD是菱形.26.已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,.E是边AB的中点,联结DE、CE,且DE⊥CE.设AD=x,BC=y.(1)如果∠BCD=60°,求CD的长;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)联结BD.如果△BCD是以边CD为腰的等腰三角形,求x的值.2015-2016学年上海市闵行区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题3分,满分18分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列方程中,不是分式方程的是()A.B.C.D.【考点】分式方程的定义.【分析】判断一个方程是否为分式方程主要是看这个方程的分母中是否含有未知数.【解答】解:A、该方程符合分式方程的定义,属于分式方程,故本选项错误;B、该方程属于无理方程,故本选项正确;C、该方程符合分式方程的定义,属于分式方程,故本选项错误;D、该方程符合分式方程的定义,属于分式方程,故本选项错误;故选:B.【点评】本题考查了分式方程的定义:分母中含有未知数的方程叫做分式方程.2.函数y=﹣2x+3的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限【考点】一次函数的性质.【专题】探究型.【分析】直接根据一次函数的性质进行解答即可.【解答】解:∵一次函数y=﹣2x+3中,k=﹣2<0,b=3>0,∴此函数的图象经过一、二、四象限.故选B.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.3.如果点C是线段AB的中点,那么下列结论中正确的是()A.B.C.D.【考点】*平面向量.【专题】计算题.【分析】根据点C是线段AB的中点,可以判断||=||,但它们的方向相反,继而即可得出答案.【解答】解:由题意得:||=||,且它们的方向相反,∴有=,故选C.【点评】本题考查了平面向量的知识,注意向量包括长度及方向,及0与的不同.4.小杰两手中仅有一只手中有硬币,他让小敏猜哪只手中有硬币.下列说法正确的是()A.第一次猜中的概率与重放后第二次猜中的概率不一样B.第一次猜不中后,小杰重放后再猜1次肯定能猜中C.第一次猜中后,小杰重放后再猜1次肯定猜不中D.每次猜中的概率都是0.5【考点】列表法与树状图法;概率公式.【分析】首先直接利用概率公式求得第一次猜中的概率;首先根据题意画出树状图,然后由树状图求得等可能的结果与第二次猜中的情况,再利用概率公式即可求得答案.【解答】解:∵第一次猜中的概率为:;画树状图得:∵共有4种等可能的结果,重放后第二次猜中的有2种情况,∴第二次猜中的概率为:.∴每次猜中的概率都是0.5.故选D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.如图,在梯形ABCD中,AB∥CD,AD=DC=CB,AC⊥BC,那么下列结论不正确的是()A.AC=2CD B.DB⊥AD C.∠ABC=60°D.∠DAC=∠CAB【考点】梯形.【分析】A、根据三角形的三边关系即可得出A不正确;B、通过等腰梯形的性质结合全等三角形的判定与性质即可得出∠ADB=90°,从而得出B正确;C、由梯形的性质得出AB∥CD,结合角的计算即可得出∠ABC=60°,即C正确;D、由平行线的性质结合等腰三角形的性质即可得出∠DAC=∠CAB,即D正确.综上即可得出结论.【解答】解:A、∵AD=DC,∴AC<AD+DC=2CD,A不正确;B、∵在梯形ABCD中,AD=CB,∴梯形ABCD为等腰梯形,∴∠DAB=∠CBA.在△DAB和△CBA中,,∴△DAB≌△CBA(SAS),∴∠ADB=∠BCA.∵AC⊥BC,∴∠ADB=∠BCA=90°,∴DB⊥AD,B成立;C、∵AB∥CD,∴∠CDB=∠ABD,∠ABC+∠DCB=180°,∵DC=CB,∴∠CDB=∠CBD=∠ABD,∵∠ACB=90°,∴∠CDB=∠CBD=∠ABD=30°,∴∠ABC=∠ABD+∠CBD=60°,C正确;D、∵AB∥CD,∴∠DCA=∠CAB,∵AD=DC,∴∠DAC=∠DCA=∠CAB,D正确.故选A.【点评】本题考查了梯形的性质、平行线的性质、等腰三角形的性质以及全等三角形的判定与性质,解题的关键是逐项分析四个选项的正误.本题属于中档题,稍显繁琐,但好在该题为选择题,只需由三角形的三边关系得出A不正确即可.6.下列命题中,假命题是()A.有一组对角是直角且一组对边平行的四边形是矩形B.有一组对角是直角且一组对边相等的四边形是矩形C.有两个内角是直角且一组对边平行的四边形是矩形D.有两个内角是直角且一组对边相等的四边形是矩形【考点】矩形的判定.【分析】利用矩形的定义或者是矩形的判定定理分别判断四个选项的正误即可.【解答】解:A、有一组对角是直角且一组对边平行即可得到两组对边平行或四个角均是直角,故此选项不符合题意;B、有一组对角是直角且一组对边相等可以得到其两组对边平行,有一个角是直角的平行四边形是矩形可知此选项不符合题意;C、有两个内角是直角且一组对边平行的四边形可能是直角梯形,故此选项符合题意;D、有两个内角是直角的且一组对边相等可以得到其两组对边相等,所以能判定其是一个平行四边形,根据有一个角是直角的平行四边形是矩形可知此选项不符合题意.故选C.【点评】本题考查了矩形的判定,熟练掌握矩形的判定方法是解决此类题目的关键.举反例往往是解决此类题目的重要的方法.二、填空题(本大题共12题,每题2分,满分24分)7.一次函数y=﹣3x﹣5的图象在y轴上的截距为﹣5 .【考点】一次函数图象上点的坐标特征.【分析】在y轴上的截距,求与y轴的交点坐标即可.【解答】解:在y=﹣3x﹣5中,令x=0,可得y=﹣5,∴一次函数y=﹣3x﹣5的图象与y轴的交点坐标为(0,﹣5),∴一次函数y=﹣3x﹣5的图象在y轴上的截距为﹣5,故答案为:﹣5【点评】本题主要考查函数与坐标轴的交点,掌握截距与坐标的关系是解题的关键.8.已知直线y=kx+b经过点(﹣2,2),并且与直线y=2x+1平行,那么b= 6 .【考点】两条直线相交或平行问题.【分析】根据两直线平行的问题得到k=2,然后把(﹣2,2)代入y=2x+b可计算出b的值.【解答】解:∵直线y=kx+b与直线y=2x+1平行,∴k=2,把(﹣2,2)代入y=2x+b得2×(﹣2)+b=2,解得b=6.故答案为6;【点评】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.9.如果一次函数y=(m﹣2)x+m的函数值y随x的值增大而增大,那么m的取值范围是m>2 .【考点】一次函数图象与系数的关系.【分析】直接根据一次函数的增减性与系数的关系作答.【解答】解:∵y随x的增大而增大,∴m﹣2>0.解得:m>2,故答案为:m>2;【点评】此题考查一次函数问题,关键是根据一次函数的增减性,来确定自变量系数的取值范围.10.关于x的方程a2x+x=1的解是.【考点】分式的混合运算;解一元一次方程.【专题】计算题;分式;一次方程(组)及应用.【分析】方程合并后,将x系数化为1,即可求出解.【解答】解:方程合并得:(a2+1)x=1,解得:x=,故答案为:【点评】此题考查了分式的混合运算,以及解一元一次方程,熟练掌握运算法则是解本题的关键.11.方程的解为 3 .【考点】无理方程.【分析】首先把方程两边分别平方,然后解一元二次方程即可求出x的值.【解答】解:两边平方得:2x+3=x2∴x2﹣2x﹣3=0,解方程得:x1=3,x2=﹣1,检验:当x1=3时,方程的左边=右边,所以x1=3为原方程的解,当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.故答案为3.【点评】本题主要考查解无理方程,关键在于首先把方程的两边平方,注意最后要把x的值代入原方程进行检验.12.如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,那么当y<0时,自变量x 的取值范围是x<2 .【考点】一次函数图象上点的坐标特征;一次函数的性质.【分析】直接根据直线与x轴的交点坐标即可得出结论.【解答】解:∵由函数图象可知,直线与x轴的交点坐标为(2,0),∴当y<0是,x<2.故答案为:x<2.【点评】本题考查的是一次函数图象上点的坐标特点,能利用函数图象直接得出x的取值范围是解答此题的关键.13.2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好2名女生得到电影票的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,恰好2名女生得到电影票的有2种情况,∴恰好2名女生得到电影票的概率是: =.故答案为:.【点评】此题考查了列表法或树状图法求概率的知识.注意此题属于不放回实验,用到的知识点为:概率=所求情况数与总情况数之比.14.如果一个八边形的每一个内角都相等,那么它的一个内角的度数等于135 度.【考点】多边形内角与外角.【分析】根据n边形的外角和为360°得到正八边形的每个外角的度数360°÷8=45°,然后利用补角的定义即可得到正八边形的每个内角=180°﹣45°=135°.【解答】解:∵正八边形的外角和为360°,∴正八边形的每个外角的度数=360°÷8=45°,∴正八边形的每个内角=180°﹣45°=135°.故答案为:135.【点评】本题考查了多边形内角与外角:n边形的内角和为(n﹣2)×180°;n边形的外角和为360°.15.在▱ABCD中,如果∠A+∠C=140°,那么∠B= 110 度.【考点】平行四边形的性质.【分析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.【解答】解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°.故答案为:110.【点评】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.16.如图,在△ABC中,点D、E分别是边AB、AC的中点,已知DE=6cm,则BC= 12 cm.【考点】三角形中位线定理.【分析】三角形的中位线等于第三边的一半,那么第三边应等于中位线长的2倍.【解答】解:∵△ABC中,点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵DE=6cm,∴BC=2DE=2×6=12cm.故答案为12.【点评】本题考查了三角形的中位线的性质:三角形的中位线等于第三边的一半.17.在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD.如果AD=4,BC=10,那么梯形ABCD的面积等于49 .【考点】梯形.【分析】首过D作DE∥AC交BC的延长线于E,过D作DF⊥BC于F,先求出△BDEE是等腰直角三角形推出DFF与BE的关系,进而根据梯形的面积公式即可求解.【解答】解:过D作DE∥AC交BC的延长线于E,过D作DF⊥BC于F.∵AD∥CB,DE∥AC,∴四边形ADEC是平行四边形,∴DE=AC,AD=CE=4∵等腰梯形ABCD中,AB=CD,∴DE=AC=BD,∵AC⊥BD,CE∥AD,∴DE⊥BD,∴△BDE是等腰直角三角形,又∵AD=4,BC=10,∴DF=BE=(AD+BC)=(4+10)=7,∴梯形的面积为:(4+10)×7=49.故答案为:49.【点评】本题考查等腰梯形的性质,难度不大,注意在解题的过程中运算平行线的性质,另外要掌握等腰梯形的面积还等于对角线互相两条对角线乘积的一半.18.如图,在△ABC中,AB=AC,点M、N分别在边AB、AC上,且MN⊥AC.将四边形BCNM沿直线MN 翻折,点B、C的对应点分别是点B′、C′,如果四边形ABB′C′是平行四边形,那么∠BAC= 60 度.【考点】平行四边形的性质;等腰三角形的性质.【分析】只要证明△ABC是等边三角形即可解决问题.【解答】解:如图,∵四边形MNC′B′是由四边形MNCB翻折得到,∴∠C=∠C′,∵AB∥B′C′,∴∠C′=∠BAC,∴∠C=∠BAC,∴AB=BC,∵AB=AC,∴AB=AC=BC,∴∠BAC=60°,故答案为60.【点评】本题考查平行四边形的性质、等腰三角形的性质、翻折变换等知识,解题的关键是证明△ABC是等边三角形,属于中考常考题型.三、计算题(本大题共8题,满分58分)19.解方程:.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】设=y,分式方程变形后,求出解得到y的值,进而求出x的值,检验即可得到原分式方程的解.【解答】解:设=y,则原方程可化为y﹣﹣1,解得 y1=2,y2=﹣1,当y1=2时,得=2,解得:x1=2;当y2=﹣1时,得=﹣1,解得:x2=,经检验:x1=2,x2=是原方程的根,则原分式方程的根是x1=2,x2=.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.解方程组:.【考点】高次方程.【分析】先把第二个方程进行因式分解,再把二元二次方程组转化为两个二元一次方程组,求解即可.【解答】解:由②,得(x﹣2y)2=9,即得 x﹣2y=3,x﹣2y=﹣3,则原方程组可化为或,解这两个方程组,得或.【点评】本题考查了高次方程的解法,解题的基本思想是把二次方程转化为一次方程.21.已知:如图,在△ABC中,设,.(1)填空: = ;(用、的式子表示)(2)在图中求作.(不要求写出作法,只需写出结论即可.)【考点】*平面向量.【专题】作图题.【分析】(1)根据图形可以直接写出等于什么,本题得以解决;(2)先画出图形,根据图形写出结论即可.【解答】解:(1)由题可知, =,故答案为:;(2)如右图所示,结论:.【点评】本题考查平面向量,解题的关键是明确平面向量的计算方法.22.已知直线y=kx+b经过点A(﹣3,﹣8),且与直线的公共点B的横坐标为6.(1)求直线y=kx+b的表达式;(2)设直线y=kx+b与y轴的公共点为点C,求△BOC的面积.【考点】两条直线相交或平行问题;待定系数法求一次函数解析式.【专题】数形结合.【分析】(1)先由已知直线求得点B的坐标,再根据待定系数法求得直线y=kx+b的表达式;(2)先根据求得的直线解析式,求得点C的坐标,再根据点C和点B的位置,计算△BOC的面积.【解答】解:(1)在直线中,由 x=6,得,∴点B(6,4),由直线y=kx+b经过点A、B,得解得∴所求直线表达式为;(2)在直线中,当 x=0时,得 y=﹣4,即C(0,﹣4),由点B(6,4)、C(0,﹣4),可得△BOC的面积=×4×6=12,∴△BOC的面积为12.【点评】本题主要考查了两直线相交或平行的问题,解决问题的关键是掌握待定系数法求一次函数解析式,解题时注意:求一次函数y=kx+b,则需要两组x,y的值.23.已知:如图,在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE=DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.【考点】正方形的性质.【分析】(1)根据正方形的性质得到∠B=∠ADF=90°,AD=AB,求出∠ADF,根据SAS即可推出答案,再利用全等三角形的性质解答即可;(2)设EC=x.利用勾股定理计算即可.【解答】解:(1)由正方形ABCD,得 AB=AD,∠B=∠ADF=∠BAD=90°,在△ABE和△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠FAD,AE=AF.∴∠BAD=∠BAE+∠EAD=∠FAD+∠EAD=90°.即得∠EAF=90°,又∵AE=AF,∴∠AEF=∠AFE=45°.(2)∵∠AEB=75°,∠AEF=45°,∴∠BEF=120°.即得∠FEC=60°,由正方形ABCD,得∠C=90°.∴∠EFC=30°.∴EF=2EC,设EC=x.则 EF=2x,BE=DF=2﹣x,CF=4﹣x.在Rt△CEF中,由勾股定理,得 CE2+CF2=EF2.即得 x2+(4﹣x)2=4x2.解得,(不合题意,舍去).∴,.∴,∴△FEC的面积为.【点评】本题主要考查对正方形的性质,全等三角形的性质和判定,勾股定理等知识点的理解和掌握是解此题的关键.24.某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时从学校出发.已知先遣队每小时比大部队多行进1千米,预计比大部队早半小时到达目的地.求先遣队与大部队每小时各行进了多少千米.【考点】分式方程的应用.【分析】设先遣队每小时行进x千米,则大部队每小时行进(x﹣1)千米;根据“先遣队和大队同时出发,预计比大部队早半小时到达”列分式方程解出即可.【解答】解:设先遣队每小时行进x千米,则大部队每小时行进(x﹣1)千米.根据题意,得.解得 x1=6,x2=﹣5.经检验:x1=6,x2=﹣5是原方程的根,x2=﹣5不合题意,舍去.∴原方程的根为x=6.∴x﹣1=6﹣1=5.答:先遣队与大部队每小时分别行进6千米和5千米.【点评】本题是分式方程的应用,属于行程问题;有两个队:先遣队和大队;路程都是15千米,时间相差半小时,速度:先遣队每小时比大部队多行进1千米;根据速度的关系设未知数,根据时间关系列方程,注意未知数的值有实际意义并检验.25.已知:如图,在□ABCD中,E为边CD的中点,联结AE并延长,交边BC的延长线于点F.(1)求证:四边形ACFD是平行四边形;(2)如果∠B+∠AFB=90°,求证:四边形ACFD是菱形.【考点】菱形的判定;平行四边形的判定与性质.【专题】证明题.【分析】(1)根据平行四边形的性质证出∠ADC=∠FCD,然后再证明△ADE≌△FCE可得AD=FC,根据一组对边平行且相等的四边形是平行四边形可得结论;(2)根据∠B+∠AFB=90°可得∠BAF=90°,根据平行四边形对边平行可得AB∥CD,利用平行线的性质可得∠CEF=∠BAF=90°,再根据对角线互相垂直的平行四边形是菱形可得结论.【解答】证明:(1)在□ABCD中,AD∥BF.∴∠ADC=∠FCD.∵E为CD的中点,∴DE=CE.在△ADE和△FCE中,,∴△ADE≌△FCE(ASA)∴AD=FC.又∵AD∥FC,∴四边形ACFD是平行四边形.(2)在△ABF中,∵∠B+∠AFB=90°,∴∠BAF=90°.又∵四边形ABCD是平行四边形,∴AB∥CD,∴∠CEF=∠BAF=90°,∵四边形ACDF是平行四边形,∴四边形ACDF是菱形.【点评】此题主要考查了菱形的判定,平行四边形的判定和性质,关键是掌握平行四边形两组对边分别平行,对角线互相垂直的平行四边形是菱形.26.已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,.E是边AB的中点,联结DE、CE,且DE⊥CE.设AD=x,BC=y.(1)如果∠BCD=60°,求CD的长;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)联结BD.如果△BCD是以边CD为腰的等腰三角形,求x的值.【考点】三角形综合题.【分析】(1)首先过点D作DH⊥BC,垂足为点H,由AD∥BC,AB⊥BC,DH⊥BC,可求得DH的长,然后设CH=x,则 CD=2x,利用勾股定理即可求得方程:x2+(2)2=4x2,解此方程即可求得答案;(2)首先取CD的中点F,连接EF,由梯形的中位线,可表示出EF的长,易得四边形ABHD是平行四边形,然后由勾股定理可得:(y﹣x)2+12=(x+y)2,继而求得答案;(3)分别从CD=BD或CD=BC去分析求解即可求得答案.【解答】解:(1)过点D作DH⊥BC,垂足为点H.∵AD∥BC,AB⊥BC,DH⊥BC,∴DH=AB=2,在Rt△DHC中,∵∠BCD=60°,∴∠CDH=30°.∴CD=2CH,设CH=x,则 CD=2x.利用勾股定理,得 CH2+DH2=CD2.即得:x2+(2)2=4x2.解得 x=2(负值舍去).∴CD=4;(2)取CD的中点F,连接EF,∵E为边AB的中点,∴EF=(AD+BC)=(x+y).∵DE⊥CE,∴∠DEC=90°.又∵DF=CF,∴CD=2EF=x+y.由AB⊥BC,DH⊥BC,得∠B=∠DHC=90°.∴AB∥DH.又∵AB=DH,∴四边形ABHD是平行四边形.∴BH=AD=x.即得 CH=|y﹣x|,在Rt△DHC中,利用勾股定理,得 CH2+DH2=CD2.即得(y﹣x)2+12=(x+y)2.解得,∴所求函数解析式为.自变量x的取值范围是x>0,且;(3)当△BCD是以边CD为腰的等腰三角形时,有两种可能情况:CD=BD或CD=BC.( i)如果CD=BD,由DH⊥BC,得 BH=CH.即得 y=2x.利用,得.解得,.经检验:,,且不合题意,舍去.∴;( ii)如果CD=BC,则 x+y=y.即得 x=0(不合题意,舍去),综上可得:.【点评】此题属于四边形的综合题.考查了梯形的性质、平行四边形的判定与性质、等腰三角形的性质以及勾股定理等知识.注意掌握辅助线的作法,掌握方程思想与分类讨论思想的应用是解此题的关键.。
上海版2014学年度八年级第二学期期末考试数学试卷 (考试时间90分钟) 2015年6月 一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1、下列函数中,哪个是一次函数……………………………………………………( ▲ )(A )22+=x y ; (B )x y -=; (C )22+=x y ; (D )x y =. 2、方程03=-x x 的根是……………………………………………………………( ▲ )(A )0,-1; (B )-1,+1; (C )0,+1; (D )-1,0,+1.3、正方形的对角线具有的所有..性质是………………………………………………( ▲ ) (A )对角线互相平分; (B )对角线互相平分且相等;(C )对角线互相垂直平分; (D )对角线互相垂直平分且相等.4、下列各式错误的是…………………………………………………………………( ▲ )(A )0)(=-+→→a a ; (B ))()(→→→→→→++=++c b a c b a ;(C )→→→→+=+a b b a ; (D ))(→→→→-+=-b a b a .5、下列成语或词语所反映的事件中,不可能事件的是……………………………( ▲ )(A )探囊取物 (B )水中捞月 (C )平分秋色 (D )十拿九稳6、顺次联结下列各四边形的各边中点,所得的四边形与原四边形形状相同的是( ▲ )(A )矩形 (B )菱形 (C )平行四边形 (D )等腰梯形二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置】7、直线26-=x y 的截距是 ▲ ;8、一次函数43+-=x y 的图像与坐标轴围成的三角形的面积是 ▲ ;9、关于x 的方程b ax =有无数解,则a 、b 满足的条件是 ▲ ;10、关于x 的分式方程111+=-+-x x x x x k 有增根1=x ,那么k 的值是 ▲ ;11、方程11510=--+x x 的解是 ▲ ;12、某校组织学生步行去相距6千米的科技馆春游,返回时由于步行速度比去时每小时少1千米,结果时间比去时多用了半小时,如果设学生去时的步行速度是x 千米/时,则可根据题目列出方程 ▲ ;13、如果一个正n 边形的内角和小于外角和,那么n 等于 ▲ ;14、已知菱形的边长是6,一个内角是60°,则这个菱形较长..的对角线长为 ▲ ; 15、一个等腰梯形,它的上底是12厘米,下底是22厘米,高和上底一样长,则这个等腰梯形的周长是 ▲ 厘米;16、已知一个梯形的中位线的长为10,高为5,那么这个梯形的面积是 ▲ ;17、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能18、已知,如图,P 是边长为5的正方形ABCD 内一点,AP=3,BP=4,将△ABP 绕点B 旋转后,使P 点落在直线BC 上,点A 落在点A ’上,则线段A ’C 的长度为 ▲ ;三、简答题(本大题共4题,每题5分,满分20分) 【将下列各题的解答过程,做在答题纸相应位置上】19、解方程:2213211x x x x --=--; 20、解方程组:⎩⎨⎧=+-=+.023,12222y xy x y x ;21、如图,已知在梯形ABCD ,AD ∥BC ,点E 在边BC 上,联结DE 、AC ;(1)→AD +→DC = ▲ ;(2)设→→=a AB ,→→=b AC ,试用→→b ,a 表示→BC = ▲ ;(3)请在图中画出表示→→→++DC CE AD 的和向量。
2014-2015第二学期八年级下期末测试数学试卷(满分150分)一、选择(每题4分,计40分)1)A 、50B 、24C 、27D 、21 2.如果x 0≤,则化简x 1- ) A 、x 12- B 、x 21- C 、1- D 、13.长度分别为5cm 、9 cm 、12 cm 、13cm 、15 cm 、五根木棍首尾连接,最多可搭成直角三角形的个数为( )A .1个B .2个C .3个D .4个 4.方程)3(5)3(2-=-x x x 的根是( ) A .25=x B .x=3 C .25,321==x x D .25-=x 5.已知三角形两边长是4和7,第三边是方程055162=+-x x 的根,则第三边长是( )A .5B .11C .5或11D .66.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x ,则下列方程正确的是 A .1.4(1+x )=4.5 B .1.4(1+2x )=4.5C .1.4(1+x )2=4.5D .1.4(1+x )+1.4(1+x )2=4.5 7.直线l 过正方形ABCD 顶点B ,点A 、C 到直线l 距离分别是1和2,则正方形边长是( ) A .3 B .5 C .212D .以上都不对8根据上表中的信息判断,下列结论中错误..的是( ) A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分5D .该班学生这次考试成绩的平均数是45分 9.在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A .∠ADE =20° B .∠ADE =30° C .∠ADE =1 2∠ADC D .∠ADE = 13∠ADC 10.如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .2 5B .3 5C .5D .6 二、填空(每题5分,计20分)11.在△ABC 中,AB=AC=41cm ,BC=80cm ,AD 为∠A 的平分线,则S △ABC =______。
2014-2015学年第二学期八年级数学下册期末试卷 时间:120分钟 满分 100分 成绩一、选择题:(每题3分,共30分) 1. 如果代数式有意义,那么x 的取值范围是( )A .x ≥0B .x ≠1C .x >0D .x ≥0且x ≠12. 下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( ) A 1.5,2,3a b c === B 7,24,25a b c === C 6,8,10a b c === D 3,4,5a b c ===3.如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积为( ) A.4 B.6 C . 16 D.554. 如图,在平行四边形ABCD 中,下列结论中错误的是( )A . ∠1=∠2B . ∠BAD=∠BCDC . A B=CD D . A C⊥BD5. 如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是边AD ,AB 的中点,EF 交AC 于点H ,则的值为( )A . 1B .C .D .6. 0)y kx b k =+≠(的图象如图所示,当0y >时,x 的取值范围是( ) A.0x <B.0x >C.2x <D.2x >7. 体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,若(x ,y )恰好是两条直线的交点坐标,则这两条直线的解析式是进球数 0 1 2 3 4 5 人数15xy32A .y =x +9与y =23x +223 B . y =-x +9与y =23x +223C . y =-x +9与y =-23x +223D . y =x +9与y =-23x +2238.已知:ΔABC 中,AB=4,AC=3,BC=7,则ΔABC 的面积是( ) A.6 B.5 C.1.57 D.279.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A . A B∥DC,AD∥BCB . A B=DC ,AD=BC C . A O=CO ,BO=DOD . A B∥DC,AD=BC10.有一块直角三角形纸片,如图1所示,两直角边AC =6cm,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A .2cm B .3cm C .4cm D .5cm二、填空题: (每题3分,共18分) 11. 计算:___________52021=÷+-12.在直角三角形中,若两条边的长分别为3和4,则第三边长为--------------------。
2014-2015学年上海市闵行区九校联考八年级(下)期中数学试卷显示答案一、选择题(每题3分,满分18分)1.下列函数中,是一次函数的是( )A .y =1x+1 B .y=-2x C .y=x 2+2 D .y=kx+b(k 、b 是常数)2.下列关于x 的方程中,有实数根的是( )A .x 2+2x+3=0B .x 3+2=0C .x x-1=1x-1D .x-2+3=03.下列方程组中,属于二元二次方程组的为( )A . ⎩⎨⎧x +y =0x -y =2B . ⎩⎨⎧1x + 2y ==-4C . ⎩⎨⎧x + y =1x +y =1D . ⎩⎨⎧3x =2xy =4 4.一次函数y=kx+b 的图象如图所示,当y >4时,x 的取值范围是( )A .x <0B .x >0C .x <2D .x >25.某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么下列方程中正确的是( )A .480x-20- 480x =4B .480x - 480x+4=20C .480x - 480x+20=4D .480x-4- 480x=20 6.李庄与张庄两地之间的距离是100千米,若汽车以平均每小时80千米的速度从李庄开往张庄,则汽车距张庄的路程y (千米)与行驶时间x (小时)之间的函数关系式是( )A .y=80x-100B .y=-80x-100C .y=80x+100D .y=-80x+100二、填空题(每题2分,满分24分)7.一次函数y=x-5在y 轴上的截距是________.8.直线y=12x-1与x 轴的交点坐标是________ .9.如图,将直线OA 向下平移2个单位,得到一个一次函数的图象,那么这个一次函数的解析式是________.10.如果y=-x+m 不经过第一象限,那么实数m 的取值范围是________.11.若点A ()7,y 1、点B ()5,y 2是直线y =- 12x+b(b 为常数)上的点,则y 1,y 2大小关系是________.12.二项方程12x 5-16=0的实数根是________.13.关于x 的方程m(x+2)=3(m≠0)的解为________.14.在解方程3x x-1+ 2x-2x +3=0时,如果设x x-1=y ,则原方程可化为关于y 的一元二次方程的一般形式是________.15.把二元二次方程x 2-5xy+6y 2=0化成两个一次方程,那么这两个一次方程是________.16.如果一个多边形的每一个外角都等于72°,则该多边形的内角和等于________ 度.17.如果x=3是方程x x-3=2- k 3-x的增根,那么k 的值为________ .18.已知直线y=kx+b 与坐标轴围成的三角形面积是6,且经过(3,0),则这条直线的解析式为________.三、计算题(每题6分,满分24分)19.解方程:2x+1-1=11-x. 20.解方程:6-2 x-3=x .21.解方程组: ⎩⎨⎧x 2-9y 2=15x +3y =5. 22.解方程组: ⎩⎨⎧4x +y + 6x -y==1.四、解答题:(满分24分,其中23题7分;24题8分;25题9分)23.已知一次函数图象经过点M(4,3)且平行于直线y=- 34x+3(1)求这个函数的解析式;(2)所求得的一次函数的图象与坐标轴围成的三角形面积.24.甲、乙两家便利店到批发站采购一批饮料,共25箱,由于两店所处的地理位置不同,因此甲店的销售价格比乙店的销售价格每箱多10元.当两店将所进的饮料全部售完后,甲店的营业额为1000元,比乙店少350元,求甲乙两店各进货多少箱饮料?25.一个水槽有进水管和出水管各一个,进水管每分钟进水m升,出水管每分钟出水n升,水槽在开始5分钟内只进水不出水,随后15分钟内既进水又出水,得到时间x(分)与水量y(升)之间的关系如图所示:(1)求m、n的值;(2)如果在20分钟之后只出水不进水,单位时间进、出水量不变,求这段时间内y 关于x的函数解析式及定义域,并画出图象.五、解答题(共1小题,满分10分)26.如图①所示,直线L:y=mx+5m与x轴负半轴、y轴正半轴分别交于A、B两点.(1)当OA=OB时,请确定直线L的解析式.(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过点A、B两点分别作AM⊥OQ于点M,BN⊥OQ于点N,若AM=4,BN=3,求MN的长.(3)如图③,当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点,在第一、二象限内作等腰直角三角形OBF和等腰直角三角形ABE,联结EF交y轴于点P,.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请说明理由.纠错/评论点击显示评论解析质量:好中差提交。
2015-2016学年上海市闵行区八年级(下)期末数学试卷一、选择题:(本大题共6题,每题3分,满分18分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(3分)下列方程中,不是分式方程的是()A.B.C.D.2.(3分)函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限3.(3分)如果点C是线段AB的中点,那么下列结论中正确的是()A.B.C.D.4.(3分)小杰两手中仅有一只手中有硬币,他让小敏猜哪只手中有硬币.下列说法正确的是()A.第一次猜中的概率与重放后第二次猜中的概率不一样B.第一次猜不中后,小杰重放后再猜1次肯定能猜中C.第一次猜中后,小杰重放后再猜1次肯定猜不中D.每次猜中的概率都是0.55.(3分)如图,在梯形ABCD中,AB∥CD,AD=DC=CB,AC⊥BC,那么下列结论不正确的是()A.AC=2CD B.DB⊥AD C.∠ABC=60°D.∠DAC=∠CAB 6.(3分)下列命题中,假命题是()A.有一组对角是直角且一组对边平行的四边形是矩形B.有一组对角是直角且一组对边相等的四边形是矩形C.有两个内角是直角且一组对边平行的四边形是矩形D.有两个内角是直角且一组对边相等的四边形是矩形二、填空题(本大题共12题,每题2分,满分24分)7.(2分)一次函数y=﹣3x﹣5的图象在y轴上的截距为.8.(2分)已知直线y=kx+b经过点(﹣2,2),并且与直线y=2x+1平行,那么b=.9.(2分)如果一次函数y=(m﹣2)x+m的函数值y随x的值增大而增大,那么m的取值范围是.10.(2分)关于x的方程a2x+x=1的解是.11.(2分)方程的解为.12.(2分)如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,那么当y <0时,自变量x的取值范围是.13.(2分)2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是.14.(2分)如果一个八边形的每一个内角都相等,那么它的一个内角的度数等于度.15.(2分)在▱ABCD中,如果∠A+∠C=140°,那么∠B=度.16.(2分)如图,在△ABC中,点D、E分别是边AB、AC的中点,已知DE=6cm,则BC =cm.17.(2分)在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD.如果AD=4,BC=10,那么梯形ABCD的面积等于.18.(2分)如图,在△ABC中,AB=AC,点M、N分别在边AB、AC上,且MN⊥AC.将四边形BCNM沿直线MN翻折,点B、C的对应点分别是点B′、C′,如果四边形ABB′C′是平行四边形,那么∠BAC=度.三、计算题(本大题共8题,满分58分)19.(6分)解方程:.20.(6分)解方程组:.21.(6分)已知:如图,在△ABC中,设,.(1)填空:=;(用、的式子表示)(2)在图中求作.(不要求写出作法,只需写出结论即可.)22.(6分)已知直线y=kx+b经过点A(﹣3,﹣8),且与直线的公共点B的横坐标为6.(1)求直线y=kx+b的表达式;(2)设直线y=kx+b与y轴的公共点为点C,求△BOC的面积.23.(8分)已知:如图,在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE=DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.24.(8分)某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时从学校出发.已知先遣队每小时比大部队多行进1千米,预计比大部队早半小时到达目的地.求先遣队与大部队每小时各行进了多少千米.25.(8分)已知:如图,在□ABCD中,E为边CD的中点,联结AE并延长,交边BC的延长线于点F.(1)求证:四边形ACFD是平行四边形;(2)如果∠B+∠AFB=90°,求证:四边形ACFD是菱形.26.(10分)已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,.E是边AB的中点,联结DE、CE,且DE⊥CE.设AD=x,BC=y.(1)如果∠BCD=60°,求CD的长;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)联结BD.如果△BCD是以边CD为腰的等腰三角形,求x的值.2015-2016学年上海市闵行区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题3分,满分18分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(3分)下列方程中,不是分式方程的是()A.B.C.D.【考点】B1:分式方程的定义.【解答】解:A、该方程符合分式方程的定义,属于分式方程,故本选项错误;B、该方程属于无理方程,故本选项正确;C、该方程符合分式方程的定义,属于分式方程,故本选项错误;D、该方程符合分式方程的定义,属于分式方程,故本选项错误;故选:B.2.(3分)函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】F5:一次函数的性质.【解答】解:∵一次函数y=﹣2x+3中,k=﹣2<0,b=3>0,∴此函数的图象经过一、二、四象限.故选:B.3.(3分)如果点C是线段AB的中点,那么下列结论中正确的是()A.B.C.D.【考点】LM:*平面向量.【解答】解:由题意得:||=||,且它们的方向相反,∴有=,故选:C.4.(3分)小杰两手中仅有一只手中有硬币,他让小敏猜哪只手中有硬币.下列说法正确的是()A.第一次猜中的概率与重放后第二次猜中的概率不一样B.第一次猜不中后,小杰重放后再猜1次肯定能猜中C.第一次猜中后,小杰重放后再猜1次肯定猜不中D.每次猜中的概率都是0.5【考点】X4:概率公式;X6:列表法与树状图法.【解答】解:∵第一次猜中的概率为:;画树状图得:∵共有4种等可能的结果,重放后第二次猜中的有2种情况,∴第二次猜中的概率为:.∴每次猜中的概率都是0.5.故选:D.5.(3分)如图,在梯形ABCD中,AB∥CD,AD=DC=CB,AC⊥BC,那么下列结论不正确的是()A.AC=2CD B.DB⊥AD C.∠ABC=60°D.∠DAC=∠CAB 【考点】LH:梯形.【解答】解:A、∵AD=DC,∴AC<AD+DC=2CD,A不正确;B、∵在梯形ABCD中,AD=CB,∴梯形ABCD为等腰梯形,∴∠DAB=∠CBA.在△DAB和△CBA中,,∴△DAB≌△CBA(SAS),∴∠ADB=∠BCA.∵AC⊥BC,∴∠ADB=∠BCA=90°,∴DB⊥AD,B成立;C、∵AB∥CD,∴∠CDB=∠ABD,∠ABC+∠DCB=180°,∵DC=CB,∴∠CDB=∠CBD=∠ABD,∵∠ACB=90°,∴∠CDB=∠CBD=∠ABD=30°,∴∠ABC=∠ABD+∠CBD=60°,C正确;D、∵AB∥CD,∴∠DCA=∠CAB,∵AD=DC,∴∠DAC=∠DCA=∠CAB,D正确.故选:A.6.(3分)下列命题中,假命题是()A.有一组对角是直角且一组对边平行的四边形是矩形B.有一组对角是直角且一组对边相等的四边形是矩形C.有两个内角是直角且一组对边平行的四边形是矩形D.有两个内角是直角且一组对边相等的四边形是矩形【考点】LC:矩形的判定.【解答】解:A、有一组对角是直角且一组对边平行即可得到两组对边平行或四个角均是直角,故此选项不符合题意;B、有一组对角是直角且一组对边相等可以得到其两组对边平行,有一个角是直角的平行四边形是矩形可知此选项不符合题意;C、有两个内角是直角且一组对边平行的四边形可能是直角梯形,故此选项符合题意;D、有两个内角是直角的且一组对边相等可以得到其两组对边相等,所以能判定其是一个平行四边形,根据有一个角是直角的平行四边形是矩形可知此选项不符合题意.故选:C.二、填空题(本大题共12题,每题2分,满分24分)7.(2分)一次函数y=﹣3x﹣5的图象在y轴上的截距为﹣5.【考点】F8:一次函数图象上点的坐标特征.【解答】解:在y=﹣3x﹣5中,令x=0,可得y=﹣5,∴一次函数y=﹣3x﹣5的图象与y轴的交点坐标为(0,﹣5),∴一次函数y=﹣3x﹣5的图象在y轴上的截距为﹣5,故答案为:﹣58.(2分)已知直线y=kx+b经过点(﹣2,2),并且与直线y=2x+1平行,那么b=6.【考点】FF:两条直线相交或平行问题.【解答】解:∵直线y=kx+b与直线y=2x+1平行,∴k=2,把(﹣2,2)代入y=2x+b得2×(﹣2)+b=2,解得b=6.故答案为6;9.(2分)如果一次函数y=(m﹣2)x+m的函数值y随x的值增大而增大,那么m的取值范围是m>2.【考点】F7:一次函数图象与系数的关系.【解答】解:∵y随x的增大而增大,∴m﹣2>0.解得:m>2,故答案为:m>2;10.(2分)关于x的方程a2x+x=1的解是.【考点】6C:分式的混合运算;86:解一元一次方程.【解答】解:方程合并得:(a2+1)x=1,解得:x=,故答案为:11.(2分)方程的解为3.【考点】AG:无理方程.【解答】解:两边平方得:2x+3=x2∴x2﹣2x﹣3=0,解方程得:x1=3,x2=﹣1,检验:当x1=3时,方程的左边=右边,所以x1=3为原方程的解,当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.故答案为3.12.(2分)如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,那么当y <0时,自变量x的取值范围是x<2.【考点】F5:一次函数的性质;F8:一次函数图象上点的坐标特征.【解答】解:∵由函数图象可知,直线与x轴的交点坐标为(2,0),∴当y<0是,x<2.故答案为:x<2.13.(2分)2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是.【考点】X6:列表法与树状图法.【解答】解:画树状图得:∵共有12种等可能的结果,恰好2名女生得到电影票的有2种情况,∴恰好2名女生得到电影票的概率是:=.故答案为:.14.(2分)如果一个八边形的每一个内角都相等,那么它的一个内角的度数等于135度.【考点】L3:多边形内角与外角.【解答】解:∵正八边形的外角和为360°,∴正八边形的每个外角的度数=360°÷8=45°,∴正八边形的每个内角=180°﹣45°=135°.故答案为:135.15.(2分)在▱ABCD中,如果∠A+∠C=140°,那么∠B=110度.【考点】L5:平行四边形的性质.【解答】解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°.故答案为:110.16.(2分)如图,在△ABC中,点D、E分别是边AB、AC的中点,已知DE=6cm,则BC =12cm.【考点】KX:三角形中位线定理.【解答】解:∵△ABC中,点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵DE=6cm,∴BC=2DE=2×6=12cm.故答案为12.17.(2分)在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD.如果AD=4,BC=10,那么梯形ABCD的面积等于49.【考点】LH:梯形.【解答】解:过D作DE∥AC交BC的延长线于E,过D作DF⊥BC于F.∵AD∥CB,DE∥AC,∴四边形ADEC是平行四边形,∴DE=AC,AD=CE=4∵等腰梯形ABCD中,AB=CD,∴DE=AC=BD,∵AC⊥BD,CE∥AD,∴DE⊥BD,∴△BDE是等腰直角三角形,又∵AD=4,BC=10,∴DF=BE=(AD+BC)=(4+10)=7,∴梯形的面积为:(4+10)×7=49.故答案为:49.18.(2分)如图,在△ABC中,AB=AC,点M、N分别在边AB、AC上,且MN⊥AC.将四边形BCNM沿直线MN翻折,点B、C的对应点分别是点B′、C′,如果四边形ABB′C′是平行四边形,那么∠BAC=60度.【考点】KH:等腰三角形的性质;L5:平行四边形的性质.【解答】解:如图,∵四边形MNC′B′是由四边形MNCB翻折得到,∴∠C=∠C′,∵AB∥B′C′,∴∠C′=∠BAC,∴∠C=∠BAC,∴AB=BC,∵AB=AC,∴AB=AC=BC,∴∠BAC=60°,故答案为60.三、计算题(本大题共8题,满分58分)19.(6分)解方程:.【考点】B3:解分式方程.【解答】解:设=y,则原方程可化为y﹣﹣1,解得y1=2,y2=﹣1,当y1=2时,得=2,解得:x1=2;当y2=﹣1时,得=﹣1,解得:x2=,经检验:x1=2,x2=是原方程的根,则原分式方程的根是x1=2,x2=.20.(6分)解方程组:.【考点】AF:高次方程.【解答】解:由②,得(x﹣2y)2=9,即得x﹣2y=3,x﹣2y=﹣3,则原方程组可化为或,解这两个方程组,得或.21.(6分)已知:如图,在△ABC中,设,.(1)填空:=;(用、的式子表示)(2)在图中求作.(不要求写出作法,只需写出结论即可.)【考点】LM:*平面向量.【解答】解:(1)由题可知,=,故答案为:;(2)如右图所示,结论:.22.(6分)已知直线y=kx+b经过点A(﹣3,﹣8),且与直线的公共点B的横坐标为6.(1)求直线y=kx+b的表达式;(2)设直线y=kx+b与y轴的公共点为点C,求△BOC的面积.【考点】FA:待定系数法求一次函数解析式;FF:两条直线相交或平行问题.【解答】解:(1)在直线中,由x=6,得,∴点B(6,4),由直线y=kx+b经过点A、B,得解得∴所求直线表达式为;(2)在直线中,当x=0时,得y=﹣4,即C(0,﹣4),由点B(6,4)、C(0,﹣4),可得△BOC的面积=×4×6=12,∴△BOC的面积为12.23.(8分)已知:如图,在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE=DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.【考点】LE:正方形的性质.【解答】解:(1)由正方形ABCD,得AB=AD,∠B=∠ADF=∠BAD=90°,在△ABE和△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠F AD,AE=AF.∴∠BAD=∠BAE+∠EAD=∠F AD+∠EAD=90°.即得∠EAF=90°,又∵AE=AF,∴∠AEF=∠AFE=45°.(2)∵∠AEB=75°,∠AEF=45°,∴∠BEF=120°.即得∠FEC=60°,由正方形ABCD,得∠C=90°.∴∠EFC=30°.∴EF=2EC,设EC=x.则EF=2x,BE=DF=2﹣x,CF=4﹣x.在Rt△CEF中,由勾股定理,得CE2+CF2=EF2.即得x2+(4﹣x)2=4x2.解得x1=2﹣2,x2=﹣2﹣2(不合题意,舍去).∴EC=2﹣2,CF=6﹣2.∴S△CEF==,∴△FEC的面积为.24.(8分)某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时从学校出发.已知先遣队每小时比大部队多行进1千米,预计比大部队早半小时到达目的地.求先遣队与大部队每小时各行进了多少千米.【考点】B7:分式方程的应用.【解答】解:设先遣队每小时行进x千米,则大部队每小时行进(x﹣1)千米.根据题意,得.解得x1=6,x2=﹣5.经检验:x1=6,x2=﹣5是原方程的根,x2=﹣5不合题意,舍去.∴原方程的根为x=6.∴x﹣1=6﹣1=5.答:先遣队与大部队每小时分别行进6千米和5千米.25.(8分)已知:如图,在□ABCD中,E为边CD的中点,联结AE并延长,交边BC的延长线于点F.(1)求证:四边形ACFD是平行四边形;(2)如果∠B+∠AFB=90°,求证:四边形ACFD是菱形.【考点】L7:平行四边形的判定与性质;L9:菱形的判定.【解答】证明:(1)在□ABCD中,AD∥BF.∴∠ADC=∠FCD.∵E为CD的中点,∴DE=CE.在△ADE和△FCE中,,∴△ADE≌△FCE(ASA)又∵AD∥FC,∴四边形ACFD是平行四边形.(2)在△ABF中,∵∠B+∠AFB=90°,∴∠BAF=90°.又∵四边形ABCD是平行四边形,∴AB∥CD,∴∠CEF=∠BAF=90°,∵四边形ACDF是平行四边形,∴四边形ACDF是菱形.26.(10分)已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,.E是边AB的中点,联结DE、CE,且DE⊥CE.设AD=x,BC=y.(1)如果∠BCD=60°,求CD的长;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)联结BD.如果△BCD是以边CD为腰的等腰三角形,求x的值.【考点】KY:三角形综合题.【解答】解:(1)过点D作DH⊥BC,垂足为点H.∵AD∥BC,AB⊥BC,DH⊥BC,∴DH=AB=2,在Rt△DHC中,∵∠BCD=60°,∴∠CDH=30°.设CH=x,则CD=2x.利用勾股定理,得CH2+DH2=CD2.即得:x2+(2)2=4x2.解得x=2(负值舍去).∴CD=4;(2)取CD的中点F,连接EF,∵E为边AB的中点,∴EF=(AD+BC)=(x+y).∵DE⊥CE,∴∠DEC=90°.又∵DF=CF,∴CD=2EF=x+y.由AB⊥BC,DH⊥BC,得∠B=∠DHC=90°.∴AB∥DH.又∵AB=DH,∴四边形ABHD是平行四边形.∴BH=AD=x.即得CH=|y﹣x|,在Rt△DHC中,利用勾股定理,得CH2+DH2=CD2.即得(y﹣x)2+12=(x+y)2.解得,∴所求函数解析式为.自变量x的取值范围是x>0,且;(3)当△BCD是以边CD为腰的等腰三角形时,有两种可能情况:CD=BD或CD=BC.(i)如果CD=BD,由DH⊥BC,得BH=CH.即得y=2x.利用,得.解得x1=,$x2=﹣$\frac{{\sqrt{6}}}{2}$.经检验:x1=$\frac{{\sqrt{6}}}{2}$,x2=﹣$\frac{{\sqrt{6}}}{2}$,且x2=﹣$\frac{{\sqrt{6}}}{2}$不合题意,舍去.∴$x=\frac{{\sqrt{6}}}{2}$;(ii)如果CD=BC,则x+y=y.即得x=0(不合题意,舍去),综上可得:$x=\frac{{\sqrt{6}}}{2}$.。
参考答案东城区2014——2015学年度第二学期期末教学目标检测 初二数学一、选择题(本大题共10小题,每小题2分,共20分,每小题只有一个选项是正确的,把11.(0,-6) 12. ︒11013. 1421=-=x x ,14.如:y=x-2,(只需要k>0,b=-2即可) 15. ︒5112. 16. 2- 17. 2-18. 51<<-x 19. 2 20.n 25三、解答题 21.证明:分30802844分248163612分131662222...........................)(........................................).........()(>+-=+-=+-++=--+=∆k k k k k k k k∴不论k 取什么实数,原方程一定有两个不相等的实数根………4分 22.解:设正比例函数x k y 1=,一次函数b x k y +=2。
∵P(12,5),∴5121=k ,OP=13. ∴1251=k . ∴正比例函数x y 125=.……………2分 ∵OP=OQ, ∴OQ=13, ∴Q(0,-13),∴135122-==+b b k ,解得:232=k . ∴一次函数1323-=x y .……………5分23.解:∵菱形ABCD, ∴AD=AB.又E 是AB 的中点, ∴AE=2521=AB .……………2分 ∵DE ⊥AB,∴在Rt △ADE 中,32522=-=AE AD DE .……………4分 32253255菱形=⨯=⨯=DE AB S ABCD.……………5分24. 设售价为x 元,则上涨了(x-40)元,月销售量为600-10(x-40)=1000-10x 个……………1分依题意,得:(x-30)(1000-10x)=10000……………3分解得x 1=50,x 2=80(不合题意,舍去) ……………4分答:这种台灯每个的售价应定为50元. ……………5分 25.答:(1)150 ……………2分 (2)4.25~4.55 ……………3分 (3)600……………6分26. 解:(1)由题意得,0)2(42122≥--+k k )( ……………….1分 解得,49-≥k K 的取值范围是49-≥k . ……………………..2分(2)k 为负整数,k= -2,-1. …………………..3分当k= -2时,0232=++x x 的两根是2121-=-=x x ,都是整数,符合题意 …………………5分当k=-1时,012=-+x x 的根不是整数,不符合题意。
XXX 2014-2015学年八年级下学期期末数学试卷(含答案)XXX2014-2015学年度下学期期末质量监测八年级数学试卷一、选择题:本大题共12个小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列根式中,是最简二次根式的是()A。
$\frac{1}{2}$ $\sqrt{2}$ B。
3 $\sqrt{2}$ C。
8 D。
12 $\sqrt{2}$2.下列计算正确的是()A。
3+2=5 B。
3×2=6 C。
12-3=9 D。
8÷2=43.下列各点在函数y=2x的图象上的是()A。
(2,-1) B。
(-1,2) C。
(1,2) D。
(2,1)4.下列各数组中,能作为直角三角形三边长的是()A。
1,1,2 B。
2,3,4 C。
2,3,5 D。
3,4,55.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲成绩的方差为1.21,乙成绩的方差为3.98,由此可知()A。
甲比乙的成绩稳定 B。
乙比甲的成绩稳定 C。
甲、乙两人的成绩一样稳定 D。
无法确定谁的成绩更稳定6.如图,矩形ABCD中,∠AOD=120,AB=3,则BD的长是()A。
$\sqrt{33}$ B。
6 C。
4 D。
$\sqrt{23}$7.若(-4,y1),(2,y2)两点都在直线y=-2x-4上,则y1与y2的大小关系是()A。
y1>y2 B。
y1=y2 C。
y1<y2 D。
无法确定8.如图,平行四边形ABCD中,对角线AC与BD交于点O,已知∠OAB=90,BD=10cm,AC=6cm,则AB的长为()A。
4cm B。
5cm C。
6cm D。
8cm9.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A。
4cm B。
5cm C。
6cm D。
8cm10.为了解某班学生每天使用零花钱的情况,XXX随机调查了该班15名同学,结果如下表:人数。
1闵行区2014-2015学年八年级第二学期期末数学试卷(考试时间90分钟,满分100分)2015.6一、选择题(本大题共6题,每题2分,满分12分)1.一次函数2y x =-的图像与y 轴的交点坐标为 …………………………………( ) (A )(2,0); (B )(0,2); (C )(-2,0); (D )(0,-2).2.下列方程中,有实数根的是………………………………………………………( ) (A0; (B103=; (C2=; (D2. 3.下列命题中,假命题是 ……………………………………………………………( ) (A )一组邻边相等的平行四边形是菱形;(B )一组邻边相等的矩形是正方形;(C )一组对边平行且相等的四边形是平行四边形;(D )一组对边相等且有一个角为直角的四边形是矩形.4.如右图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )5.闵行体育公园内有一个形状是平行四边形的花坛(如图),并且AB ∥EF ∥DC ,BC ∥GH ∥AD ,花坛中分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果小杰不小心把球掉入花坛,那么下列说法中错误的是……………………………( )(A )球落在红花丛中和绿花丛中的概率相等; (B )球落在紫花丛中和橙花丛中的概率相等; (C )球落在红花丛中和蓝花丛中的概率相等; (D )球落在蓝花丛中和黄花丛中的概率相等.6.如图,在平行四边形ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,联结EF 、CF ,那么下列结论中一定成立的个数是…………( )①∠DCF =21∠BCD ;②EF =CF ; ③S ΔBEC =2S ΔCEF ;④∠DFE =3∠AEF . (A )1个;(B )2个; (C )3个; (D )4个.(D )(B )(A )(C )(第5题图)2二、填空题(本大题共12题,每题2分,满分24分)7.函数112y x =-+的图像不经过第_________象限.8.已知直线1(2)2ky k x -=++的截距为1,那么该直线与x 轴的交点坐标为________. 9.在函数37y x =-+中,如果自变量x 大于2,那么函数值y 的取值范围是___________. 10.已知一次函数1213my x m +=+-(其中m 是常数),如果函数值y 随x 的增大而减小,且与y 轴交于点P (0,t ),那么t 的取值范围是________________. 11.方程3320x x -=的实数解是_________________________. 12.方程6x =-的根是________________.13.化简:OA BC OC +-=uu r uu u r uuu r__________________.14.布袋内装有大小、形状相同的3个红球和1个白球,从布袋中一次摸出两个球,那么两个都摸到红球的概率是__________________.15.某件商品连续两次降价后,零售价为原来的64%,那么此商品平均每次降价的百分率为________________.16.一个多边形的内角和是1440°,那么这个多边形边数是____________.17.如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是_____________.18.如图,现有一张矩形纸片ABCD ,其中AB = 4cm ,BC = 6cm ,点E 是BC 的中点.将纸片沿直线AE 折叠,使点B 落在梯形AECD 内,记为点B ´,那么B ´、C 两点之间的距离是_______________ cm .三、计算题(本大题共4题,每题6分,满分24分)19.解关于x 的方程:22111bx x b -=-≠-().(第18题图)A B DEG CAE B D HF(第17题图)320.解方程: 226212x x x x+-=+.21.解方程组: 22222303.x xy y x xy y ⎧--=⎪⎨-+=⎪⎩,22.如图,已知点E 在四边形ABCD 的边AB 上,设AE a =uu u r r ,AD b =uuu r r ,DC c =uuu r r.(1)试用向量a r 、b r 和c r 表示向量DE uuu r ,EC uu u r;(2)在图中求作:DE EC DA +-uuu r uu u r uu u r.(不要求写出作法,只需写出结论即可)(第22题图)DABCE4四、简答题(本大题共5题,满分40分,其中第23、24、25题每题7分,第26题9分,第27题10分) 23.已知把直线(0)y kx b k =+≠沿着y 轴向上平移3个单位后, 得到直线25y x =-+.(1)求直线(0)y kx b k =+≠的解析式;(2)求直线(0)y kx b k =+≠与坐标轴围成的三角形的周长.24.已知:如图,等腰梯形ABCD 的中位线EF 的长为6cm ,对角线BD 平分∠ADC ,下底BC 的长比等腰梯形的周长小20cm ,求上底AD 的长.(第23题图)(第24题图)525.闵行区政府为残疾人办实事,在道路改造工程中为盲人修建一条长3000米的盲道,根据规划设计和要求,某工程队在实际施工中增加了施工人员,每天修建的盲道比原计划多250米,结果提前2天完成工 程,问实际每天修建盲道多少米.26.如图,已知:在正方形ABCD 中,M 是CD 的中点,E 是MC 上一点,且∠BAE =2∠DAM . 求证:AE = BC + CE .ABCDM E(第26题图)627.如图①,已知△OAB 、△OBC 、△OCD 、△ODE 、△OEF 和△OF A 均为边长为a 的等边三角形,点P 为边BC 上任意一点,过P 作PM ∥AB 交AF 于M ,作PN ∥CD 交DE 于N . (1)那么∠MPN = ,并求证PM + PN = 3a ; (2)如图②,联结OM 、ON .求证:OM = ON ;(3)如图③,OG 平分∠MON ,判断四边形OMGN 是否为特殊四边形,并说明理由.O(第27题图①) P NM F E D C B AO(第27题图②) P NM FE DC B AGO(第27题图③)P NM FE DCB A。
马鞍山市2014—2015学年度第二学期期末素质测试八年级数学试题一、选择题:本大题共10小题,每小题3分,共30分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内. 1.正六边形的每一个内角是()A .30º B .60º C .120º D .150º 2.下列计算不正确的是( )A =BC 3=D =3.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数 B .方差 C .平均数 D .中位数 4.一元二次方程210x x -+=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 5.在下列命题中,是真命题的是( )A .两条对角线相等的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相平分的四边形是平行四边形D .两条对角线互相垂直且相等的四边形是正方形 6.已知,,a b c 是ABC △的三边长,22(13)|5|0b c -+-=,则ABC △是( )A .以a 为斜边的直角三角形B .以b 为斜边的直角三角形C .以c 为斜边的直角三角形D .以c 为底边的等腰三角形 7x 的取值范围是( ) A .11x x ≤≠-且 B .10x x ≤≠且 C .11x x <≠-且 D .11x -<≤8.某机械厂一月份生产零件50万个,第一季度生产零件196万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是( ) A .250(1)196x += B .25050(1)196x ++=C .25050(1)50(1)196x x ++++=D .5050(1)50(12)196x x ++++=9.如图,矩形ABCD 的面积为210cm ,对角线交于点O ;以AB 、AO 为邻边作平行四边形1AOC B ,其对角线交于点1O ;以AB 、1AO 为邻边作平行四边形12AO C B ;…;依此类推,则平行四边形56AO C B 的面积为( )A .254cmB .258cm第9题图O 2C 2C 1O 1O DCBAC .2516cmD .2532cm 10.如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B '处,点A 对应点为A ',且3B C '=,则AM 的长是( ) A .2 B .2.25 C .2.5 D .2.75二、填空题:本大题共8个小题,每小题3分,共计24分. 112a =-,则a 的取值范围是 .12.一元二次方程2x x =的根是 .13.某校对全校600名女生的身高进行了测量,身高在158~163(单位:cm)这一小组的频率为0.25,则该组的人数为 人. 14.方程22210x x --=的两个实数根分别为1x ,2x ,则12x x = .15.已知m 是方程2210x x --=的一个根,且27148m m a -+=,则a 的值等于 . 16.如图,将两张长为8cm ,宽为2cm 的矩形纸条交叉放置,重叠部分可以形成一个菱形,那么当菱形的两个相对顶点与矩形顶点重合时,菱形的周长为 cm .17.某品牌瓶装饮料每箱价格26元,商场对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.那么该品牌饮料一箱装有 瓶. 18.在矩形ABCD 中,∠AOB =60°,AF 平分DAB ∠,过C 点作CE BD ⊥于E ,延长AF 、EC 交于点H ,连接OF .给出下列4个结论:①BO BF =; ②∠FOB =75°; ③CA CH =; ④3BE ED =.其中正确结论的序号是 (请将所有正确结论的序号都填上). 三、解答题:本大题共6小题,共46分.解答应写出文字说明、证明过程或演算步骤.19.本题满分8分,每小题4分. (1)计算:解:原式66=--………………4分(2)解方程:22410x x -+=解:x ====……2分所以原方程的解为12x x =………………………4分20.本题满分7分HOFE D C B A 第18题图省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环; (2)分别计算甲、乙六次测试成绩的方差; (3)根据(1)、(2)计算的结果,从发挥的稳定性看,你认为推荐谁参加全国比赛更合适,请说明理由. 解:(1)1089810996x +++++==甲 ,10710109896x +++++==乙 ………2分(2)2222(910)(98)(99)1101102s663-+-++-+++++===L 甲2222(910)(97)(98)1411014s663-+-++-+++++===L 甲…………4分(3)因为22s s <甲乙,甲的成绩比较稳定,故选甲参加全国比赛更合适. (7)分21.本题满分7分如图,A ,B 是公路l 两旁的两个村庄,A 村到公路l 的距离AC =1km ,B 村到公路l 的距离BD =2km ,已知45CAB ∠=︒.(1)求出A ,B 两村之间的距离;(2)为方便村民出行,计划在公路边新建一个到两村的直线距离相等公共汽车站P ,求的长. 解:(1)方法一:设AB 与CD 的交点为O ,根据题意可得45A B ∠=∠=°. ACO ∴△和BDO △都是等腰直角三角形.AO ∴=BO =∴A B ,两村的距离为AB AO BO =+==(km ).…………3分 (2)过线段AB 的中点O 作线段AB 的中垂线OP 交CD 于P , 连PA PB 、,则PA PB =设PD x =,则3PC x =-由勾股定理知:22221(3)2x x +-=+解得1x =即PD 的长为1km …………………………………7分22.本题满分8分如图,有一张菱形纸片ABCD ,AC =8,BD =6.(1)请沿着AC 剪一刀,把它分成两个部分,把剪开的两部分拼成一个平行四边形,在图一中用实线画出你所拼成的平行四边形,并直接写出这个平行四边形的周长;(2)若沿一条直线剪开,拼成一个矩形,请在图二中用实线画出你所拼成的矩形,并直接写出这个矩形的周长; (3)沿一条直线(不准是对角线)剪开,拼成与上述两种周长都不一样的平行四边形,请在图三中用实线画出你所拼成的平行四边形.DCBAACDCBA 图1 图2 图3解:图1周长=图2周长= 解:图1 图2 图3CA(1)共3分,其中正确作图1分,周长=26 (2分); (2)共3分,其中正确作图1分,周长=985(2分); (3)正确作图2分(本题作图不唯一,只要正确即得分.)23.本题满分8分D C BA 第22题图某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x 元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果销售这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?解:设第二周每个旅游纪念品降价x 元,由题意得:10200(10)(20050x)(60020020050)466001250x x ⨯+-++---⨯-⨯=化简:2210x x -+=,解得121x x == ……………………………………6分 ∴10-1=9,答:第二周的销售价格为9元. ……………………………………………8分24.本题满分8分如图所示,在ABC △中,分别以AB ,AC ,BC 为边在BC 的同侧作等边ABD △,等边ACE △和等边BCF △. (1)求证:四边形DAEF 平行四边形;(2)探究下列问题:(只填满足的条件,不需要证明) (2)探究下列问题:(只填满足的条件,不需要证明)①当∠BAC = 时,四边形DAEF 是矩形;②当△ABC 满足 条件时,四边形DAEF 是正方形; ③当△ABC 满足 条件时,四边形DAEF 是菱形; ④当∠BAC = 时,以D A E F ,,,为顶点的四边形不存在.解:(1)证明:由条件知,△ABD ,△ACE ,△BCF 是等边三角形,所以在△ABC和△DBF 中,有,AB DB BC BF == 又60ABC ABF DBF ∠=︒-∠=∠ 所以△ABC ≌△DBF ,从而有DF AB AE ==……………………2分 同理△ABC ≌△EFC从而有EF AB AD ==………………………3分 所以四边形DAEF 平行四边形. …………4分 (2)①150︒;②AB AC =,且150BAC ∠=︒;③AB AC BC =≠;④60︒(每小题1分,共4分)第24题图FEDCB A。
上海市2015学年度第二学期期末教学质量测试初二数学模拟试卷(满分:100分 考试时间:100分钟)考生注意:本试卷含三个大题,共25题,除第一、二大题外,其余各题如无特别说明,都必须在试卷的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每小题各2分,满分12分)1. 一次函数12.0+=x y 的截距是:( )(A )0.2;(B )2;(C )1;(D )0;2. 下列方程有实数根的是:( )(A )6-2=+x x ; (B )x x -1-=; (C )111-=-x x x ; (D )22+=-x x x .3. 下列说法中错误的是:( ) (A )“掷骰子点数为6”是随机事件;(B )“地球会自转和公转”是必然事件;(C )“抛硬币决胜负”获胜概率为50%; (D )一局制“猜拳”获胜概率为50%.4. 若要使关于x 的方程:k x =-+193有负实数根,则k 的取值范围是:( )(A )801<≤-k ; (B )901<<-k ; (C )81<≤-k ;(D )91<<-k .5. 在梯形ABCD 中,BC AD //,点M 、N 分别是AB 、CD 的中点,则:( )(A )若21=BC AD ,则21=BMNC AMND S S 梯形梯形,31-=+-BC AD C C BMNC AMND梯形梯形;(C )若73=BC AD ,则32=BMNC AMND S S 梯形梯形,52-=+-BC AD C C BMNC AMND梯形梯形;(B )若43=BC AD ,则21=BMNC AMND S S 梯形梯形,31-=+-BC AD C C BMNC AMND梯形梯形;(D )若135=BC AD ,则32=BMNC AMND S S 梯形梯形,52-=+-BC AD C C BMNC AMND梯形梯形. 6. 下列选项中所指的“四边形”不可能是正方形的是:( ) (A )顺次联结对角线互相垂直且且相等的四边形的各边上的中点所围成的四边形; (B )顺次联结等边三角形三条角平分线的交点与三边上的各一点所围成的四边形; (C )顺次联结正n 变形(n 为偶完成平方数)不同的4个顶点所围成的四边形;(D )顺次联结直线1+=x y 、x 轴、1--=x y 上的各一点、原点所围成的四边形.二、填空题(本大题共12题,每小题各3分,满分36分)7. 已知直线l 经过点(0,1)和点(2,-1),则直线l 的表达式为 . 8. 方程23=-xx 的解为: .9. 一次函数b kx y +=的图像如图所示,若要使1>y ,那么x 的取值范围是: . 10. 用换元法解方程()28401571=+-+-x x x x,设15+=x x y ,原方程可变形为:___________. 11. 一个十变形内角和与外角和的和为: . 12. 化简:=-+DC BC AB .13. 已知一菱形的一个内角是︒06则较长的对角线与较短的对角线的比值为:__________. 14. 如果直线111b x k y +=与直线222b x k y +=(021≠k k )与y 轴围成的图形是等腰三角形, 则1k 与2k 需满足的关系是: .15. 在△ABC 中,7=AB ,8=BC ,9=AC ,AD 是∠BAC 的外角平分线,CD ⊥AD ,垂足为点D ,点E 为BC 的中点,联结DE ,则DE 的长为:__________.16. 在直角坐标平面内,我们把一正方形绕原点O 顺时针旋转的操作叫做“S 变换”(旋转角︒<45);如图所示现将一边长为6的正方形ABCO 进行“S 变换”,直线x y =与x 轴分别交正方形的边于点F E 、,下列说法中正确的有(填序号): .①点O 到EF 的距离始终不变; ②△BEF 的周长始终变小; ③△AOE 的面积先变大再变小; ④△COE 的面积始终不变.17. 如图,已知在矩形ABCD 中,5=AB ,35=AD ,点O 是矩形ABCD 的中心,将矩形ABCD 绕点O 旋转,得到矩形’’’’D C B A ,若BD B A ⊥’’,则=C B ’__________. 18. 在□ABCD 中,x BC =,y CD =,对角线12=BD ,x h 、y h 分别表示点A 到BC 、CD 的距离,已知y h x h y x ≥≥,,则ABCD S 四边形可取的值有:__________.A (-2,1)O第10题图第18题图第17题图x yEFOA B C yxAB C DO y =x三、解答题(本大题共7题,满分52分)19.(本题满分5分)解方程组:⎩⎨⎧=-=--40222y x y xy x20.(本题满分5分)端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一只咸菜馅,两只红枣馅,四只粽子除内部馅料不同外其他均一切相同.小明喜欢吃红枣馅的粽子,请你用树状图为小明预测一下吃两只粽子刚好都是红枣馅的概率. 解:21.(本题满分6分,其中第小题各2分)如图,在等腰梯形ABCD 中,BC AD //,延长BC 至点E ,使得AD CE =,联结DE AC 、,已知:CB DA DE a ++=,k DE =.(1)请在图中标出与DE 相等的向量(不需写结论); (2)求作a (结论:____________________________); (3)已知点P 是边DE 上的一点,联结PC PA 、, 设:PC PA b +=,请直接写出:当=DP (用含k 的代数式表示)时,BE b //.CEBAD第21题图22.(本题满分6分)某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.解:23.(本题满分7分,其中第(1)小题3分,第(2)小题4分)如图所示,在直角梯形ABCD中,BCAD//,BCAB⊥,︒=∠75BCD,点E在AB上,且DCEC=,︒=∠60ECD.(1)求证:AB = BC;(2)点F为线段CD上一点,若︒=∠30FBC,求证:DFCF=解:(1)(2)F第23题图AB CDE在直角坐标平面内,直线62+-=x y 与双曲线xmy =交于点A 、B (点A 在点B 左侧),直线b kx y +=与双曲线xmy =交于点()14--,C 和()n D ,2-,直线AB 、CD 交于点E .(1)写出点A 、B 的坐标和直线CD 的解析式; (2)求证:射线EO 平分AOC ∠;(3)点P 是直线CD 上的一点,如果AEC PAC ∠=∠21,求点P 的坐标.解:(1)点A 坐标:________; B 的坐标:________; 直线CD 的解析式:____________.(2)(3)如图,已知正方形ABCD 边长为1,点P 是射线CB 上的一点(不与点B 重合),联结AP ,以AP 为边向右侧作等边三角形APE ,联结CE .(1)设x BP =,S △APE y =,求y 关于x 的函数解析式,并写出定义域; (2)当四边形APCE 为梯形时,求PB PB 232+的值;(3)如图2所示,将△APB 绕点A 逆时针旋转︒60,使得点P 与点E 重合,设点B 的对应点为点’B ,如果︒=∠90EC B ’,求PB 的长.. 解:(1) (2) (3)APBCDE ABCDBACD第25题图第25题备用图第25题备用图上海市2015学年度第二学期期末教学质量测试初二数学模拟试卷答案一、选择题(本大题共6题,每小题各2分,满分12分)1.A2.D3.D4.C5.C6.B二、填空题(本大题共12题,每小题各3分,满分36分)7.1+-=x y 8.9=x 9.2->x 10.217=-yy 11. 1800°12.AD 13.314.21k k -=(或021=+k k 或1k 与2k 互为相反数) 15. 8 16. ①与④ 17.25 18. 72三、解答题(本大题共7题,满分52分) 23. (1)联结AC∵DC EC =,︒=∠60ECD .∴△ECD 为等边三角形 ∵︒=∠+∠180ADC BCD∴︒=∠+∠∴︒=∠105105EDC ADE ADC ,∴︒=∠45ADE ,∴△ADE 为等腰直角三角形··········(1分) ∴AD =AE在△ADC 和△AEC 中:⎪⎩⎪⎨⎧===ECDC AC AC AE AD∴△ADC ≌△AEC ·····················(1分) ∴︒=∠=∠45DAC ACB有∵︒=∠90B∴△ABC 为等腰直角三角形∴AB =AC ·························(1分) (2)延长BF 交AD 延长线于点G ,联结AF ··········(1分) ∵∠FBC +∠BCF +∠BFC =180°又∵∠FBC =30°,∠BCF =75° ∴∠BCF =∠BFC =75° ∴BF=BC ∴BF=BA∵∠ABF =∠ABC -∠FBC =60°∴△ABF 是等边三角形,··················(1分) ∴AF=BF ,∠BAF =60°,∴∠DAF =30° ∵AD //BC∴∠G =∠EBC =30°,∴∠G =∠DAF∴AF=FG=BF ,······················(1分) 在△FGD 和△FBC 中:⎪⎩⎪⎨⎧∠=∠=∠=∠B F C G F DFB FG FBC G∴△FGD ≌△FBC ·····················(1分) ∴CF=DF ························(1分)24.(1)),(),,(2241B A ,直线CD 解析式:321--=x y ·····(各1分)(2)联结AO CO 、联立⎪⎩⎪⎨⎧--=+-=32162x y x y ,求得:()6-6,E ··············(1分) ()()()()1701041701042222=-+-==--+--=AO CO ,,()()()()5564615561642222=++-==+-+--=AE CE ,∴AE CE AO CO ==,在△AOE 和△COE 中:⎪⎩⎪⎨⎧===OE OE CE AE CO AO∴△AOE ≌△COE ·····················(1分)∴CEO AEO ∠=∠∴射线EO 平分AOC ∠····················(1分)(3)设⎪⎭⎫⎝⎛--321,a a P情况一:点延长线上在EC P , ∵CE AE =,∴2180AECCAE ACE ∠-︒=∠=∠∴︒=∠+∠=∠90PAC CAE PAE ∴222PE AE PA =+·····················(1分)∴()()()22222632165543211⎪⎭⎫ ⎝⎛+--+-=+⎪⎭⎫ ⎝⎛---+-a a a a ,解得:213-=a∴⎪⎭⎫⎝⎛41,213-1P ························(1分)情况二:点上在EC P ∵︒=∠+∠-︒=∠+∠90212180AEC AEC CAD ACE ,∴点P 与点D 重合·····················(1分)∴()2,22--P ························(1分)综上:()⎪⎭⎫⎝⎛---41,2132,2或P25. (1)在Rt △ABP 中,∠B =90° ∴2222AE AP BP AB ==+ ∴12+==x AP AE过点E 作EM ⊥AP ,垂足为点M ∵︒=∠60EAP ∴121212+==x AE AM ,∴12332+⋅==x AM EM ∴)(04343212>+=⋅=x x EM AP y ·····(解析式2分,定义域1分)(第25题第2小题只写答案最多得2分,过程允许适当省略)。
1
闵行区2014-2015学年八年级第二学期期末数学试卷
(考试时间90分钟,满分100分)2015.6
一、选择题(本大题共6题,每题2分,满分12分)
1.一次函数2y x =-的图像与y 轴的交点坐标为 …………………………………( ) (A )(2,0); (B )(0,2); (C )(-2,0); (D )(0,-2).
2.下列方程中,有实数根的是………………………………………………………( ) (A
0; (B
1
03
=; (C
2=; (D
2. 3.下列命题中,假命题是 ……………………………………………………………( ) (A )一组邻边相等的平行四边形是菱形;
(B )一组邻边相等的矩形是正方形;
(C )一组对边平行且相等的四边形是平行四边形;
(D )一组对边相等且有一个角为直角的四边形是矩形.
4.如右图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )
5.闵行体育公园内有一个形状是平行四边形的花坛(如图),并且AB ∥EF ∥DC ,BC ∥GH ∥AD ,花坛中分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果小杰不小心把球掉入花坛,那么下列说法中错误的是……………………………( )
(A )球落在红花丛中和绿花丛中的概率相等; (B )球落在紫花丛中和橙花丛中的概率相等; (C )球落在红花丛中和蓝花丛中的概率相等; (D )球落在蓝花丛中和黄花丛中的概率相等.
6.如图,在平行四边形ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,联结EF 、
CF ,那么下列结论中一定成立的个数是…………( )
①∠DCF =2
1
∠BCD ;②EF =CF ; ③S ΔBEC =2S ΔCEF ;
④∠DFE =3∠AEF . (A )1个;
(B )2个; (C )3个; (D )4个.
(D )
(B )
(A )
(C )
(第5题图)
2
二、填空题(本大题共12题,每题2分,满分24分)
7.函数1
12y x =-+的图像不经过第_________象限.
8.已知直线1(2)2
k
y k x -=++
的截距为1,那么该直线与x 轴的交点坐标为________. 9.在函数37y x =-+中,如果自变量x 大于2,那么函数值y 的取值范围是___________. 10.已知一次函数1213
m
y x m +=
+-(其中m 是常数)
,如果函数值y 随x 的增大而减小,且与y 轴交于点P (0,t ),那么t 的取值范围是________________. 11.方程3320x x -=的实数解是_________________________. 12
.方程6x =-的根是________________.
13.化简:OA BC OC +-=uu r uu u r uuu r
__________________.
14.布袋内装有大小、形状相同的3个红球和1个白球,从布袋中一次摸出两个球,那么两个都摸到红球
的概率是__________________.
15.某件商品连续两次降价后,零售价为原来的64%,那么此商品平均每次降价的百分率为
________________.
16.一个多边形的内角和是1440°,那么这个多边形边数是____________.
17.如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,
四边形ABCD 还应满足的一个条件是_____________.
18.如图,现有一张矩形纸片ABCD ,其中AB = 4cm ,BC = 6cm ,点E 是BC 的中点.将纸片沿直线AE 折
叠,使点B 落在梯形AECD 内,记为点B ´,那么B ´、C 两点之间的距离是_______________ cm .
三、计算题(本大题共4题,每题6分,满分24分)
19.解关于x 的方程:22
111bx x b -=-≠-().
(第18题图)
A B D
E
G C
A
E B D H
F
(第17题图)
3
20.解方程: 226
212x x x x
+-=+.
21.解方程组: 2222
2303.x xy y x xy y ⎧--=⎪
⎨-+=⎪⎩,
22.如图,已知点E 在四边形ABCD 的边AB 上,设AE a =uu u r r ,AD b =uuu r r ,DC c =uuu r r
.
(1)试用向量a r 、b r 和c r 表示向量DE uuu r ,EC uu u r
;
(2)在图中求作:DE EC DA +-uuu r uu u r uu u r
.
(不要求写出作法,只需写出结论即可)
(第22题图)
D
A
B
C
E
4
四、简答题(本大题共5题,满分40分,其中第23、24、25题每题7分,第26题9分,第27题10分) 23.已知把直线(0)y kx b k =+≠沿着y 轴向上平移3个单位后, 得到直线25y x =-+.
(1)求直线(0)y kx b k =+≠的解析式;
(2)求直线(0)y kx b k =+≠与坐标轴围成的三角形的周长.
24.已知:如图,等腰梯形ABCD 的中位线EF 的长为6cm ,对角线BD 平分∠ADC ,下底BC 的长比等腰梯形的周长小20cm ,求上底AD 的长.
(第23题图)
(第24题图)
5
25.闵行区政府为残疾人办实事,在道路改造工程中为盲人修建一条长3000米的盲道,根据规划设计和要求,某工程队在实际施工中增加了施工人员,每天修建的盲道比原计划多250米,结果提前2天完成工 程,问实际每天修建盲道多少米.
26.如图,已知:在正方形ABCD 中,M 是CD 的中点,E 是MC 上一点,且∠BAE =2∠DAM . 求证:AE = BC + CE .
A
B
C
D
M E
(第26题图)
6
27.如图①,已知△OAB 、△OBC 、△OCD 、△ODE 、△OEF 和△OF A 均为边长为a 的等边三角形,点P 为边BC 上任意一点,过P 作PM ∥AB 交AF 于M ,作PN ∥CD 交DE 于N . (1)那么∠MPN = ,并求证PM + PN = 3a ; (2)如图②,联结OM 、ON .求证:OM = ON ;
(3)如图③,OG 平分∠MON ,判断四边形OMGN 是否为特殊四边形,并说明理由.
O
(第27题图①) P N
M F E D C B A
O
(第27题图②) P N
M F
E D
C B A
G
O
(第27题图③)
P N
M F
E D
C
B A。