成才之路·人教A版数学选修2-3 综合检测
- 格式:doc
- 大小:326.00 KB
- 文档页数:14
选修2-3 第一章 1.2 1.2.2 第3课时一、选择题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( ) A .40 B .50 C .60 D .70[答案] B[解析] 先分组再排列,一组2人一组4人有C 26=15种不同的分法;两组各3人共有C 36A 22=10种不同的分法,所以乘车方法数为(15+10)×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( ) A .36种 B .48种 C .72种 D .96种[答案] C[解析] 恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A 24=72种排法,故选C.3.(2014·广州市综合测试二)有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成一个两位数,则所组成的两位数为奇数的概率是( )A .16B .13C .12D .38[答案] C[解析] 由这两张卡片排成的两位数共有6个,其中奇数有3个,∴P =36=12.4.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A .2人或3人B .3人或4人C .3人D .4人[答案] A[解析] 设男生有n 人,则女生有(8-n )人,由题意可得C 2n C 18-n =30,解得n =5或n =6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A.45种B.36种C.28种D.25种[答案] C[解析]因为10级台阶走8步,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么只需从8步中选取2步,这两步中每一步上两个台阶即可,共有C28=28种选法.6.(2013·晋中市祁县二中高二期末)如图,用4种不同的颜色涂入图中的矩形A、B、C、D中,(四种颜色可以不全用也可以全用)要求相邻的矩形涂色不同,则不同的涂法有()A.72种种C.24种D.12种[答案] A[解析]解法1:(1)4种颜色全用时,有A44=24种不同涂色方法.(2)4种颜色不全用时,因为相邻矩形不同色,故必须用三种颜色,先从4种颜色中选3种,涂入A、B、C中,有A34种涂法,然后涂D,D可以与A(或B)同色,有2种涂法,∴共有2A34=48种,∴共有不同涂色方法,24+48=72种.解法2:涂A有4种方法,涂B有3种方法,涂C有2种方法,涂D有3种方法,故共有4×3×2×3=72种涂法.二、填空题7.(2014·杭州市质检)用1、2、3、4、5组成不含重复数字的五位数,数字2不出现在首位和末位,数字1、3、5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是________(注:用数字作答).[答案]48[解析]按2的位置分三类:①当2出现在第2位时,即02000,则第1位必为1、3、5中的一个数字,所以满足条件的五位数有C13A22A22=12个;②当2出现在第3位时,即00200,则第1位、第2位为1、3、5中的两个数字或第4位、第5位为1、3、5中的两个数字,所以满足条件的五位数有2A23A22=24个;③当2出现在第4位时,即00020,则第5位必为1、3、5中的一个数字,所以满足条件的五位数有C13A22A22=12个.综上,共有12+24+12=48个.8.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[答案]1260[解析] 由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C 49·C 25·C 33=1260(种)排法.9.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[答案] 1080[解析] 先将6名志愿者分为4组,共有C 26C 24A 22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种.三、解答题10.(1)计算C 98100+C 199200;(2)求20C 5n +5=4(n +4)C n -1n +3+15A 2n +3中n 的值.[解析] (1)C 98100+C 199200=C 2100+C 1200=100×992+200=4950+200=5150. (2)20×(n +5)!5!n !=4(n +4)×(n +3)!(n -1)!4!+15(n +3)(n +2),即(n +5)(n +4)(n +3)(n +2)(n +1)6=(n +4)(n +3)(n +2)(n +1)n6+15(n +3)(n +2),所以(n +5)(n +4)(n +1)-(n +4)(n +1)n =90,即5(n +4)(n +1)=90.所以n 2+5n -14=0,即n =2或n =-7.注意到n ≥1且n ∈Z ,所以n =2.[点评] 在(1)中应用组合数性质使问题简化,若直接应用公式计算,容易发生运算错误,因此,当m >n2时,特别是m 接近于n 时,利用组合数性质1能简化运算.一、选择题11.已知集合A ={5},B ={1,2},C ={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A .33B .34C .35D .36[答案] A[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C 12·A 33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C 12·A 33+A 33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C 13=3个. 故共有符合条件的点的个数为12+18+3=33个,故选A.12.(2014·山西太原五中月考)如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有( )A .50种B .51种C .140种D .141种[答案] D[解析] 按第二天到第七天选择持平次数分类得C 66+C 46A 22+C 26C 24C 22+C 06C 36C 33=141种.13.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )A .50种B .60种C .120种D .210种[答案] C[解析] 先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C 16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A 25种,按照分步乘法计数原理可知共有不同的安排方法C 16·A 25=120种,故选C.14.将甲、乙两人在内的7名医生分成三个医疗小组,一组3人,另两组每组各2人,则甲、乙不分在同一组的分法有( )A .80种B .90种C .25种D .120种 [答案] A[解析] 解法一:当两人都在3人组内时,有12C 15·C 24种,当两人都在某个两人组内时,有C 35种,∴共有12C 37C 24-C 35-12C 15C 24=80种. 解法二:直接法.当甲、乙在两人小组一组一个时,有12C 35C 12A 22种,当甲、乙一个在三人组中,另一个在两人组中时,有C 25·C 23·A 22种,∴共有12C 35C 12A 22+C 25C 23A 22=80种. 二、填空题15.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[答案]72[解析]5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.16.在空间直角坐标系O-xyz中有8个点:P1(1,1,1)、P2(-1,1,1)、…、P7(-1,-1,-1)、P8(1,-1,-1)(每个点的横、纵、竖坐标都是1或-1),以其中4个点为顶点的三棱锥一共有________个(用数字作答).[答案]58[解析]这8个点构成正方体的8个顶点,此题即转化成以正方体的8个顶点中的4个点为顶点的三棱锥一共有多少个,则共有三棱锥C14C34+(C24C24-2×4-2)+C34C14=58个.[点评]用间接法求解更简便些,从正方体的8个顶点中任取4个,有不同取法C48种,其中这四点共面的(6个对角面、6个表面)共12个,∴这样的三棱锥有C48-12=58个.三、解答题17.有一排8个发光二极管,每个二极管点亮时可发出红光或绿光,若每次恰有3个二极管点亮,但相邻的两个二极管不能同时点亮,根据这三个点亮的二极管的不同位置和不同颜色来表示不同的信息,求这排二极管能表示的信息种数共有多少种?[解析]因为相邻的两个二极管不能同时点亮,所以需要把3个点亮的二极管插放在未点亮的5个二极管之间及两端的6个空上,共有C36种亮灯办法.然后分步确定每个二极管发光颜色有2×2×2=8(种)方法,所以这排二极管能表示的信息种数共有8C36=160(种).18.6男4女站成一排,求满足下列条件的排法共有多少种?(列出算式即可)(1)任何2名女生都不相邻,有多少种排法?(2)男甲不在首位,男乙不在末位,有多少种排法?(3)男生甲、乙、丙顺序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?[解析](1)任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A66·A47种不同排法.(2)方法一:甲不在首位,按甲的排法分类,若甲在末位,则有A99种排法,若甲不在末位,则甲有A18种排法,乙有A18种排法,其余有A88种排法,综上共有(A99+A18A18·A88)种排法.方法二:甲在首位的共有A99种,乙在末位的共有A99种,甲在首位且乙在末位的有A88种,因此共有(A 1010-2A 99+A 88)种排法.(3)10人的所有排列方法有A 1010种,其中甲、乙、丙的排序有A 33种,其中只有一种符合题设要求,所以甲、乙、丙顺序一定的排法有A 1010A 33种.(4)男甲在男乙的左边的10人排列与男甲在男乙的右边的10人排列数相等,而10人排列数恰好是这二者之和,因此满足条件的有12A 1010种排法.。
模块综合检测(能力卷)时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2016·福州高二检测)某机构对儿童记忆能力x 和识图能力y 进行统计分析,得到如下数据:由表中数据,求得线性回归方程为y =45x +a ,若某儿童记忆能力为12,则他的识图能力为导学号 03960726( )A .9.2B .9.8C .9.5D .10[答案] C[解析] ∵x -=14(4+6+8+10)=7;y -=14(3+5+6+8)=5.5,∴样本的中心点坐标为(7,5.5), 代入回归方程得:5.5=45×7+a ^,∴a ^=-0.1. ∴y ^=0.8x -0.1,当x =12时,y ^=0.8×12-0.1=9.5,故选C .2.(2016·四川理,2)设i 为虚数单位,则(x +i)6的展开式中含x 4的项为导学号 03960753( )A .-15x 4B .15x 4C .-20i x 4D .20i x 4[答案] A[解析] (x +i)6的展开式的通项为T r +1=C r 6x6-r i r (r =0,1,2,…,6),令r =2,得含x 4的项为C 26x 4i 2=-15x 4,故选A .3.若随机变量ξ~N (-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率导学号 03960727( )A .(2,4]B .(0,2]C .[-2,0)D .(-4,4][解析]此正态曲线关于直线x=-2对称,∴ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.4.设A=37+C27·35+C47·33+C67·3,B=C17·36+C37·34+C57·32+1,则A-B的值为导学号03960728()A.128 B.129C.47D.0[答案] A[解析]A-B=37-C17·36+C27·35-C37·34+C47·33-C57·32+C67·3-1=(3-1)7=27=128,故选A.5.独立性检验中,假设H0:变量X与变量Y没有关系,则在H0成立的情况下,P(k2≥6.635)=0.010表示的意义是导学号03960729()A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99.9%C.变量X与变量Y没有关系的概率为99%D.变量X与变量Y有关系的概率为99%[答案] D[解析]由题意知变量X与Y没有关系的概率为0.01,即认为变量X与Y有关系的概率为99%.6.(2016·四川理,4)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为导学号03960730()A.24 B.48C.60 D.72[答案] D[解析]由题意,可知个位可以从1,3,5中任选一个,有A13种方法,其他数位上的数可以从剩下的4个数字中任选,进行全排列,有A44种方法,所以奇数的个数为A13A44=3×4×3×2×1=72,故选D.7.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻.那么不同的发言顺序种数为导学号03960731()A.360 B.520C.600 D.720[解析] 当甲、乙两人中只有一人参加时,有C 12·C 35·A 44=480种方法;当甲、乙两人都参加时,有C 22·C 25(A 44-A 22A 23)=120种方法.由分类加法计数原理知,不同的发言顺序共有480+120=600种,故选C .8.某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A 组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X (单位:分)的数学期望为导学号 03960732( )A .0.9B .0.8C .1.2D .1.1[答案] A[解析] X 的取值为0、1、2, P (X =0)=(1-0.4)(1-0.5)=0.3,P (X =1)=0.4×(1-0.5)+(1-0.4)×0.5=0.5, P (X =2)=0.4×0.5=0.2,∴E (X )=0×0.3+1×0.5+2×0.2=0.9. 9.(2016·长沙二模)二项式(x -1x)6的展开式中常数项为导学号 03960733( ) A .-15 B .15 C .-20 D .20[答案] B [解析] 二项式(x -1x )6的展开式的通项是T r +1=C r 6·x 6-r ·(-1x )r =C r 6·(-1)r·x 6-32r ,令6-32r =0,得r =4.因此,二项式(x -1x)6的展开式中的常数项是C 46·(-1)4=15,故选B . 10.某中学拟从4个重点研究性课题和6个一般研究性课题中各选2个课题作为本年度该校启动的课题项目,若重点课题A 和一般课题B 至少有一个被选中的不同选法种数是k ,那么二项式(1+kx 2)6的展开式中x 4的系数为导学号 03960734( )A .50000B .52000C .54000D .56000[答案] C[解析] A 、B 均未被选中的种数有C 23C 25=30,∴k =C 24C 26-30=60.在(1+60x 2)6展开式中,T r +1=C r 6(60x 2)r ,令r =2,得T 3=C 26602x 4=54000x 4.故选C .11.盒子中装有形状、大小完全相同的3个红球和2个白球,从中随机取出一个记下颜色后放回,当红球取到2次时停止取球.那么取球次数恰为3次的概率是导学号 03960735( )A .18125B .36125C .44125D .81125[答案] B[解析] 每次取到红球的概率为35,所求概率为C 12×35×25×35=36125.故选B . 12.已知0<a <1,方程a |x |=|log a x |的实根个数为n ,且(x +1)n +(x +1)11=a 0+a 1(x +2)+a 2(x +2)2+…+a 10(x +2)10+a 11(x +2)11,则a 1等于导学号 03960736( )A .-10B .9C .11D .-12 [答案] B[解析] 作出y =a |x |(0<a <1)与y =|log a x |的大致图象如图所示,所以n =2.故(x +1)n +(x +1)11=(x +2-1)2+(x +2-1)11,所以a 1=-2+C 1011=-2+11=9.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.某校1000名学生的某次数学考试成绩X 服从正态分布,其密度函数曲线如图所示,则成绩X 位于区间(52,68]的人数大约是________.导学号 03960737[答案] 682[解析] 由题图知X ~N (μ,σ2), 其中μ=60,σ=8,∴P (μ-σ<X ≤μ+σ)=P (52<X ≤68)=0.6826. ∴人数为0.6826×1000≈682.14.随机变量X 的分布列如下表,且E (X )=1.1,则D (X )=________.导学号 03960738[答案] 0.49[解析] p =1-⎝⎛⎭⎫15+310=12,E (X )=1.1=0×15+1×12+310x ,解得x =2,所以D (X )=15×(0-1.1)2+12×(1-1.1)2+310×(2-1.1)2=0.49.15.(2016·临沂高二检测)如图所示,A 、B 两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内通过的最大信息总量为X ,则P (X ≥8)=________.导学号 03960739[答案] 45[解析] 由已知X 的取值为7,8,9,10.∵P (X =7)=C 22C 12C 35=15,P (X =8)=C 22C 11+C 22C 12C 35=310, P (X =9)=C 12C 12C 11C 35=25, P (X =10)=C 22C 11C 35=110.∴X 的概率分布列为∴P (X ≥8)=P (X =8)+P (X =9)+P (X =10)=310+25+110=45.16.一只电子蚂蚁在如图所示的网格线上由原点O (0,0)出发,沿向上或向右方向爬至点(m ,n ),(m ,n ∈N *),记可能的爬行方法总数为f (m ,n ),则f (m ,n )=________.导学号 03960740[答案] C m m +n[解析] 从原点O 出发,只能向上或向右方向爬行,记向上为1,向右为0,则爬到点(m ,n )需m 个0和n 个1.这样爬行方法总数f (m ,n )是m 个0和n 个1的不同排列方法数.m 个0和n 个1共占m +n 个位置,只要从中选取m 个放0即可.∴f (m ,n )=C m m +n .(例如f (3,4)=C 37其中0010111表示从原点出发后,沿右右上右上上上的路径爬行.) 三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)6男4女站成一排,求满足下列条件的排法共有多少种?(列出算式即可)导学号 03960741(1)任何2名女生都不相邻,有多少种排法? (2)男甲不在首位,男乙不在末位,有多少种排法? (3)男生甲、乙、丙顺序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?[解析] (1)任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47种不同排法.(2)方法一:甲不在首位,按甲的排法分类,若甲在末位,则有A 99种排法,若甲不在末位,则甲有A 18种排法,乙有A 18种排法,其余有A 88种排法,综上共有(A 99+A 18A 18·A 88)种排法.方法二:甲在首位的共有A 99种,乙在末位的共有A 99种,甲在首位且乙在末位的有A 88种,因此共有(A 1010-2A 99+A 88)种排法.(3)10人的所有排列方法有A 1010种,其中甲、乙、丙的排序有A 33种,其中只有一种符合题设要求,所以甲、乙、丙顺序一定的排法有A 1010A 33种.(4)男甲在男乙的左边的10人排列与男甲在男乙的右边的10人排列数相等,而10人排列数恰好是这二者之和,因此满足条件的有12A 1010种排法.18.(本题满分12分)已知(x -12x )n 的展开式中,前三项系数的绝对值依次成等差数列.导学号 03960742(1)求展开式中的常数项;(2)求展开式中所有整式项.[解析] (1)T r +1=C r n ·(x )n -r ·(12x )r ·(-1)r , ∴前三项系数的绝对值分别为C 0n,12C 1n ,14C 2n , 由题意知C 1n =C 0n+14C 2n , ∴n =1+18n (n -1),n ∈N *,解得n =8或n =1(舍去), ∴T k +1=C k 8·(x )8-k ·(-12x)k=C k 8·(-12)k ·x 4-k,0≤k ≤8, 令4-k =0得k =4,∴展开式中的常数项为T 5=C 48(-12)4=358. (2)要使T k +1为整式项,需4-k 为非负数,且0≤k ≤8,∴k =0,1,2,3,4. ∴展开式中的整式项为:x 4,-4x 3,7x 2,-7x ,358.19.(本题满分12分)假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502)的随机变量,记一天中从甲地去乙地的旅客人数不超过900的概率为p 0.导学号 03960743(1)求p 0的值;(参考数据:若X ~N (μ,σ2),有 P (μ-σ<X ≤μ+σ)=0.6826, P (μ-2σ<X ≤μ+2σ)=0.9544,P (μ-3σ<X ≤μ+3σ)=0.9974.)(2)某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天要以不小于p 0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?[解析] (1)由于随机变量X 服从正态分布N (800,502),故有μ=800,σ=50, P (700<X ≤900)=0.9544. 由正态分布的对称性,可得p 0=P (X ≤900)=P (X ≤800)+P (800<X ≤900) =12+12P (700<X ≤900)=0.9772. (2)设A 型、B 型车辆的数量分别为x 、y 辆,则相应的营运成本为1600x +2400y 依题意,x 、y 还需满足x +y ≤21,y ≤x +7,P (X ≤36x +60y )≥p 0由(1)知,p 0=P (X ≤900),故P (X ≤36x +60y )≥p 0等价于36x +60y ≥900. 于是问题等价于求满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N.且使目标函数z =1600x +2400y 达到最小的x ,y .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1600x +2400y 经过可行域的点P 时,直线z =1600x +2400y 在y 轴上截距z2400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆.20.(本题满分12分)(2015·全国卷Ⅰ文,15)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值导学号 039607448i =1(x i -x )28i =1(w i -w )28i =1(x i -x )(y i -y ) 8i =1(w i -w )(y i -y )表中w i =x i ,w =18i =1w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: (ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=ni =1 u i -uv i -vn i =1u i -u2,α^=v -β^u .[解析] (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2) 令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18w i -wy i -y∑i =18w i -w2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68x .(3)(ⅰ)由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6, 年利润z 的预报值z ^=0.2×576.6-49=66.32. (ⅱ)根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68x )-x =-x +13.6x +20.12.所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.21.(本题满分12分)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.导学号 03960745(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?[解析] (1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X ≤3”的事件为A ,则事件A 包含有“X =0”,“X =2”,“X =3”三个两两互斥的事件, 因为P (X =0)=(1-23)×(1-25)=15,P (X =2)=23×(1-25)=25,P (X =3)=(1-23)×25=215,所以P (A )=P (X =0)+P (X =2)+P (X =3)=1115,即这2人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X 1,都选择方案乙所获得的累计得分为X 2,则X 1、X 2的分布列如下:所以E (X 1)=0×19+2×49+4×49=83,E (X 2)=0×925+3×1225+6×425=125.因为E (X 1)>E (X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.22.(本题满分12分)(2016·山东理,19)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:导学号 03960746(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).[解析] (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A -BCD +A B -CD +AB C -D +ABC D -.由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A -BCD )+P (A B -CD )+P (AB C -D )+P (ABC D -)=P (A )P (B )P (C )P (D )+P (A -)P (B )P (C )P (D )+P (A )P (B -)P (C )P (D )+P (A )P (B )P (C -)P (D )+P (A )P (B )P (C )P (D -) =34×23×34×23+2×(14×23×34×23+34×13×34×23) =23. 所以“星队”至少猜对2个成语的概率为23. (2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144, P (X =1)=2×(34×13×14×13+14×23×14×13)=10144=572, P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144, P (X =3)=34×23×14×13+14×13×34×23=12144=112, P (X =4)=2×(34×23×34×13+34×23×14×23)=60144=512, P (X =6)=34×23×34×23=36144=14. 可得随机变量X 的分布列为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236.。
选修2-3 第二章 2.2 2.2.2一、选择题1.种植两株不同的花卉,若它们的成活率分别为p 和q ,则恰有一株成活的概率为( ) A .p +q -2pq B .p +q -pq C .p +q D .pq[答案] A[解析] 恰有一株成活的概率为p (1-q )+(1-p )q =p +q -2pq ,故选A.2.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击,则他们同时中靶的概率是( )A .1425B .1225C .34D .35[答案] A[解析] P 甲=810=45,P 乙=710,所以P =P 甲·P 乙=1425.3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A 、B 中至少有一件发生的概率是( )A .512B .12C .712D .34[答案] C[解析] 由题意P (A )=12,P (B )=16,事件A 、B 中至少有一个发生的概率P =1-12×56=712. 4.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A .49B .29C .23D .13[答案] A[解析] 设A 表示“第一个圆盘的指针落在奇数所在的区域”,则P (A )=23,B 表示;“第二个圆盘的指针落在奇数据在的区域”,则P (B )=23.故P (AB )=P (A )·P (B )=23×23=49.5.从甲袋内摸出1个白球的概率为13,从乙袋内摸出1个白球的概率是12,从两个袋内各摸1个球,那么概率为56的事件是( )A .2个球都是白球B .2个球都不是白球C .2个球不都是白球D .2个球中恰好有1个白球[答案] C[解析] 从甲袋内摸出白球与从乙袋内摸出白球两事件相互独立,故两个球都是白球的概率为P 1=13×12=16,∴两个球不都是白球的概率为P =1-P 1=56.6.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A .12B .512C .14D .16[答案] B[解析] 所求概率为23×14+13×34=512或P =1-23×34-13×14=512.二、填空题7.已知P (A )=0.3,P (B )=0.5,当事件A 、B 相互独立时,P (A ∪B )=________,P (A |B )=________.[答案] 0.65 0.3[解析] ∵A 、B 相互独立,∴P (A ∪B )=P (A )+P (B )-P (A )·P (B )=0.3+0.5-0.3×0.5=0.65.P (A |B )=P (A )=0.3.8.一道数学竞赛试题,甲生解出它的概率为12,乙生解出它的概率为13,丙生解出它的概率为14. 由甲、乙、丙三人独立解答此题只有一人解出的概率为________.[答案]1124[解析] 甲生解出,而乙、丙不能解出为事件A 1,则P (A 1)=12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14,乙生解出,而甲、丙不能解出为事件A 2,则P (A 2)=13×⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-14=18, 丙生解出,而甲、乙不能解出为事件A 3,则P (A 3)=14×⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13=112. 甲、乙、丙三人独立解答此题只有一人解出的概率为P (A 1+A 2+A 3)=14+18+112=1124.9.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170、169、168,且各道工序互不影响,则加工出来的零件的次品率为________.[答案]370[解析] 本题考查独立事件,对立事件有关概率的基本知识以及计算方法. 设加工出来的零件为次品为事件A ,则A 为加工出来的零件为正品. P (A )=1-P (A )=1-(1-170)(1-169)(1-168)=370.三、解答题10.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112.甲、丙两台机床加工的零件都是一等品的概率为29.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.[解析] (1)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题设条件有⎩⎪⎨⎪⎧ P (A ·B )=14,P (B ·C )=112,P (A ·C )=29,即⎩⎪⎨⎪⎧P (A )·[1-P (B )]=14, ①P (B )·[1-P (C )]=112, ②P (A )·P (C )=29. ③由①、③得P (B )=1-98P (C ),代入②得27[P (C )]2-51P (C )+22=0.解得P (C )=23或 119(舍去).将P (C )=23分别代入③、②可得P (A )=13、P (B )=14,即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13、14、23.(2)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,则 P (D )=1-P (D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-23×34×13=56.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为56.一、选择题11.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一个荷叶),而且逆时针方向跳的频率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 荷叶上,则跳三次之后停在A 荷叶上的概率是( )A .13B .29C .49D .827[答案] A[解析] 由已知逆时针跳一次的概率为23,顺时针跳一次的概率为13.则逆时针跳三次停在A 上的概率为P 1=23×23×23=827,顺时针跳三次停在A 上的概率为P 2=13×13×13=127.所以跳三次之后停在A 上的概率为P =P 1+P 2=827+127=13.12.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是( )A .35B .34C .12D .310[答案] C[解析] 解法1:5个球中含3个白球,第一次取到白球后不放回,则第二次是含2个白球的4个球中任取一球,故取到白球的概率为12.解法2:设A =“第一次取到白球”,B =“第二次取到白球”,则 P (A )=35,P (AB )=C 23C 25=310,∴P (B |A )=P (AB )P (A )=12.二、填空题13.(2014·湖南师大附中高二期中)某班有4位同学住在同一个小区,上学路上要经过1个路口.假设每位同学在路口是否遇到红绿灯是相互独立的,且遇到红灯的概率都是13,则最多1名同学遇到红灯的概率是__________________.[答案]1627[解析] P =(23)4+C 14·(13)·(23)3=1627. 14.已知随机变量X 的分布列为:P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于________.[答案]316[解析] P (2<X ≤4)=P (X =3)+P (X =4) =123+124=316. 15.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.[答案] ⎣⎡⎦⎤-13,13 [解析] 由条件知,⎩⎪⎨⎪⎧P (ξ=x 3)+P (ξ=x 1)=2P (ξ=x 2)P (ξ=x 1)+P (ξ=x 2)+P (ξ=x 3)=1, ∴P (ξ=x 2)=13,∵P (ξ=x i )≥0,∴公差d 取值满足-13≤d ≤13.三、解答题16.某项选拔共有四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为0.6、0.4、0.5、0.2.已知各轮问题能否正确回答互不影响.(1)求该选手被淘汰的概率;(2)求该选手在选拔中至少回答了2个问题后最终被淘汰的概率. [解析] 记“该选手能正确回答第i 轮的问题”为事件A i (i =1,2,3,4),则P (A 1)=0.6,P (A 2)=0.4,P (A 3)=0.5, P (A 4)=0.2.(1)方法一:该选手被淘汰的概率:P =P (A 1∪A 1A 2∪A 1A 2A 3∪A 1A 2A 3A 4)=P (A 1)+P (A 1)P (A 2)+P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3)P (A 4)=0.4+0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.976.方法二:P =1-P (A 1A 2A 3A 4)=1-P (A 1)P (A 2)P (A 3)P (A 4)=1-0.6×0.4×0.5×0.2=1-0.024=0.976.(2)方法一:P =P (A 1A 2∪A 1A 2A 3∪A 1A 2A 3A 4)=P (A 1)P (A 2)+P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3)P (A 4)=0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.576.方法二:P =1-P (A 1)-P (A 1A 2A 3A 4)=1-(1-0.6)-0.6×0.4×0.5×0.2=0.576. 17.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率.[解析] (1)设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=C 26C 14+C 36C 310=60+20120=23, P (B )=C 28C 12+C 38C 310=56+56120=1415. (2)方法1:因为事件A 、B 相互独立,所以甲、乙两人至少有一人考试合格的概率为 P =P (A ·B )+P (A ·B )+P (A ·B )=P (A )·P (B )+P (A )·P (B )+P (A )·P (B )=23×115+13×1415+23×1415=4445. 答:甲、乙两人至少有一人考试合格的概率为4445.方法2:因为事件A 、B 相互独立,所以甲、乙两人考试均不合格的概率为 P (A ·B )=P (A )·P (B )=⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-1415=145. 所以甲、乙两人至少有一人考试合格的概率为 P =1-P (A ·B )=1-145=4445.答:甲、乙两人至少有一人考试合格的概率为4445.18.一中食堂有一个面食窗口,假设学生买饭所需的时间互相独立,且都是整数分钟,对以往学生买饭所需的时间统计结果如下:(1)估计第三个学生恰好等待4分钟开始买饭的概率;(2)X表示至第2分钟末已买完饭的人数,求X的分布列.[解析]设Y表示学生买饭所需的时间,用频率估计概率,得y的分布列如下:(1)A表示事件“A对应三种情形:①第一个学生买饭所需的时间为1分钟,且第二个学生买饭所需的时间为3分钟;②第一个学生买饭所需的时间为3分钟,且第二个学生买饭所需的时间为1分钟;③第一个和第二个学生买饭所需的时间均为2分钟.所以P(A)=P(Y=1)P(Y=3)+P(Y=3)P(Y=1)+P(Y=2)P(Y=2)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.(2)X所有可能的取值为0、1、2,X=0对应第一个学生买饭所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5X=1对应第一个学生买饭所需的时间为1分钟且第二个学生买饭所需的时间超过1分钟或第一个学生买饭所需的时间为2分钟.所以P(X=1)=P(Y=1)P(Y>1) +P(Y=2)=0.1×0.9+0.4=0.49,X=2对应两个学生买饭所需时间均为1分钟.所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01所以X的分布列为。
第三章综合检测时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知具有线性相关关系的两个变量x ,y 之间的一组数据如下:且回归方程是y ^=0.95x +2.6,则t =导学号 03960683( ) A .2.5 B .3.5 C .4.5 D .5.5[答案] C[解析] ∵x =15(0+1+2+3+4)=2,∴y =0.95×2+2.6=4.5,又y =15(2.2+4.3+t +4.8+6.7),∴t =4.5,故选C .2.(2016·唐山高二检测)四名同学根据各自的样本数据研究变量x 、y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423; ② y 与x 负相关且y ^=-3.476x +5.648; ③y 与x 正相关且y ^=5.437x +8.493; ④y 与x 正相关且y ^=-4.326x -4.578.其中一定不正确的结论的序号是导学号 03960684( ) A .①② B .②③ C .③④ D .①④ [答案] D[解析] y 与x 正(或负)相关时,线性回归直线方程y =b ^x +a ^中,x 的系数b ^>0(或b ^<0),故①④错.3.(2016·福州高二检测)在一次试验中,当变量x 取值分别是1,12,13,14时,变量Y 的值依次是2,3,4,5,则Y 与1x之间的回归曲线方程是导学号 03960685( )A .y ^=1x +1B .y ^=2x +3C .y ^=2x +1 D .y ^=x -1[答案] A[解析] 把x =1,12,13,14代入四个选项,逐一验证可得y ^=1x +1.4.给出下列五个命题: ①将A 、B 、C 三种个体按的比例分层抽样调查,如果抽取的A 个体为9个,则样本容量为30;②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;③甲组数据的方差为5,乙组数据为5,6,9,10,5,那么这两组数据中比较稳定的是甲; ④已知具有相关关系的两个变量满足的回归直线方程为y =1-2x ,则x 每增加1个单位,y 平均减少2个单位;⑤统计的10个样本数据为125、120、122、105、130、114、116、95、120、134,则样本数据落在[114.5,124.5)内的频率为0.4.其中真命题为导学号 03960686( ) A .①②④ B .②④⑤ C .②③④ D .③④⑤[答案] B[解析] ①样本容量为9÷36=18,①是假命题;②数据1,2,3,3,4,5的平均数为16(1+2+3+3+4+5)=3,中位数为3,众数为3,都相同,②是真命题;③x -乙=5+6+9+10+55=7,s 2乙=15[(5-7)2+(6-7)2+(9-7)2+(10-7)2+(5-7)2]=15×(4+1+4+9+4)=4.4,∵s 2甲>s 2乙,∴乙稳定,③是假命题;④是真命题;⑤数据落在[114.5,124.5)内的有:120,122,116, 120共4个,故所求频率为410=0.4,⑤是真命题.5.对变量x 、y 观测数据(x 1,y 1)(i =1,2,…,10),得散点图1;对变量u 、v 有观测数据(u 1,v 1)(i =1,2,…,10),得散点图2.由这两个散点图可以判断:导学号 03960687( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 [答案] C[解析] 本题主要考查了变量的相关知识.用散点图可以判断变量x 与y 负相关,u 与v 正相关.6.为了解疾病A 是否与性别有关,在一医院随机地对入院的50人进行了问卷调查得到了如下的列联表:请计算出统计量K 2,你有多大的把握认为疾病A 与性别有关导学号 03960688( ) 下面的临界值表供参考:A .95% C .99.5% D .99.9%[答案] C[解析] 由公式得K 2=-225×25×30×20≈8.333>7.879,故有1-0.005=99.5%的把握认为疾病A 与性别有关.7.(2016·大连高二检测)已知回归直线的斜率的估计值是2,样本点的中心为(4,12),则回归直线的方程是导学号 03960689( )A .y ^=2x +4 B .y ^=52x +2C .y ^=2x -20 D .y ^=16x +2[答案] A[解析] 由回归直线方程y ^=b ^x +a ^的定义知,b ^=2, ∵回归直线过样本点的中心,∴12=2×4+a ^, ∴a ^=4,∴回归直线方程为y ^=2x +4.8.以下关于线性回归的判断,正确的个数是导学号 03960690( ) ①若散点图中所有点都在一条直线附近,则这条直线为回归直线;②散点图中的绝大多数都线性相关,个别特殊点不影响线性回归,如图中的A ,B ,C 点;③已知回归直线方程为y ^=0.50x -0.81,则x =25时,y 的估计值为11.69; ④回归直线方程的意义是它反映了样本整体的变化趋势.A .0B .1C .2D .3[答案] D[解析] 能使所有数据点都在它附近的直线不止一条,而据回归直线的定义知,只有按最小二乘法求得回归系数a ^,b ^得到的直线y ^=bx +a ^才是回归直线,∴①不对;②正确;将x =25代入y ^=0.50x -0.81,得y ^=11.69, ∴③正确;④正确,故选D .9.某人对一地区人均工资x(千元)与该地区人均消费Y(千元)进行统计调查,Y 与x 有相关关系,得到回归直线方程y ^=0.66x +1.562.若该地区的人均消费水平为7.675千元,估计该地区的人均消费额占人均工资收入的百分比约为导学号 03960691( )A .66%B .72%C .67%D .83%[答案] D[解析] 该题考查线性回归的实际应用,由条件知,消费水平为7.675千元时,人均工资为7.675-1.5620.66≈9.262(千元).故7.6759.262≈83%. 10.某化工厂为预测某产品的回收率Y ,需要研究它和原料有效成分含量x 之间的相关关系,现取了8对观察值,计算得∑i =18x i =52,∑i =18y i =228,∑i =18x 2i =478,∑i =1nx i y i =1849,则y 与x的回归方程是导学号 03960752( )A .y ^=11.47+2.62xB .y ^=-11.47+2.62x C .y ^=2.62+11.47x D .y ^=11.47-2.62x [答案] A[解析] 据已知b ^=∑i =18x i y i -8x y ∑i =18x 2i -8x2=1849-8×6.5×28.5478-8×6.52≈2.62.a ^=y -b ^x =11.47.故选A .11.两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关系数r 如下,其中拟合效果最好的模型是导学号 03960692( )A .模型1 C .模型3 D .模型4[答案] A[解析] 线性回归分析中,相关系数为r , |r|越接近于1,相关程度越大; |r|越小,相关程度越小,∵模型1的相关系数r 最大,∴模拟效果最好, 故选A .12.下面是某市场农产品的调查表. 市场供应量表:根据应在区间导学号 03960693( )A .(2.3,2.6)B .(2.4,2.6)C .(2.6,2.8)D .(2.8,2.9)[答案] C[解析] 以横轴为单价,纵轴为市场供、需量,在同一坐标系中描点,用近似曲线观察可知选C .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知一个回归直线方程为y ^=1.5x +45,x ∈{1,7,5,13,19},则y =__________.导学号 03960694[答案] 58.5[解析] 因为x =15(1+7+5+13+19)=9,且y =1.5x +45,所以y =1.5×9+45=58.5.本题易错之处是根据x 的值及y ^=1.5x +45求出y 的值再求y ,由y ^=1.5x +45求得的y 值不是原始数据,故错误.14.给出下列命题:导学号 03960695①样本方差反映了所有样本数据与样本平均值的偏离程度;②若随机变量X ~N(0.43,0.182),则此正态曲线在x =0.43处达到峰值; ③在回归分析模型中,残差平方和越小,说明模型的拟合效果越差;④市政府调查江北水城市民收入与市民旅游欲望的关系时,抽查了3000人.经过计算得K 2=6.023,根据这一数据查阅下表,则市政府有97.5%以上的把握认为市民收入与旅游欲望有关系.[答案] ①②④[解析] 根据样本方差的概念、正态分布的概念可知①②均正确;在回归分布中,残差的平方和越小,说明模型的拟合效果越好,即X 与Y 有很强的关系,所以③不正确;通过表中的数据和K 2=6.023>5.024可知,可以认为有97.5%以上的把握认为市民收入与旅游欲望有关系,因此④正确.15.在2016年春节期间,某市物价部门对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x 元和销售量y 件之间的一组数据如下表所示:导学号 03960696通过分析,y 对商品的价格x 的回归直线方程为________.[答案] y ^=-3.2x +40[解析] ∑i =15x i y i =392,x -=10,y -=8,∑i =15(x i -x -)2=2.5,代入公式,得b ^=-3.2,所以,a ^=y --b ^x -=40,故回归直线方程为y ^=-3.2x +40.16.某市居民2012~2016年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:导学号 03960697出有__________线性相关关系.[答案] 13 正[解析] 中位数的定义的考查,奇数个时按大小顺序排列后中间一个是中位数,而偶数个时须取中间两数的平均数.由统计资料可以看出,当平均收入增多时,年平均支出也增多,因此两者之间具有正线性相关关系.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(2016·青岛高二检测)电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:导学号 03960698将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?(2)”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:K2=-2++++[解析](1)”为25人,从而完成2×2列联表如下:将2×2K2=-2++++=-275×25×45×55=10033≈3.030.因为3.030<3.841,所以我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图可知,“超级体育迷”为5人,从而一切可能结果所组成的集合为Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}其中a i表示男性,i=1,2,3,b j表示女性,j=1,2.Ω由10个基本事件组成,而且这些基本事件的出现是等可能的.用A表示“任选2人中,至少有1人是女性”这一事件,则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},事件A由7个基本事件组成,因而P(A)=710.18.(本题满分12分)某工业部门进行一项研究,分析该部门的产量与生产费用之间的关系,从该部门内随机抽选了10个企业为样本,有如下资料:导学号03960699(1)计算x 与y (2)对这两个变量之间是否线性相关进行检验; (3)设回归方程为y ^=b ^x +a ^,求回归系数. [解析] (1)根据数据可得: x =77.7,y=165.7,∑10i =1x 2i =70903,∑10i =1y 2i =277119,∑10i =1x i y i =132938,所以r =0.808,即x 与y 之间的相关系数r≈0.808;(2)因为r>0.75,所以可认为x 与y 之间具有线性相关关系; (3)b ^=0.398,a ^=134.8.19.(本题满分12分)为考查某种药物预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:导学号 039607002只,未患病数为η,工作人员曾计算过P(ξ=0)=389P(η=0).(1)求出列联表中数据x 、y 、M 、N 的值;(2)求ξ与η的均值(期望)并比较大小,请解释所得结论的实际含义; (3)能够以99%的把握认为药物有效吗? 参考公式:K 2=-2++++.①当K 2≥3.841时有95%的把握认为ξ、η有关联; ②当K 2≥6.635时有99%的把握认为ξ、η有关联.[解析] (1)∵P(ξ=0)=C 220C 250,P(η=0)=C 2xC 250,∴C 220C 250=389×C 2xC 250,∴x =10. ∴y =40,∴M =30,N =70. (2)ξ取值为0、1、2.P(ξ=0)=C 220C 250=38245,P(ξ=1)=C 120C 130C 250=120245,P(ξ=2)=C 230C 250=87245.∴E(ξ)=294245.P(η=0)=C 210C 250=9245.P(η=1)=C 110C 140C 250=80245.P(η=2)=C 240C 250=156245.∴E(η)=392245.∴E(ξ)<E(η),即说明药物有效. (3)∵K 2=-230×70×50×50≈4.76.∵4.76<6.635,∴不能够以99%的把握认为药物有效.20.(本题满分12分)(2016·洛阳市高二检测)以下资料是一位销售经理收集来的每年销售额和销售经验年数的关系的一组样本数据:导学号 03960701(1)(2)试预测销售经验为8年时的年销售额约为多少万元(精确到十分位)?[解析] (1)由散点图(图略)知y 与x 呈线性相关关系,由表中数据计算得,x -=6,y -=10,b ^=59180,a ^=24130,回归直线方程:y ^=59180x +24130.(2)x =8时,预测年销售额为59180×8+24130≈10.7万元.21.(本题满分12分)(2016·全国卷Ⅲ理,18)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.导学号 03960702注:年份代码1-7分别对应年份2008-2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17i -y2=0.55,7≈2.646.参考公式:相关系数r=∑i =17i -ti -y∑i =1ni -t2∑i =1ni -y2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑i =1ni -ti -y∑i =1ni -t2,a ^=y ^-b ^t .[解析] (1)由折线图中数据和附注中参考数据得t =4,7i =1(t i -t )2=28,∑i =17i -y2=0.55,∑i =17(t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89,r≈ 2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(Ⅰ)得b ^=∑i =17i -ti -y∑i =17i -t2=2.8928≈0.103 a ^=y -b ^t ≈1.331-0.103×4≈0.92. 所以,y 关于t 的回归方程为y ^=0.92+0.10t.将2016年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82. 所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨.22.(本题满分12分)为了调查学生星期天晚上学习时间利用问题,某校从高二年级1 000名学生(其中走读生450名,住宿生550名)中,采用分层抽样的方法抽取n 名学生进行问卷调查.根据问卷取得了这n 名同学每天晚上学习时间(单位:分钟)的数据,按照以下区间分为八组①[0,30),②[30,60),③[60,90),④[90,120),⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240],得到频率分布直方图如图.已知抽取的学生中星期天晚上学习时间少于60分钟的人数为5人.导学号 03960703(1)求n 的值并补全频率分布直方图;(2)如果把“学生晚上学习时间达到两小时”作为是否充分利用时间的标准,对抽取的n 名学生,完成下列2×2列联表:(3)若在第①组、第②组、第⑧组中共抽出3人调查影响有效利用时间的原因,记抽到“学习时间少于60分钟”的学生人数为X,求X的分布列及期望.参考公式:K2=-2++++[解析](1)设第i组的频率为P i(i=1,2,…,8),由图可知:P1=11500×30=2100,P2=11000×30=3100∴学习时间少于60分钟的频率为P1+P2=120由题意:n×120=5,∴n=100.又P3=1375×30=8100,P5=1100×30=30100,P6=1120×30=25100,P7=1200×30=15100,P8=1600×30=5100,∴P4=1-(P1+P2+P3+P5+P6+P7+P8)=325.∴第④组的高度为:h=325×130=1250频率分布直方图如图:(注:未标明高度1/250扣1分)(2)由频率分布直方图可知,在抽取的100人中,“走读生”有45人,“住宿生”有55人,其中“住宿生”中利用时间不充分的有10人,从而走读生中利用时间不充分的有25-10=15人,利用时间充分的有45-15=30人,由此可得2×2列联表如下:将2×2K 2=-2++++=-275×25×45×55=10033≈3.030 因为3.030<3.841,所以没有理由认为学生“利用时间是否充分”与走读、住宿有关 (3)由(1)知:第①组2人,第②组3人,第⑧组5人,总计10人,则X 的所有可能取值为0,1,2,3P(X =i)=C i 5C 3-i 5C 310(i =0,1,2,3)∴P(X =0)=C 05C 35C 310=10120=112,P(X =1)=C 15C 25C 310=50120=512,P(X =2)=C 25C 15C 310=50120=512,P(X =3)=C 35C 05C 310=10120=112∴X 的分布列为:∴E(X)=0×112+1×512+2×512+3×112=1812=32(或由超几何分布的期望计算公式E(X)=n×M N =3×510=32)。
第三章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列说法中不正确的是( )A .平面α的法向量垂直于与平面α共面的所有向量B .一个平面的所有法向量互相平行C .如果两个平面的法向量垂直,那么这两个平面也垂直D .如果a 、b 与平面α共面且n ⊥a ,n ⊥b ,那么n 就是平面α的一个法向量 [答案] D[解析] 只有当a 、b 不共线且a ∥α,b ∥α时,D 才正确.2.已知a =(cos α,1,sin α),b =(sin α,1,cos α) ,且a ∥ b 则向量a +b 与a -b 的夹角是( )A .90°B .60°C .30°D .0°[答案] A[解析] ∵|a |2=2,|b |2=2, (a +b )·(a -b )=|a |2-|b |2=0, ∴(a +b )⊥(a -b ).3.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14 [答案] D[解析] AB →=(-2,-6,-2),AC →=(-1,6,λ-3), ∵AB →⊥AC →,∴AB →·AC →=2×1-6×6-2(λ-3)=0, 解得λ=-14,故选D .4.(2013·北师大附中月考)若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a -b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +b[答案] C[解析] 因为a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D ;故选C .5.若直线l 的方向向量为a ,平面α的法向量为n ,则能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)[答案] D[解析] ∵l ∥α,∴a ·n =0,经检验知选D .6.(2013·清华附中月考)已知a ,b 是两异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a ,b 所成的角为( )A .30°B .60°C .90°D .45°[答案] B[解析] 由于AB →=AC →+CD →+DB →,则AB →=AC →+CD →+DB →, ∴AB →·CD →=(AC →+CD →+DB →)·CD →=CD →2=1.cos 〈AB →,CD →〉=AB →·CD →|AB →|·|CD →|=12⇒〈AB →,CD →〉=60°,故选B .7.(2013·安徽省合肥一中期末)已知正方体ABCD -A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-nAA 1→,则m ,n 的值分别为( )A .12,-12B .-12,-12C .-12,12D .12,12[答案] A[解析] 由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故选A .8.已知A (-1,1,2),B (1,0,-1),设D 在直线AB 上,且AD →=2DB →,设C (λ,13+λ,1+λ),若CD ⊥AB ,则λ的值为( )A .116B .-116C .12D .13[答案] B[解析] 设D (x ,y ,z ),则AD →=(x +1,y -1,z -2),AB →=(2,-1,-3),DB →=(1-x ,-y ,-1-z ),∵AD →=2DB →,∴⎩⎪⎨⎪⎧x +1=2(1-x ),y -1=-2y ,z -2=-2-2z .∴⎩⎨⎧x =13,y =13,z =0.∴D (13,13,0),CD →=(13-λ,-λ,-1-λ),∵CD →⊥AB →,∴CD →·AB →=2(13-λ)+λ-3(-1-λ)=0,∴λ=-116.9.(2013·河南省开封月考)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=2,E 、F 分别是面A 1B 1C 1D 1、面BCC 1B 1的中心,则E 、F 两点间的距离为()A .1B .52C .62D .32[答案] C[解析] 以点A 为原点,建立如图所示的空间直角坐标系,则E (1,1,2),F (2,1,22),所以|EF |=(1-2)2+(1-1)2+(2-22)2=62,故选C .10. (2013·陕西省高新一中期末)如图,在空间直角坐标系中有长方体ABCD -A 1B 1C 1D 1,AB =1,BC =2,AA 1=3,则点B 到直线A 1C 的距离为()A .27B .2357C .357D .1[答案] B[解析] 过点B 作BE 垂直A 1C ,垂足为E ,设点E 的坐标为(x ,y ,z ),则A 1(0,0,3),B (1,0,0),C (1,2,0),A 1C →=(1,2,-3),A 1E →=(x ,y ,z -3),BE →=(x -1,y ,z ).因为⎩⎪⎨⎪⎧A 1E →∥A 1C →BE →·A 1C →=0,所以⎩⎪⎨⎪⎧x 1=y 2=z -3-3x -1+2y -3z =0,解得⎩⎪⎨⎪⎧x =57y =107z =67,所以BE →=(-27,107,67),所以点B 到直线A 1C 的距离|BE →|=2357,故选B .11.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为( )A .12B .22C .13D .16[答案] C[解析] 如图,以D 为坐标原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系,则D 1(0,0,1),E (1,1,0),A (1,0,0),C (0,2,0).从而D 1E →=(1,1,-1),AC →=(-1,2,0),AD 1→=(-1,0,1), 设平面ACD 1的法向量为n =(a ,b ,c ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-a +2b =0,-a +c =0,得⎩⎪⎨⎪⎧a =2b ,a =c .令a =2,则n =(2,1,2). 所以点E 到平面ACD 1的距离为 h =|D 1E →·n ||n |=2+1-23=13.12.如图所示,正方体ABCD -A1B 1C 1D 1中,E ,F 分别是正方形ADD 1A 1和ABCD 的中心,G 是CC 1的中点,设GF ,C 1E 与AB 所成的角分别为α,β,则α+β等于( )A .120°B .60°C .75°D .90°[答案] D[解析] 建立坐标系如图,设正方体的棱长为2,则B (2,0,0),A (2,2,0),G (0,0,1),F (1,1,0),C 1(0,0,2),E (1,2,1).则BA →=(0,2,0),GF →=(1,1,-1),C 1E →=(1,2,-1),∴cos 〈BA →,GF →〉=|BA →·GF →||BA →|·|GF →|=13,cos 〈BA →,C 1E →〉=|BA →·C 1E →||BA →|·|C 1E →|=23,∴cos α=13,sin α=23,cos β=23,sin β=13,cos(α+β)=0,∴α+β=90°. 二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知A (1,2,0),B (0,1,-1),P 是x 轴上的动点,当AP →·BP →取最小值时,点P 的坐标为__________.[答案] (12,0,0)[解析] 设P (x,0,0),则AP →=(x -1,-2,0),BP →=(x ,-1,1), AP →·BP →=x (x -1)+2=(x -12)2+74,∴当x =12时,AP →·BP →取最小值74,此时点P 的坐标为(12,0,0).14.已知正四棱台ABCD -A 1B 1C 1D 1中,上底面A 1B 1C 1D 1边长为1,下底面ABCD 边长为2,侧棱与底面所成的角为60°,则异面直线AD 1与B 1C 所成角的余弦值为__________.[答案] 14[解析] 设上、下底面中心分别为O 1、O ,则OO 1⊥平面ABCD ,以O 为原点,直线BD 、AC 、OO 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.∵AB =2,A 1B 1=1,∴AC =BD =22,A 1C 1=B 1D 1=2,∵平面BDD 1B 1⊥平面ABCD ,∴∠B 1BO 为侧棱与底面所成的角,∴∠B 1BO =60°, 设棱台高为h ,则tan60°=h 2-22,∴h =62, ∴A (0,-2,0),D 1(-22,0,62),B 1(22,0,62),C (0,2,0),∴AD 1→=(-22,2,62),B 1C →=(-22,2,-62),∴cos 〈AD 1→,B 1C →〉=AD 1→·B 1C →|AD 1→|·|B 1C →|=14,故异面直线AD 1与B 1C 所成角的余弦值为14.15.三棱锥P -ABC 中,P A =PB =PC =AB =AC =1,∠BAC =90°,则直线P A 与底面ABC 所成角的大小为________________.[答案] 45°[解析] 由条件知,AB =AC =1,∠BAC =90°,∴BC =2,∵PB =PC =1,∴∠BPC =90°, 取BC 边中点E ,则 PE =22,AE =22, 又P A =1,∴∠PEA =90°,故∠P AE =45°, ∵E 为BC 中点,∴PE ⊥BC ,AE ⊥BC , ∴BC ⊥平面P AE , ∴平面P AE ⊥平面ABC ,∴∠P AE 为直线P A 与平面ABC 所成角.16.已知矩形ABCD 中,AB =1,BC =3,将矩形ABCD 沿对角线AC 折起,使平面ABC 与平面ACD 垂直,则B 与D 之间的距离为__________.[答案]102[解析] 过B ,D 分别向AC 作垂线,垂足分别为M ,N .则可求得AM =12,BM =32,CN =12,DN =32,MN =1.由于BD →=BM →+MN →+ND →,∴|BD →|2=(BM →+MN →+ND →)2=|BM →|2+|MN →|2+|ND →|2+2(BM →·MN →+MN →·ND →+BM →·ND →)=(32)2+12+(32)2+2(0+0+0)=52,∴|BD →|=102.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)若e 1、e 2、e 3是三个不共面向量,则向量a =3e 1+2e 2+e 3,b =-e 1+e 2+3e 3,c =2e 1-e 2-4e 3是否共面?请说明理由.[解析] 设c =λ1a +λ2b ,则 ⎩⎪⎨⎪⎧3λ1-λ2=22λ1+λ2=-1λ1+3λ2=-4⇒λ1=15,λ2=-75.即c =15a -75b .∴a 、b 、c 共面.18.(本小题满分12分)在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG→.[解析] ∵BG =2GD , ∴BG →=23BD →.又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , ∴PG →=PB →+BG →=b +23(a +c -2b )=23a -13b +23c . 19.(本小题满分12分)如图所示,在四面体ABCD 中,AB ,BC ,CD 两两互相垂直,且BC =CD=1.(1)求证:平面ACD ⊥平面ABC ;(2)求二面角C -AB -D 的大小;(3)若直线BD 与平面ACD 所成的角为30°,求线段AB 的长度. [解析] 解法一:(1)∵CD ⊥AB ,CD ⊥BC , ∴CD ⊥平面ABC . 又∵CD ⊂平面ACD , ∴平面ACD ⊥平面ABC .(2)∵AB ⊥BC ,AB ⊥CD ,∴AB ⊥平面BCD , ∴AB ⊥BD .∴∠CBD 是二面角C -AB -D 的平面角. ∵在Rt △BCD 中,BC =CD ,∴∠CBD =45°. ∴二面角C -AB -D 的大小为45°.(3)过点B 作BH ⊥AC ,垂足为H ,连接DH .∵平面ACD ⊥平面ABC , ∴BH ⊥平面ACD ,∴∠BDH 为BD 与平面ACD 所成的角.∴∠BDH =30°. 在Rt △BHD 中,BD =2, ∴BH =22. 又∵在Rt △BHC 中,BC =1, ∴∠BCH =45°,∴在Rt △ABC 中,AB =1. 解法二:(1)同解法一.(2)设AB =a ,建立如图所示的空间直角坐标系B -xyz ,则B (0,0,0),A (0,0,a ),C (0,1,0),D (1,1,0),BD →=(1,1,0),BA →=(0,0,a ).平面ABC 的法向量CD →=(1,0,0),设平面ABD 的一个法向量为n =(x ,y ,z ),则有BD →·n =x +y =0,BA →·n =az =0,∴z =0,取y =1,则x =-1, ∴n =(-1,1,0).∴cos 〈CD →,n 〉=CD →·n |CD →||n |=-22,由图可知二面角C -AB -D 为锐角,∴二面角C -AB -D 的大小为45°.(3)AC →=(0,1,-a ),CD →=(1,0,0),BD →=(1,1,0).设平面ACD 的一个法向量是m =(x ′,y ′,z ′),则AC →·m =y ′-az ′=0,CD →·m =x ′=0,令z ′=1,∴y ′=a ,则m =(0,a,1). ∵直线BD 与平面ACD 所成角为30°, ∴cos 〈BD →,m 〉=BD →·m |BD →||m |=a a 2+1·2=cos60°,解得a =1,∴AB =1.20.(本小题满分12分)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,已知AB =2,AA 1=5,E 、F 分别为D 1D 、B 1B 上的点,且DE =B 1F =1.(1)求证:BE ⊥平面ACF ; (2)求点E 到平面ACF 的距离.[解析] (1)证明:以D 为原点,DA 、DC 、DD 1所在直线分别为x 、y 、z 轴建立如图所示空间直角坐标系,则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),D 1(0,0,5),E (0,0,1),F (2,2,4).∴AC →=(-2,2,0),AF →=(0,2,4),BE →=(-2,-2,1),AE →=(-2,0,1). ∵BE →·AC →=0,BE →·AF →=0,∴BE ⊥AC ,BE ⊥AF ,且AC ∩AF =A .∴BE ⊥平面ACF .(2)解:由(1)知,BE →为平面ACF 的一个法向量,∴点E 到平面ACF 的距离d =|AE →·BE →||BE →|=53. 故点E 到平面ACF 的距离为53. 21.(本小题满分12分)(2014·浙江文,20)如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC =2.(1)证明:AC ⊥平面BCDE ;(2)求直线AE 与平面ABC 所成的角的正切值.[解析] (1)取CD 中点G ,连结BG .∵∠CDE =∠BED =90°,∴BE ∥CD .又CD =2,BE =1,∵BE 綊DG ,∴四边形DEBG 为矩形,∴BG =DE =1,∠BGC =90°又GC =12CD =1,∴BC =2. 又AC =2,AB =2,∴AB 2=AC 2+BC 2,即AC ⊥BC .又∵平面ABC ⊥平面BCDE 且交线为BC ,AC ⊂平面ABC ,∴AC ⊥平面BCDE .(2)解法1:过点E 作EF ⊥BC 交BC 延长线于F ,由(1)知EF ⊥AC ,AC ∩BC =C ,∴EF ⊥平面ABC ,连结AF ,则∠EAF 即为AE 与平面ABC 所成的角.由已知得∠GBC =45°,∴∠EBF =45°∴BF =EF ,又BE =1∴BF =EF =22, 在Rt △AFC 中,AC =2,CF =BC +BF =2+22=322, ∴AF =2+184=262, ∴tan ∠EAF =EF AF =22262=1313, ∴直线AE 与平面ABC 所成角的正切值为1313. 解法2:过C 作DE 的平行线CG ,以C 为原点,CD 、CG、CA 分别为x 轴、y 轴、z 轴建立空间直角坐标系如图.则C (0,0,0),A (0,0,2),B (1,1,0),E (2,1,0),∴AE →=(2,1,-2),AB →=(1,1,-2),CA →=(0,0,2),设平面ABC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AB →=0,n ·CA →=0,∴⎩⎪⎨⎪⎧x +y -2z =0,2z =0, 令x =1得n =(1,-1,0).设AE 与平面ABC 所成的角为α,则sin α=cos 〈n ,AE →〉=|n ·AE →||n |·|AE →|=114,∴tan α=1313. 22.(本小题满分14分) (2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)如图,四边形ABCD 与BDEF 均为菱形,设AC 与BD 相交于点O ,若∠DAB =∠DBF =60°,且F A =FC .(1)求证:FC ∥平面EAD ;(2)求二面角A -FC -B 的余弦值.[解析] (1)证明:∵四边形ABCD 与BDEF 均为菱形,∴AD ∥BC ,DE ∥BF .∵AD ⊄平面FBC ,DE ⊄平面FBC ,∴AD ∥平面FBC ,DE ∥平面FBC ,又AD ∩DE =D ,AD ⊂平面EAD ,DE ⊂平面EAD ,∴平面FBC ∥平面EAD ,又FC ⊂平面FBC ,∴FC ∥平面EAD .(2)连接FO 、FD ,∵四边形BDEF 为菱形,且∠DBF =60°,∴△DBF 为等边三角形, ∵O 为BD 中点.所以FO ⊥BD ,O 为AC 中点,且F A =FC ,∴AC ⊥FO ,又AC ∩BD =O ,∴FO ⊥平面ABCD ,∴OA 、OB 、OF 两两垂直,建立如图所示的空间直角坐标系O -xyz ,设AB =2,因为四边形ABCD 为菱形,∠DAB =60°,则BD =2,OB =1,OA =OF =3,∴O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),F (0,0,3),∴CF →=(3,0,3),CB →=(3,1,0),设平面BFC 的一个法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧ n ·CF →=0,n ·CB →=0,∴⎩⎪⎨⎪⎧3x +3z =0,3x +y =0, 令x =1,则n =(1,-3,-1),∵BD ⊥平面AFC ,∴平面AFC 的一个法向量为OB →=(0,1,0).∵二面角A -FC -B 为锐二面角,设二面角的平面角为θ,∴cos θ=|cos 〈n ,OB →〉|=|n ·OB →||n |·|OB →|=⎪⎪⎪⎪⎪⎪-35=155, ∴二面角A -FC -B 的余弦值为155.。
【成才之路】2014-2015学年高中数学 综合检测 新人教A 版选修2-3时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列四个命题:①线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱; ②残差平方和越小的模型,模型拟合的效果越好;③用相关指数R 2来刻画回归效果,R 2越小,说明模型的拟合效果越好;④在推断H :“X 与Y 有关系”的论述中,用三维柱形图,只要主对角线上两个柱形高度的比值与副对角线上的两个柱形高度的比值相差越大,H 成立的可能性就越大.其中真命题的个数是( ) A .1 B .2 C .3 D .4[答案] A[解析] ①r 有正负,应为|r |越大,相关性越强,②正确,③R 2越大,拟合效果越好,④应为高度积的差的绝对值越大,H 成立的可能性就越大,故选A.2.(2014·四川理,2)在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15 D .10[答案] C[解析] x 3的系数就是(1+x )6中的第三项的系数,即C 26=15.3.甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A .827B .6481 C .49 D .89[答案] A[解析] 设甲胜为事件A ,则P (A )=23,P (A )=13,∵甲以3∶1的比分获胜,∴甲前三局比赛中胜2局,第四局胜,故所求概率为P =C 23·(23)2·13·23=827.4.随机变量ξ的概率分布规律为P (X =n )=a n n +(n =1、2、3、4),其中a 为常数,则P ⎝ ⎛⎭⎪⎫94<X <134的值为( )A .23 B .34 C .45 D .516[答案] D[解析] 因为P (X =n )=a n n +(n =1,2,3,4),所以a 2+a 6+a 12+a 20=1,所以a =54.因为P ⎝ ⎛⎭⎪⎫94<X <134=P (X =2)+P (X =3)=54×16+54×112=516,故选D.5.若随机变量ξ~N (-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率( )A .(2,4]B .(0,2]C .[-2,0)D .(-4,4][答案] C[解析] 此正态曲线关于直线x =-2对称,∴ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.6.有6张卡片分别标有1、2、3、4、5、6,将其排成3行2列,要求每一行的两张卡片上的数字之和均不等于7,则不同的排法种数是( )A .192B .384C .432D .448 [答案] B[解析] 将1、2、3、4、5、6中数字之和等于7的两个数字分成一组,记A ={1,6},B ={2,5},C ={3,4}.依题意进行分步计数.第一步,排第一行的两个数字,先从A 、B 、C 三组中选取2组(有C 23种选法),再从每组中选取一个数(有C 12·C 12种选法),最后将这两个数排在第一行(有A 22种排法),故第一行的排法种数为C 23C 12C 12A 22=24种.第二步,排第2行,从A 、B 、C 中第一次未选到的那一组中选取1数(有C 12种选法),从第一次选取的两组中剩余的两数中选取一数(有C 12种选法),将此二数排在第二行(有A 22种排法),故第二行共有排法C 12C 12A 22=8种.第三步,将余下两数排在第三行,有A 22=2种排法, 由分步计数原理知,共有不同排法24×8×2=384种.7.变量X 与Y 相对应的一组数据为(10,1)、(11.3,2)、(11.8,3)、(12.5,4)、(13,5);变量U 与V 相对应的一组数据为(10,5)、(11.3,4)、(11.8,3)、(12.5,2)、(13,1).r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( )A .r 2<r 1<0B .0<r 2<r 1C .r 2<0<r 1D .r 2=r 1[答案] C[解析] 画散点图,由散点图可知X 与Y 是正相关,则相关系数r 1>0,U 与V 是负相关,相关系数r 2<0,故选C.8.设随机变量X 服从二项分布X ~B (n ,p ),则D X 2E X2等于( )A .p 2B .(1-p )2C .1-pD .以上都不对[答案] B[解析] 因为X ~B (n ,p ),(D (X ))2=[np (1-p )]2,(E (X ))2=(np )2,所以D X2E X2=[np -p2np2=(1-p )2.故选B.9.(2013·大庆实验中学高二期中)把15个相同的小球放入编号为1、2、3的三个不同盒子中,使盒子里的球的个数大于它的编号数,则不同的放法种数是( )A .56B .72C .28D .63[答案] C[解析] 先给1号盒子放入1球,2号盒子放入2球,3号盒子放入3球,再将剩余9个小球排成一列,之间形成8个空档,从中任意选取2个空档用插板隔开,依次对应放入1、2、3号盒子中,则不同放法种数为C 28=28种.10.通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:性别与读营养说明列联表A .99%的可能性B .99.75%的可能性C .99.5%的可能性D .97.5%的可能性[答案] C[解析] 由题意可知a =16,b =28,c =20,d =8,a +b =44,c +d =28,a +c =36,b +d =36,n =a +b +c +d =72,代入公式K 2=n ad -bc 2a +bc +d a +cb +d得K 2=-244×28×36×36≈8.42,由于K 2≈8.42>7.879,我们就有99.5%的把握认为性别和读营养说明之间有关系,即性别和读营养说明之间有99.5%的可能是有关系的.11.假设每一架飞机的引擎在飞行中出现故障的概率为1-p ,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2个引擎飞机要2个引擎全部正常运行,飞机才可成功飞行.要使4个引擎飞机更安全,则p 的取值范围是( )A .⎝ ⎛⎭⎪⎫23,1B .⎝ ⎛⎭⎪⎫13,1C .⎝ ⎛⎭⎪⎫0,23 D .⎝ ⎛⎭⎪⎫0,13 [答案] B[解析] 4个引擎飞机成功飞行的概率为C 34p 3(1-p )+p 4,2个引擎飞机成功飞行的概率为p 2,要使C 34p 3(1-p )+p 4>p 2,必有13<p <1.12.如图,用6种不同的颜色把图中A 、B 、C 、D 四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有( )A .400种B .460种C .480种D .496种[答案] C[解析] 涂A 有6种涂法,B 有5种,C 有4种,因为D 可与A 同色,故D 有4种,∴由分步乘法计数原理知,不同涂法有6×5×4×4=480种,故选C.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.随机变量X 的分布列如下表,且E (X )=1.1,则D (X )=________.[答案] 0.49[解析] p =1-⎝ ⎛⎭⎪⎫15+310=12,E (X )=1.1=0×15+1×12+310x ,解得x =2,所以D (X )=15×(0-1.1)2+12×(1-1.1)2+310×(2-1.1)2=0.49.14.8名世界网球顶级选手在上海大师赛上分成两组,每组4人,分别进行单循环赛,每组决定前两名,再由每一组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第三、四名,大师赛共有________场比赛.[答案] 16[解析] 分四类:第一类,进行单循环赛要2C 24=2×4×32=12场;第二类,进行淘汰赛需要2场;第三类,角逐冠、亚军需要比赛1场;第四类,角逐第三、四名需要比赛1场,所以大师赛共有2C 24+2+1+1=16场比赛.15.设随机变量ξ~N (1,4),若P (ξ≥a +b )=P (ξ≤a -b ),则实数a 的值为________________.[答案] 1[解析] ∵P (ξ≥a +b )=P (ξ≤a -b ), ∴a +b +a -b2=1,∴a =1.16.(2014·山东青岛质检)平面内有10个点,其中5个点在一条直线上,此外再没有三点共线,则共可确定________________条直线;共可确定________个三角形.[答案] 36;110[解析] 设10个点分别为A 1、A 2、…、A 10,其中A 1、A 2、…、A 5共线,A i (i =1,2,…,5)与A 6、A 7、…、A 10分别确定5条直线,共25条;A 1、A 2、…、A 5确定1条; A 6、A 7、…、A 10确定C 25=10条,故共可确定36条直线.在A 1、A 2、…、A 5中任取两点,在A 6、A 7、…、A 10中任取一点可构成C 25C 15=50个三角形; 在A 1、A 2、…、A 5中任取一点,在A 7、A 7、…、A 10中任取两点可构成C 15C 25=50个三角形; 在A 6、A 7、…、A 10中任取3点构成C 35=10个三角形,故共可确定50+50+10=110个三角形.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)8人围圆桌开会,其中正、副组长各1人,记录员1人. (1)若正、副组长相邻而坐,有多少种坐法? (2)若记录员坐于正、副组长之间,有多少种坐法?[解析] (1)正、副组长相邻而坐,可将此2人当作1人看,即7人围一圆桌,有(7-1)!=6!种坐法,又因为正、副组长2人可换位,有2!种坐法.故所求坐法为(7-1)!×2!=1440种.(2)记录员坐在正、副组长中间,可将此3人视作1人,即6人围一圆桌,有(6-1)!=5!种坐法,又因为正、副组长2人可以换位,有2!种坐法,故所求坐法为5!×2!=240种.18.(本题满分12分)已知(x -12x )n的展开式中,前三项系数的绝对值依次成等差数列.(1)求展开式中的常数项; (2)求展开式中所有整式项. [解析] (1)T r +1=C rn ·(x )n -r·(12x)r ·(-1)r,∴前三项系数的绝对值分别为C 0n ,12C 1n ,14C 2n ,由题意知C 1n =C 0n +14C 2n ,∴n =1+18n (n -1),n ∈N *,解得n =8或n =1(舍去), ∴T k +1=C k8·(x )8-k·(-12x)k=C k8·(-12)k ·x 4-k,0≤k ≤8,令4-k =0得k =4,∴展开式中的常数项为T 5=C 48(-12)4=358.(2)要使T k +1为整式项,需4-k 为非负数,且0≤k ≤8,∴k =0,1,2,3,4. ∴展开式中的整式项为:x 4,-4x 3,7x 2,-7x ,358.19.(本题满分12分)(2013·湖北理,20)假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502)的随机变量,记一天中从甲地去乙地的旅客人数不超过900的概率为p 0.(1)求p 0的值;(参考数据:若X ~N (μ,σ2),有 P (μ-σ<X ≤μ+σ)=0.6826,P (μ-2σ<X ≤μ+2σ)=0.9544,P (μ-3σ<X ≤μ+3σ)=0.9974.)(2)某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天要以不小于p 0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?[解析] (1)由于随机变量X 服从正态分布N (800,502),故有μ=800,σ=50,P (700<X ≤900)=0.9544.由正态分布的对称性,可得p 0=P (X ≤900)=P (X ≤800)+P (800<X ≤900)=12+12P (700<X ≤900)=0.9772. (2)设A 型、B 型车辆的数量分别为x 、y 辆,则相应的营运成本为1600x +2400y 依题意,x 、y 还需满足x +y ≤21,y ≤x +7,P (X ≤36x +60y )≥p 0由(1)知,p 0=P (X ≤900),故P (X ≤36x +60y )≥p 0等价于36x +60y ≥900.于是问题等价于求满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .且使目标函数z =1600x +2400y 达到最小的x ,y .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1600x +2400y 经过可行域的点P 时,直线z =1600x +2400y 在y 轴上截距z2400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆.20.(本题满分12分)(2014·沈阳市质检)为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.(参考公式:K2=a +b c+d a+c b+d)[解析] (1)甲班成绩为87分的同学有2个,其他不低于80分的同学有3个“从甲班数学成绩不低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有C25=10个,“抽到至少有一个87分的同学”所组成的基本事件有C13C12+C22=7个,所以P=710.(2)K2=-20×20×20×20=6.4>5.024,因此,我们有97.5%的把握认为成绩优秀与教学方式有关.21.(本题满分12分)(2013·福建理,16)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?[解析] (1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X ≤3”的事件为A ,则事件A 包含有“X =0”,“X =2”,“X =3”三个两两互斥的事件, 因为P (X =0)=(1-23)×(1-25)=15,P (X =2)=23×(1-25)=25, P (X =3)=(1-23)×25=215,所以P (A )=P (X =0)+P (X =2)+P (X =3)=1115,即这2人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X 1,都选择方案乙所获得的累计得分为X 2,则X 1、X 2的分布列如下:所以E (X 1)=0×19+2×49+4×9=3,E (X 2)=0×925+3×1225+6×425=125.因为E (X 1)>E (X 2),所以他们都选择方案甲进行投资时,累计得分的数学期望较大.22.(本题满分14分)电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?(2)方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望E (X )和方差D (X ).附:K 2=n ad -bc 2a +bc +d a +cb +d.[分析] (1)体育迷人数25人,即可完成2×2列联表,再求出K 2即可.(2)由(1)知体育迷有25人,则被抽到的概率为14,从观众中随机抽出3名是3次独立重复试验,X 服从二项分布,则可以求出分布列,期望,方差.[解析] (1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:将2×2K 2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2=-275×25×45×55=10033≈3.030. 因为3.030<3.841,所以我们没有充分理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率14.由题意知X ~B (3,14),从而X 的分布列为E (X )=np =3×14=34.D (X )=np (1-p )=3×14×34=916.1.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值是( )A .1B .-1C .0D .2[答案] A[解析] 令x =1,得a 0+a 1+…+a 4=(2+3)4, 令x =-1,a 0-a 1+a 2-a 3+a 4=(-2+3)4.所以,(a 0+a 2+a 4)2-(a 1+a 3)2=(2+3)4(-2+3)4=1.2.一袋中有5个白球、3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( )A .C 1012⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582B .C 912⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫58238C .C 911⎝ ⎛⎭⎪⎫589⎝ ⎛⎭⎪⎫382D .C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582[答案] D[解析] “X=12”表示第12次取到的球为红球,前11次中有9次取到红球,2次取到白球,∴P(X=12)=C911(38)9·(58)2·38=C911(38)10·(58)2,故选D.3.如图,将1、2、3填入3×3的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A.6种C.24种D.48种[答案] B[解析] 第一步,将1、2、3排在第一行,共A33=6种排法,对于每一种排法,第二行,都对应2种排法,第三行,有唯一一种排法,∴共有12种.4.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中抽出500件,量其内径尺寸的结果如下表:甲厂(2)由于以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.附:K 2=a +bc +d a +cb +d,[解析] (1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%; 乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%.(2)K 2=500×500×680×320≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”.5.某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是13,每次测试通过与否互相独立.规定:若前4次都没有通过测试,则第5次不能参加测试.(1)求该学生考上大学的概率.(2)如果考上大学或参加完5次测试就结束,记该生参加测试的次数为ξ,求ξ的分布列及ξ的数学期望.[解析] (1)记“该学生考上大学”为事件A ,其对立事件为A ,则P (A )=C 14(13)(23)3(23)+(23)4=64243+1681=112243. ∴P (A )=1-P (A )=1-112243=131243.(2)该生参加测试次数ξ的可能取值为2、3、4、5.P (ξ=2)=(13)2=19,P (ξ=3)=C 12·13·23·13=427, P (ξ=4)=C 13·13·(23)2·13+(23)4=427+1681=2881, P (ξ=5)=C 14·13·(23)3=3281. 故ξ的分布列为E (ξ)=2×19+3×427+4×81+5×81=81.。
选修2-3 第三章 3.2一、选择题1.在2×2列联表中,两个比值________相差越大,两个分类变量之间的关系越强( ) A .a a +b 与c c +dB .a c +d 与c a +bC .a a +d 与c b +cD .a b +d 与c a +c[答案] A [解析]a a +b 与c c +d相差越大,说明ad 与bc 相差越大,两个分类变量之间的关系越强. 2.判断两个分类变量是彼此相关还是相互独立的常用方法中,最为精确的是( ) A .三维柱形图 B .二维条形图 C .等高条形图 D .独立性检验[答案] D[解析] 前三种方法只能直观地看出两个分类变量x 与y 是否相关,但看不出相关的程度.独立性检验通过计算得出相关的可能性,较为准确.3.(2014·洛阳市高二期中)若用独立性检验的方法,我们得到能有99%的把握认为变量X 与Y 有关系,则( )A .K 2≥2.706B .K 2≥6.635C .K 2<2.706D .K 2<6.635 [答案] B4.假设有两个分类变量X 与Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其2×2列联表为:( ) A .a =5,b =4,c =3,d =2 B .a =5,b =3,c =4,d =2 C .a =2,b =3,c =4,d =5 D .a =2,b =3,c =5,d =4[答案] D[解析] 比较|a a +b -c c +d|.选项A 中,|59-35|=245;选项B 中,|58-46|=124;选项C 中,|25-49|=245;选项D 中,|25-59|=445.故选D.5.某卫生机构对366人进行健康体检,其中某项检测指标阳性家族史者糖尿病发病的有16人,不发病的有93人;阴性家族史者糖尿病发病的有17人,不发病的有240人,有________________的把握认为糖尿病患者与遗传有关系.( )A .99.9%B .99.5%C .99%D .97.5%[答案] D[解析] 可以先作出如下列联表(单位:人): 糖尿病患者与遗传列联表k =366×(16×240-17×93)2109×257×33×333≈6.067>5.024.故我们有97.5%的把握认为糖尿病患者与遗传有关系.6.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )①若K 2的观测值满足K 2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误A .①B .①③C .③D .②[答案] C[解析] ①推断在100个吸烟的人中必有99人患有肺病,说法错误,排除A 、B ,③正确.排除D ,选C.二、填空题7.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:K 2=50×(13×20-10×7)223×27×20×30≈4.844,因为K 2≥3.841,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为________.[答案] 5%[解析] ∵k >3.841,所以有95%的把握认为主修统计专业与性别有关,出错的可能性为5%.8.吃零食是中学生中普遍存在的现象.吃零食对学生身体发育有诸多不利影响,影响学生的健康成长.下表给出性别与吃零食的列联表[答案] 有[解析] k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=85(140-480)217×68×45×40=98260002080800≈4.700>3.841. 故约有95%的把握认为“吃零食与性别”有关.9.调查者通过随机询问72名男女中学生喜欢文科还是理科,得到如下列联表(单位:名):性别与喜欢文科还是理科列联表) [答案] 有[解析] 通过计算K 2的观测值k =72×(16×8-28×20)236×36×44×28≈8.42>7.879.故我们有99.5%的把握认为中学生的性别和喜欢文科还是理科有关系.三、解答题10.某地区有关部门调查该地区的一种传染病与饮用不干净水的关系,得到如下列联表(单位:人):传染病与饮用不干净水列联表[解析] 由已知列联表中数据计算得K 2的观测值为k =830×(52×218-94×466)2518×312×146×684≈54.21,因为54.21>10.828,所以我们有99.9%的把握认为该地区的这种传染病与饮用不干净水是有关的.[点评] 对数据作统计分析推断实质上是让我们来判断得这种传染病是否与饮用不干净的水有关系,即根据数据求K 2的观测值,再利用其与临界值的大小关系来判断.一、选择题 11.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一条直线的回归方程为y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位; ③线性回归直线y ^=b ^x +a ^必过点(x -,y -);④在一个2×2列联表中,由计算得K 2=13.079,则有99%的把握确认这两个变量间有关系.其中错误的个数是( )A .0B .1C .2D .3本题可以参考独立性检验临界值表:[答案] [解析] 一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x 的系数具备直线斜率的功能,对于回归方程y ^=3-5x ,当x 增加一个单位时,y 平均减少5个单位,②错误;由线性回归方程的定义知,线性回归直线y ^=b ^x +a ^必过点(x -,y -),③正确;因为K 2=13.079>10.828,故有99%的把握确认这两个变量有关系,④正确,故选B.12.(2013·福州文博中学高二期末)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )算得,K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” [答案] A[解析] 根据独立性检验的定义,由K 2≈7.8>6.635可知,有99%以上把握认为“爱好该项运动与性别有关”.13.某调查机构调查教师工作压力大小的情况,部分数据如表:( ) A .0.01B .0.05C.0.10 D.0.005 [答案] B[解析]K2=n(ad-bc)2(a+b)(a+c)(c+d)(d+b)=100(53×1-12×34)2 87×13×65×35≈4.9>3.841,因此,在犯错误的概率不超过0.05的前提下,认为工作压力大与不喜欢教师职业有关系.14.(2014·江西理,6)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1表2表3表4A .成绩B .视力C .智商D .阅读量[答案] D[解析] A 中,K 2=52×(6×22-10×14)220×32×16×36=131440;B 中,K 2=52×(4×20-12×16)220×32×16×36=637360;C 中,K 2=52×(8×24-8×12)220×32×16×36=1310;D 中,K 2=52×(14×30-2×6)220×32×16×36=3757160.因此阅读量与性别相关的可能性最大,所以选D. 二、解答题15.打鼾不仅影响别人休息,而且可能与患某种疾病有关.下表是一次调查所得的数据,试问:每一晚都打鼾与患心脏病有关吗?[解析] =24,d =1355,a +b =254,c +d =1379,a +c =54,b +d =1579,n =1633.∴K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=1633×(30×1355-224×24)2254×1379×54×1579=68.033.∵68.033>10.828.∴有99%的把握说每一晚都打鼾与患心脏病有关.16.某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,随机抽取了189名员工进行调查,所得数据如下表所示:[解析] 由公式k =189×(54×63-40×32)294×95×86×103≈10.76.因为10.76>7.879,所以有99.5%的把握说:员工“工作积极”与“积极支持企业改革”有关,可以认为企业的全体员工对待企业改革的态度与其工作的积极性是有关的.17.考察小麦种子经过灭菌与否跟发生黑穗病的关系,经试验观察,得到数据如下表所示.[解析] 由公式得,k =460×(26×200-184×50)2210×250×76×384≈4.804.由于4.804>3.841,所以我们有95%的把握认为种子灭菌与发生黑穗病是有关系的.。
第一章综合检测时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(新课标)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为导学号 03960281( )A .18B .38C .58D .78[答案] D[解析] 四位同学各自在周六、周日两天选择一天参加公益活动的情况有24=16种方式,其中仅在周六(周日)参加的各有一种,故所求概率P =1-1+116=78.2.已知C 7n +1-C 7n =C 8n (n ∈N *),则n 等于导学号 03960282( )A .14B .12C .13D .15[答案] A[解析] 因为C 8n +C 7n =C 8n +1,所以C 7n +1=C 8n +1.∴7+8=n +1,∴n =14,故选A .3.(2016·大连高二检测)3对夫妇去看电影,6个人坐成一排,若女性的邻座只能是其丈夫或其他女性,则坐法的种数为导学号 03960283( )A .54B .60C .66D .72[答案] B[解析] 记3位女性为a 、b 、c ,其丈夫依次为A 、B 、C ,当3位女性都相邻时可能情形有两类:第一类男性在两端(如BAabcC),有2A 33种,第二类男性在一端(如BCAabc),有2A 22A 33种,共有A 33(2A 22+2)=36种,当仅有两位女性相邻时也有两类,第一类这两人在一端(如abBACc),第二类这两人两端都有其他人(如AabBCc),共有4A 23=24种,故满足题意的坐法共有36+24=60种.4.(2016·全国卷Ⅱ理,5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为导学号 03960284( )A .24B .18C .12D .9[答案] B[解析] 由题意可知E→F 共有6种走法,F→G 共有3种走法,由乘法计数原理知,共有6×3=18种走法,故选B .5.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为导学号 03960285( )A .232B .252C .472D .484[答案] C[解析] C 04C 312-3C 34+C 14C 212=12×11×106-12+4×12×112=220+264-12=472. 6.(安徽高考)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有导学号 03960286( )A .24对B .30对C .48对D .60对[答案] C[解析] 解法1:先找出正方体一个面上的对角线与其余面对角线成60°角的对数,然后根据正方体六个面的特征计算总对数.如图,在正方体ABCD -A 1B 1C 1D 1中,与面对角线AC 成60°角的面对角线有B 1C 、BC 1、C 1D 、CD 1、A 1D 、AD 1、A 1B 、AB 1共8条,同理与BD 成60°角的面对角线也有8条,因此一个面上的对角线与其相邻4个面的对角线,共组成16对,又正方体共有6个面,所有共有16×6=96对.因为每对都被计算了两次(例如计算与AC 成60°角时,有AD 1,计算与AD 1成60°角时有AC ,故AD 1与AC 这一对被计算了2次),因此共有12×96=48对.解法2:间接法.正方体的面对角线共有12条,从中任取2条有C 212种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C 212-6-12=48对.7.(2015·湖南理,6)已知⎝⎛⎭⎫x -a x 5的展开式中含x 32的项的系数为30,则a =导学号 03960287( )A . 3B .- 3C .6D .-6[答案] D[解析] T r +1=C r 5(-1)r a r x 52-r ,令52-r =32得r =1,可得-5a =30⇒a =-6,故选D . 8.从0、1、2、3、4、5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为导学号 03960288( )A .300B .216C .180D .162[答案] C[解析] 本小题主要考查排列组合的基础知识. 由题意知可分为两类,(1)选“0”,共有C 23C 12C 13A 33=108, (2)不选“0”,共有C 23A 44=72,∴由分类加法计数原理得72+108=180,故选C .9.(2016·胶东高二检测)已知某动点在平面直角坐标系第一象限的整点上运动(含x ,y 正半轴上的整点),其运动规律为(m ,n)→(m +1,n +1)或(m ,n)→(m +1,n -1).若该动点从原点出发,经过6步运动到点(6,2),则不同的运动轨迹有导学号 03960289( )A .15种B .14种C .9种D .103种[答案] C[解析] 由运动规律可知,每一步的横坐标都增加1,只需考虑纵坐标的变化,而纵坐标每一步增加1(或减少1),经过6步变化后,结果由0变到2,因此这6步中有2步是按照(m,n)→(m+1,n-1)运动的,有4步是按照(m,n)→(m+1,n+1)运动的,因此,共有C26=15种,而此动点只能在第一象限的整点上运动(含x,y正半轴上的整点),当第一步(m,n)→(m+1,n-1)时不符合要求,有C15种;当第一步(m,n)→(m+1,n+1),但第二、三两步为(m,n)→(m+1,n-1)时也不符合要求,有1种,故要减去不符合条件的C15+1=6种,故共有15-6=9种.10.若x∈R,n∈N+,定义M n x=x(x+1)(x+2)…(x+n-1),例如M5-5=(-5)(-4)(-3)(-2)(-1)=-120,则函数f(x)=xM19x-9的奇偶性为导学号03960290()A.是偶函数而不是奇函数B.既是奇函数又是偶函数C.是奇函数而不是偶函数D.既不是奇函数又不是偶函数[答案] A[解析]由题意知f(x)=x(x-9)(x-8)…(x-9+19-1)=x2(x2-1)(x2-4)…(x2-81)故为偶函数而不是奇函数.11.高三(三)班学生要安排毕业晚会的3个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,3个音乐节目恰有两个节目连排,则不同排法的种数是导学号03960291()A.240 B.188C.432 D.288[答案] D[解析]先从3个音乐节目中选取2个排好后作为一个节目有A23种排法,这样共有5个节目,两个音乐节目不连排,两个舞蹈节目不连排,如图,若曲艺节目排在5号(或1号)位置,则有4A22·A22=16种排法;若曲艺节目排在2号(或4号)位置,也有4A22 A22=16种排法,若曲艺节目排在3号位置,有2×2A22A22=16种排法,∴共有不同排法,A23×(16×3)=288种,故选D.12.已知直线ax+by-1=0(a、b不全为0)与圆x2+y2=50有交点,且交点的横、纵坐标均为整数,那么这样的直线有导学号03960292()A.66条B.72条C.74条D.78条[答案] B[解析]先考虑x≥0,y≥0时,圆上横、纵坐标均为整数的点有(1,7)(5,5)(7,1),依圆的对称性知,圆上共有3×4=12个点的横、纵坐标均为整数,经过其中任意两点的割线有C212=66(条),过每一点的切线共有12条,又考虑到直线ax +by -1=0不经过原点,而上述直线中经过原点的有6条,所以满足题意的直线共有66+12-6=72(条).二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.将4名新来的同学分配到A 、B 、C 三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A 班,那么不同的分配方案有________.导学号 03960293[答案] 24种[解析] 将4名新来的同学分配到A 、B 、C 三个班级中,每个班级至少安排一名学生有C 24A 33种分配方案,其中甲同学分配到A 班共有C 23A 22+C 13A 22种方案.因此满足条件的不同方案共有C 24A 33-C 23A 22-C 13A 22=24(种).14.(2015·新课标Ⅱ理,15)(a +x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a =________.导学号 03960294[答案] 3[解析] 由已知得(1+x)4=1+4x +6x 2+4x 3+x 4,故(a +x)(1+x)4的展开式中x 的奇数次幂项分别为4ax,4ax 3,x,6x 3,x 5,其系数之和为4a +4a +1+6+1=32,解得a =3.15.(2016·天津理,10)(x 2-1x )8的展开式中x 7的系数为________.(用数字作答)导学号 03960295[答案] -56[解析] 二项展开式的通项T r +1=C r 8(x 2)8-r (-1x )r =(-1)r C r 8x 16-3r,令16-3r =7,得r =3,故x 7的系数为-C 38=-56.16.将5位志愿者分成3组,其中两组各2人,另一组1人,分赴世博会的三个不同场馆服务,不同的分配方案有________种.(用数字作答)导学号 03960296[答案] 90[解析] 本题考查了排列组合中的平均分组分配问题,先分组C 25C 23C 11A 22,再把三组分配乘以A 33得:C 25C 23C 11A 22·A 33=90种.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知A ={x|1<log 2x<3,x ∈N *},B ={x||x -6|<3,x ∈N *},试问:导学号 03960297从集合A 和B 中各取一个元素作为直角坐标系中点的坐标,共可得到多少个不同的点? [解析] A ={3,4,5,6,7},B ={4,5,6,7,8}.从A 中取一个数作为横坐标,从B 中取一个数作为纵坐标,有5×5=25(个),而8作为横坐标的情况有5种,3作为纵坐标且8不是横坐标的情况有4种,故共有5×5+5+4=34个不同的点.18.(本题满分12分)求证:对任何非负整数n,33n-26n-1可被676整除.导学号03960298[证明]当n=0时,原式=0,可被676整除.当n=1时,原式=0,也可被676整除.当n≥2时,原式=27n-26n-1=(26+1)n-26n-1=(26n+C1n·26n-1+…+C n-2n ·262+C n-1n·26+1)-26n-1=26n+C1n26n-1+…+C n-2n·262.每一项都含262这个因数,故可被262=676整除.综上所述,对一切非负整数n,33n-26n-1可被676整除.19.(本题满分12分)(2016·青岛高二检测)已知(1+m x)n(m是正实数)的展开式的二项式系数之和为256,展开式中含x项的系数为112.导学号03960299(1)求m,n的值;(2)求展开式中奇数项的二项式系数之和;(3)求(1+m x)n(1-x)的展开式中含x2项的系数.[解析](1)由题意可得2n=256,解得n=8.∴通项T r+1=C r8m r x r 2,∴含x项的系数为C28m2=112,解得m=2,或m=-2(舍去).故m,n的值分别为2,8.(2)展开式中奇数项的二项式系数之和为C18+C38+C58+C78=28-1=128.(3)(1+2x)8(1-x)=(1+2x)8-x(1+2x)8,所以含x2项的系数为C4824-C2822=1008.20.(本题满分12分)某班要从5名男生3名女生中选出5人担任5门不同学科的课代表,请分别求出满足下列条件的方法种数.导学号03960300(1)所安排的女生人数必须少于男生人数;(2)其中的男生甲必须是课代表,但又不能担任数学课代表;(3)女生乙必须担任语文课代表,且男生甲必须担任课代表,但又不能担任数学课代表.[解析](1)所安排的女生人数少于男生人数包括三种情况,一是2个女生,二是1个女生,三是没有女生,依题意得(C55+C13C45+C23C35)A55=5520种.(2)先选出4人,有C 47种方法,连同甲在内,5人担任5门不同学科的课代表,甲不担任数学课代表,有A 14·A 44种方法,∴方法数为C 47·A 14·A 44=3360种. (3)由题意知甲和乙两人确定担任课代表,需要从余下的6人中选出3个人,有C 36=20种结果,女生乙必须担任语文课代表,则女生乙就不需要考虑,其余的4个人,甲不担任数学课代表,∴甲有3种选择,余下的3个人全排列共有3A 33=18;综上可知共有20×18=360种.21.(本题满分12分)用0、1、2、3、4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?导学号 03960301(1)被4整除; (2)比21034大的偶数;(3)左起第二、四位是奇数的偶数.[解析] (1)被4整除的数,其特征应是末两位数是4的倍数,可分为两类:当末两位数是20、40、04时,其排列数为3A 33=18,当末两位数是12、24、32时,其排列数为3A 12·A 22=12.故满足条件的五位数共有18+12=30(个).(2)①当末位数字是0时,首位数字可以为2或3或4,满足条件的数共有3×A 33=18个. ②当末位数字是2时,首位数字可以为3或4,满足条件的数共有2×A 33=12个. ③当末位数字是4时,首位数字是3的有A 33=6个,首位数字是2时,有3个,共有9个.综上知,比21034大的偶数共有18+12+9=39个. (3)方法一:可分为两类: 末位数是0,有A 22·A 22=4(个); 末位数是2或4,有A 22·A 12=4(个);故共有A 22·A 22+A 22·A 12=8(个). 方法二:第二、四位从奇数1,3中取,有A 22个;首位从2,4中取,有A 12个;余下的排在剩下的两位,有A 22个,故共有A 22A 12A 22=8(个).22.(本题满分12分)已知⎝⎛⎭⎪⎫3a -3a n (n ∈N *)的展开式的各项系数之和等于⎝⎛⎭⎪⎫43b -15b 5的展开式中的常数项,求⎝⎛⎭⎪⎫3a -3a n 的展开式中a -1项的二项式系数.导学号 03960302 [解析] 对于⎝ ⎛⎭⎪⎫43b -15b 5:T r +1=C r 5(43b)5-r ⎝⎛⎭⎫-15b r =C r5·(-1)r ·45-r ·5-r 2b 10-5r 6. 若T r +1为常数项,则10-5r =0,所以r =2,此时得常数项为T 3=C 25·(-1)2·43·5-1=27. 令a =1,得⎝⎛⎭⎪⎫3a -3a n 展开式的各项系数之和为2n .由题意知2n =27,所以n =7.对于⎝ ⎛⎭⎪⎫3a -3a 7:T r +1=C r 7⎝⎛⎭⎫3a 7-r ·(-3a)r =C r 7·(-1)r ·37-r a 5r -216. 若T r +1为a -1项,则5r -216=-1,所以r =3.所以⎝ ⎛⎭⎪⎫3a -3a n 的展开式中a -1项的二项式系数为C 37=35.。
数学人教版A2-3模块测试(时间:120分钟,满分:150分)一、选择题(每小题5分,共60分)1.某次语文考试中考生的分数X ~N (80,100),则分数在60~100分的考生占总考生数的百分比是( ).A .68。
26%B .95。
44%C .99.74%D .31.74%2.已知x ,y 之间的一组数据x 与y 之间的线性回归方程ˆˆˆya bx =+必过( ). A .(0,0) B .(1.167 5,0) C .(0,2.392 5) D .(1.167 5,2.392 5)3.由数字0,1,2,3,5组成的没有重复数字的三位奇数的个数为( ).A .60B .48C .36D .27 4.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案有( )种.A .4441284CC C⋅⋅ B .44412843CC C⋅⋅C .444312843C C C A ⋅⋅⋅D .444128433C C C A ⋅⋅ 5。
22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,则展开式中的常数项是( ).A .180B .90C .45D .360 6.已知(x10=a 0+a 1x +a 2x 2+…+a 10x 10,则(a 0+a 2+a 4+a 6+a 8+a 10)2-(a 1+a 3+a 5+a 7+a 9)2的值为( ).A .0B .1C .-1D .27.小明同学在网易上申请了一个电子信箱,密码由4位数字组成,现在小明只记得密码是由2个6,1个3,1个9组成,但忘记了它们的顺序.那么小明试着输入由这样4个数组成的一个密码,则他恰好能输入正确进入邮箱的概率是( ).A .16B .18C .112D .1248.已知随机变量X 服从二项分布,X ~16,3B ⎛⎫⎪⎝⎭,则P (X =2)等于( ).A .316B .4243C .13243D .802439.将三颗骰子各掷一次,设事件A =“三个点数都不相同",B =“至少出现一个6点",则概率P (A |B )等于( ).A .6091B .12C .518D .9121610.6个电子产品中有2个次品,4个合格品,每次从中任取一个测试,测试完后不放回,直到两个次品都找到为止,那么测试次数X 的均值为( ).A .1715B .1115C .53D .14311.设某批电子手表正品率为34,次品率为14,现对该批电子手表进行测试,设第X 次首次测到正品,则P (X =3)等于( ).A .22313C 44⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ B .22331C 44⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭C .21344⎛⎫⨯ ⎪⎝⎭ D .23144⎛⎫⨯ ⎪⎝⎭12.抛一枚均匀硬币,正反面出现的概率都是12,反复这样投掷,数列{a n }定义如下:a n =1,,1,,n n ⎧⎨-⎩第次投掷出现正面第次投掷出现反面若S n =a 1+a 2+…+a n(n ∈N *),则事件“S 8=2”的概率,事件“S 2≠0,S 8=2”的概率分别是( ).A .113,256128B .713,32128C .71,32256D .11,256256二、填空题(每小题4分,共16分)13.设随机变量ξ的概率分布列为P (ξ=k )=1ck +,k =0,1,2,3,则P (ξ=2)=________.14.有4名男生,3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能全排在一起,则不同的排法种数有________.15.(2012课标全国高考,理15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为__________.16.甲、乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23,没有平局,若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于________.三、解答题(共6小题,共74分) 17.(12分)已知n的展开式中,前三项的系数成等差数列,求展开式中所有的有理项.。
【成才之路】2021-2021学年高中数学 条件概率同步测试 新人教A 版选修2-3一、选择题11.已知P (B |A )=13,P (A )=25,那么P (AB )等于( )A .56B .910C .215D .115[答案] C[解析] P (AB )=P (B |A )·P (A )=13×25=215,故答案选C.2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )A .35B .25C .110D .59[答案] D[解析] 设第一次摸到的是红球为事件A ,那么P (A )=610=35,设第二次摸得红球为事件B ,那么P (AB )=6×510×9=13,故在第一次摸得红球的条件下第二次也摸得红球的概率为P (B |A )=P AB P A =59,选D. 3.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ) A .14B .13C .12D .35[答案] B[解析] 抛掷红、黄两颗骰子共有6×6=36个大体事件,其中红色骰子的点数为4或6的有12个大体事件,两颗骰子点数之积包括4×6,6×4,6×5,6×6共4个大体事件.因此其概率为4361236=13.4.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,假设它不是红球,那么它是绿球的概率是( )A .56B .34C .23D .13[答案] C[解析] 在已知掏出的小球不是红球的条件下,问题相当于从5黄10绿共15个小球中任取一个,求它是绿球的概率,∴P =1015=23.5.依照历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.那么在吹东风的条件下下雨的概率为( )A .911B .811C .25D .89[答案] D[解析] 设事件A 表示“该地域四月份下雨”,B 表示“四月份吹东风”,那么P (A )=1130,P (B )=930,P (AB )=830,从而吹东风的条件下下雨的概率为P (A |B )=P ABP B =830930=89. 6.一个口袋中装有2个白球和3个黑球,那么先摸出一个白球后放回,再摸出一个白球的概率是( ) A .23B .14C .25D .15[答案] C[解析] 设A i 表示第i 次(i =一、2)取到白球的事件,因为P (A 1)=25,P (A 1A 2)=25×25=425,在放回取球的情形P (A 2|A 1)=42525=25.二、填空题7.甲、乙两地都处于长江下游,依照历史记载,明白甲、乙两地一年中雨天占的比例别离为20%与18%,两地同时下雨的比例为12%.(1)乙地为雨天时,甲地也为雨天的概率为________. (2)甲地为雨天时,乙地也为雨天的概率为________. [答案] (1)23(2)0.6[解析] 设A =“甲地为雨天”,B =“乙地为雨天”,那么P (A )=20%=0.2,P (B )=18%=0.18,P (AB )=12%=0.12.(1)P (A |B )=P AB P B =0.120.18=23. (2)P (B |A )=P AB P A=0.120.2=0.6. 8.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,那么第2次抽出正品的概率为________.[答案]9599[解析] 设“第一次抽到次品”为事件A ,“第二次抽到正品”为事件B ,那么P (A )=5100=120,P (AB )=C 15C 195A 2100=19396,因此P (B |A )=P ABPA =9599. 9.一个家庭中有两个小孩.假定生男、生女是等可能的,已知那个家庭有一个是女孩,那么这时另一个小孩是男孩的概率是________.[答案]23[解析] 设A =“其中一个是女孩”,B =“其中一个是男孩”,那么 P (A )=34,P (AB )=12,∴P (B |A )=P AB P A =23. 三、解答题10.一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每一次取后不放回.假设已知第一只是好的,求第二只也是好的概率.[解析] 令A i ={第i 只是好的},i =1,2.解法1:n (A 1)=C 16C 19,n (A 1A 2)=C 16C 15,故P (A 2|A 1)=n A 1A 2n A 1=C 16C 15C 16C 19=59. 解法2:因事件A 1已发生(已知),故咱们只研究事件A 2发生即可,在A 1发生的条件下,盒中仅剩9只晶体管,其中5只好的,因此P (A 2|A 1)=C 15C 19=59.一、选择题11.一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,若是从中任取两个球,那么恰好取到两个同色球的概率是( )A .15B .310C .25D .12[答案] C[解析] 从5个球中任取两个,有C 25=10种不同取法,其中两球同色的取法有C 23+1=4种, ∴P =410=25.12.(2021·哈师大附中高二期中)一盒中装有5个产品,其中有3个一等品,2个二等品,从中不放回地掏出产品,每次1个,取两次,已知第二次取得一等品的条件下,第一次取得的是二等品的概率是( )A .12B .13C .14D .23[答案] A[解析] 解法1:设A =“第一次取到二等品”,B =“第二次取得一等品”,那么AB =“第一次取到二等品且第二次取到一等品”,∴P (A |B )=P AB P B =2×35×42×3+3×25×4=12. 解法2:设一等品为a 、b 、c ,二等品为A 、B ,“第二次取到一等品”所含大体事件有(a ,b ),(a ,c ),(b ,a ),(b ,c ),(c ,a ),(c ,b ),(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c )共12个,其中第一次取到一等品的大体事件共有6个,∴所求概率为P =612=12. 13.从一、二、3、4、5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,那么P (B |A )=( )A .18B .14C .25D .12[答案] B[解析] ∵P (A )=C 22+C 23C 25=410,P (AB )=C 22C 25=110, ∴P (B |A )=P AB P A =14. 二、填空题14.前后两次抛掷同一枚骰子,将取得的点数别离记为a 、b .将a ,b,5别离作为三条线段的长,那么这三条线段能组成等腰三角形的概率是________.[答案]718[分析] 此题有两点要点:一是组成三角形,须知足较小的两个数的和大于第三个数;二是组成等腰三角形,须有两个数相等.[解析] 大体事件的总数为6×6=36. ∵三角形的一边长为5,∴当a =1时,b =5符合题意,有1种情形; 当a =2时,b =5符合题意,有1种情形;当a =3时,b =3或5时符合题意,即有2种情形; 当a =4时,b =4或5时符合题意,有2种情形; 当a =5时,b ∈{1,2,3,4,5,6}时符合题意,即有6种情形; 当a =6时,b =5或6时符合题意,即有2种情形. 故知足条件的不同情形共有14种,所求概率为 P =1436=718.15.从1~100这100个整数中,任取一数,已知掏出的一数是不大于50的数,那么它是2或3的倍数的概率为________.[答案] 3350[解析] 解法1:依照题意可知掏出的一个数是不大于50的数,那么如此的数共有50个,其中是2或3的倍数的数共有33个,故所求概率为3350.解法2:设A =“掏出的球不大于50”,B =“掏出的数是2或3的倍数”,那么P (A )=50100=12,P (AB )=33100, ∴P (B |A )=P AB P A =3350. 三、解答题16.某校高三(1)班有学生40人,其中共青团员15人.全班平均分成4个小组,其中第一组有共青团员4人.从该班任选一个作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率. [解析] 设事件A 表示“选到第一组学生”, 事件B 表示“选到共青团员”. (1)由题意,P (A )=1040=14.(2)解法1:要求的是在事件B 发生的条件下,事件A 发生的条件概率P (A |B ).不难明白得,在事件B 发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P (A |B )=415.解法2:P (B )=1540=38,P (AB )=440=110,∴P (A |B )=P AB P B=415.17.抛掷两颗均匀骰子,已知点数不同,设两颗骰子点数之和为ξ,求ξ≤6的概率.[解析] 解法1:抛掷两颗骰子,其点数不同的所有可能结果共30种,其中点数之和ξ≤6的有(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1),(4,2),共11种,∴所求概率P =1130.解法2:设A =“抛掷两颗骰子,其点数不同”,B =“ξ≤6”,那么P (A )=3036=56,P (AB )=1136,∴P (B |A )=P AB P A =1130. 18.在某次考试中,要从20道题中随机地抽出6道题,假设考生至少能答对其中的4道题即可通过;假设至少能答对其中的5道题就取得优秀,已知某考生能答对其中的10道题,而且明白他在这次考试中已经通过,求他取得优秀成绩的概率.[解析] 设D 为“该考生在这次考试中通过”,那么事件D 包括事件A ={该考生6道题全答对},事件B ={该考生6道题中恰答对5道},事件C ={该考生6道题中恰答对4道}.设E ={该考生取得优秀},由古典概型的概率公式及加法公式可知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620,P (AD )=P (A ),P (BD )=P(B),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=P AP D+P BP D=C610C620C610+C510C110+C410C210C620+C510C110C620C610+C510C110+C410C210C620=1358.故所求的概率为1358.[点评] 解此类题时利用公式P(B∪C|A)=P(B|A)+P(C|A)可使求有些条件概率时更为简捷,但应注意B、C 互斥这一前提条件.。
选修2-3综合检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列四个命题:①线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱; ②残差平方和越小的模型,模型拟合的效果越好;③用相关指数R 2来刻画回归效果,R 2越小,说明模型的拟合效果越好;④在推断H :“X 与Y 有关系”的论述中,用三维柱形图,只要主对角线上两个柱形高度的比值与副对角线上的两个柱形高度的比值相差越大,H 成立的可能性就越大.其中真命题的个数是( ) A .1 B .2 C .3 D .4[答案] A[解析] ①r 有正负,应为|r |越大,相关性越强,②正确,③R 2越大,拟合效果越好,④应为高度积的差的绝对值越大,H 成立的可能性就越大,故选A.2.(2014·四川理,2)在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15 D .10 [答案] C[解析] x 3的系数就是(1+x )6中的第三项的系数,即C 26=15.3.甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A .827B .6481C .49D .89[答案] A[解析] 设甲胜为事件A ,则P (A )=23,P (A )=13,∵甲以3∶1的比分获胜,∴甲前三局比赛中胜2局,第四局胜,故所求概率为P =C 23·(23)2·13·23=827.4.随机变量ξ的概率分布规律为P (X =n )=an (n +1)(n =1、2、3、4),其中a 为常数,则P ⎝⎛⎭⎫94<X <134的值为( ) A .23B .34C .45D .516[答案] D[解析] 因为P (X =n )=a n (n +1)(n =1,2,3,4),所以a 2+a 6+a 12+a 20=1,所以a =54.因为P ⎝⎛⎭⎫94<X <134=P (X =2)+P (X =3)=54×16+54×112=516,故选D. 5.若随机变量ξ~N (-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率( )A .(2,4]B .(0,2]C .[-2,0)D .(-4,4][答案] C[解析] 此正态曲线关于直线x =-2对称,∴ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.6.有6张卡片分别标有1、2、3、4、5、6,将其排成3行2列,要求每一行的两张卡片上的数字之和均不等于7,则不同的排法种数是( )A .192B .384C .432D .448[答案] B[解析] 将1、2、3、4、5、6中数字之和等于7的两个数字分成一组,记A ={1,6},B ={2,5},C ={3,4}.依题意进行分步计数.第一步,排第一行的两个数字,先从A 、B 、C 三组中选取2组(有C 23种选法),再从每组中选取一个数(有C 12·C 12种选法),最后将这两个数排在第一行(有A 22种排法),故第一行的排法种数为C 23C 12C 12A 22=24种.第二步,排第2行,从A 、B 、C 中第一次未选到的那一组中选取1数(有C 12种选法),从第一次选取的两组中剩余的两数中选取一数(有C 12种选法),将此二数排在第二行(有A 22种排法),故第二行共有排法C 12C 12A 22=8种.第三步,将余下两数排在第三行,有A 22=2种排法, 由分步计数原理知,共有不同排法24×8×2=384种.7.变量X 与Y 相对应的一组数据为(10,1)、(11.3,2)、(11.8,3)、(12.5,4)、(13,5);变量U与V 相对应的一组数据为(10,5)、(11.3,4)、(11.8,3)、(12.5,2)、(13,1).r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( )A .r 2<r 1<0B .0<r 2<r 1C .r 2<0<r 1D .r 2=r 1[答案] C[解析] 画散点图,由散点图可知X 与Y 是正相关,则相关系数r 1>0,U 与V 是负相关,相关系数r 2<0,故选C.8.设随机变量X 服从二项分布X ~B (n ,p ),则(D (X ))2(E (X ))2等于( )A .p 2B .(1-p )2C .1-pD .以上都不对[答案] B[解析] 因为X ~B (n ,p ),(D (X ))2=[np (1-p )]2,(E (X ))2=(np )2,所以(D (X ))2(E (X ))2=[np (1-p )]2(np )2=(1-p )2.故选B.9.(2013·大庆实验中学高二期中)把15个相同的小球放入编号为1、2、3的三个不同盒子中,使盒子里的球的个数大于它的编号数,则不同的放法种数是( )A .56B .72C .28D .63[答案] C[解析] 先给1号盒子放入1球,2号盒子放入2球,3号盒子放入3球,再将剩余9个小球排成一列,之间形成8个空档,从中任意选取2个空档用插板隔开,依次对应放入1、2、3号盒子中,则不同放法种数为C 28=28种.10.通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:性别与读营养说明列联表A .99%的可能性B .99.75%的可能性C .99.5%的可能性D .97.5%的可能性[答案] C[解析] 由题意可知a =16,b =28,c =20,d =8,a +b =44,c +d =28,a +c =36,b+d =36,n =a +b +c +d =72,代入公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )得K 2=72×(16×8-28×20)244×28×36×36≈8.42,由于K 2≈8.42>7.879,我们就有99.5%的把握认为性别和读营养说明之间有关系,即性别和读营养说明之间有99.5%的可能是有关系的.11.假设每一架飞机的引擎在飞行中出现故障的概率为1-p ,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2个引擎飞机要2个引擎全部正常运行,飞机才可成功飞行.要使4个引擎飞机更安全,则p 的取值范围是( )A .⎝⎛⎭⎫23,1 B .⎝⎛⎭⎫13,1 C .⎝⎛⎭⎫0,23 D .⎝⎛⎭⎫0,13 [答案] B[解析] 4个引擎飞机成功飞行的概率为C 34p 3(1-p )+p 4,2个引擎飞机成功飞行的概率为p 2,要使C 34p 3(1-p )+p 4>p 2,必有13<p <1. 12.如图,用6种不同的颜色把图中A 、B 、C 、D 四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有( )A .400种B .460种C .480种D .496种[答案] C[解析] 涂A 有6种涂法,B 有5种,C 有4种,因为D 可与A 同色,故D 有4种,∴由分步乘法计数原理知,不同涂法有6×5×4×4=480种,故选C.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.随机变量X 的分布列如下表,且E (X )=1.1,则D (X )=________.[答案] 0.49[解析] p =1-⎝⎛⎭⎫15+310=12,E (X )=1.1=0×15+1×12+310x ,解得x =2,所以D (X )=15×(0-1.1)2+12×(1-1.1)2+310×(2-1.1)2=0.49.14.8名世界网球顶级选手在上海大师赛上分成两组,每组4人,分别进行单循环赛,每组决定前两名,再由每一组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第三、四名,大师赛共有________场比赛.[答案] 16[解析] 分四类:第一类,进行单循环赛要2C 24=2×4×32=12场;第二类,进行淘汰赛需要2场;第三类,角逐冠、亚军需要比赛1场;第四类,角逐第三、四名需要比赛1场,所以大师赛共有2C 24+2+1+1=16场比赛.15.设随机变量ξ~N (1,4),若P (ξ≥a +b )=P (ξ≤a -b ),则实数a 的值为________________.[答案] 1[解析] ∵P (ξ≥a +b )=P (ξ≤a -b ), ∴(a +b )+(a -b )2=1,∴a =1.16.(2014·山东青岛质检)平面内有10个点,其中5个点在一条直线上,此外再没有三点共线,则共可确定________________条直线;共可确定________个三角形.[答案] 36;110[解析] 设10个点分别为A 1、A 2、…、A 10,其中A 1、A 2、…、A 5共线,A i (i =1,2,…,5)与A 6、A 7、…、A 10分别确定5条直线,共25条;A 1、A 2、…、A 5确定1条; A 6、A 7、…、A 10确定C 25=10条, 故共可确定36条直线.在A 1、A 2、…、A 5中任取两点,在A 6、A 7、…、A 10中任取一点可构成C 25C 15=50个三角形;在A 1、A 2、…、A 5中任取一点,在A 7、A 7、…、A 10中任取两点可构成C 15C 25=50个三角形;在A 6、A 7、…、A 10中任取3点构成C 35=10个三角形,故共可确定50+50+10=110个三角形.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)8人围圆桌开会,其中正、副组长各1人,记录员1人. (1)若正、副组长相邻而坐,有多少种坐法? (2)若记录员坐于正、副组长之间,有多少种坐法?[解析] (1)正、副组长相邻而坐,可将此2人当作1人看,即7人围一圆桌,有(7-1)!=6!种坐法,又因为正、副组长2人可换位,有2!种坐法.故所求坐法为(7-1)!×2!=1440种.(2)记录员坐在正、副组长中间,可将此3人视作1人,即6人围一圆桌,有(6-1)!=5!种坐法,又因为正、副组长2人可以换位,有2!种坐法,故所求坐法为5!×2!=240种.18.(本题满分12分)已知(x -12x)n 的展开式中,前三项系数的绝对值依次成等差数列.(1)求展开式中的常数项; (2)求展开式中所有整式项.[解析] (1)T r +1=C r n ·(x )n -r ·(12x )r ·(-1)r , ∴前三项系数的绝对值分别为C 0n ,12C 1n ,14C 2n , 由题意知C 1n =C 0n +14C 2n , ∴n =1+18n (n -1),n ∈N *,解得n =8或n =1(舍去), ∴T k +1=C k 8·(x )8-k ·(-12x)k =C k 8·(-12)k ·x 4-k,0≤k ≤8, 令4-k =0得k =4,∴展开式中的常数项为T 5=C 48(-12)4=358. (2)要使T k +1为整式项,需4-k 为非负数,且0≤k ≤8,∴k =0,1,2,3,4. ∴展开式中的整式项为:x 4,-4x 3,7x 2,-7x ,358.19.(本题满分12分)(2013·湖北理,20)假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502)的随机变量,记一天中从甲地去乙地的旅客人数不超过900的概率为p 0.(1)求p 0的值;(参考数据:若X ~N (μ,σ2),有 P (μ-σ<X ≤μ+σ)=0.6826, P (μ-2σ<X ≤μ+2σ)=0.9544,P (μ-3σ<X ≤μ+3σ)=0.9974.)(2)某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天要以不小于p 0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?[解析] (1)由于随机变量X 服从正态分布N (800,502),故有μ=800,σ=50, P (700<X ≤900)=0.9544. 由正态分布的对称性,可得p 0=P (X ≤900)=P (X ≤800)+P (800<X ≤900) =12+12P (700<X ≤900)=0.9772. (2)设A 型、B 型车辆的数量分别为x 、y 辆,则相应的营运成本为1600x +2400y 依题意,x 、y 还需满足x +y ≤21,y ≤x +7,P (X ≤36x +60y )≥p 0由(1)知,p 0=P (X ≤900),故P (X ≤36x +60y )≥p 0等价于36x +60y ≥900.于是问题等价于求满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .且使目标函数z =1600x +2400y 达到最小的x ,y .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1600x +2400y 经过可行域的点P 时,直线z =1600x +2400y 在y 轴上截距z2400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆.20.(本题满分12分)(2014·沈阳市质检)为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.9 8 7 7 6 6 5 7 8 9 8 8 7 75(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.(参考公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ))[解析] (1)甲班成绩为87分的同学有2个,其他不低于80分的同学有3个“从甲班数学成绩不低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有C 25=10个,“抽到至少有一个87分的同学”所组成的基本事件有C 13C 12+C 22=7个,所以P =710. (2)K 2=40×(6×6-14×14)20×20×20×20=6.4>5.024,因此,我们有97.5%的把握认为成绩优秀与教学方式有关.21.(本题满分12分)(2013·福建理,16)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?[解析] (1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X ≤3”的事件为A ,则事件A 包含有“X =0”,“X =2”,“X =3”三个两两互斥的事件, 因为P (X =0)=(1-23)×(1-25)=15,P (X =2)=23×(1-25)=25,P (X =3)=(1-23)×25=215,所以P (A )=P (X =0)+P (X =2)+P (X =3)=1115,即这2人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X 1,都选择方案乙所获得的累计得分为X 2,则X 1、X 2的分布列如下:所以E (X 1)=0×19+2×49+4×49=83,E (X 2)=0×925+3×1225+6×425=125.因为E (X 1)>E (X 2),所以他们都选择方案甲进行投资时,累计得分的数学期望较大.22.(本题满分14分)电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?(2)方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望E (X )和方差D (X ).附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).[分析] (1)育迷人数25人,即可完成2×2列联表,再求出K 2即可.(2)由(1)知体育迷有25人,则被抽到的概率为14,从观众中随机抽出3名是3次独立重复试验,X 服从二项分布,则可以求出分布列,期望,方差.[解析] (1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:将2×2K 2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2=100×(30×10-45×15)275×25×45×55=10033≈3.030. 因为3.030<3.841,所以我们没有充分理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率14.由题意知X ~B (3,14),从而X 的分布列为E (X )=np =3×14=34.D (X )=np (1-p )=3×14×34=916.1.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值是( )A .1B .-1C .0D .2[答案] A[解析] 令x =1,得a 0+a 1+…+a 4=(2+3)4, 令x =-1,a 0-a 1+a 2-a 3+a 4=(-2+3)4.所以,(a 0+a 2+a 4)2-(a 1+a 3)2=(2+3)4(-2+3)4=1.2.一袋中有5个白球、3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( )A .C 1012⎝⎛⎭⎫3810⎝⎛⎭⎫582B .C 912⎝⎛⎭⎫389⎝⎛⎭⎫58238 C .C 911⎝⎛⎭⎫589⎝⎛⎭⎫382D .C 911⎝⎛⎭⎫3810⎝⎛⎭⎫582[答案] D[解析] “X =12”表示第12次取到的球为红球,前11次中有9次取到红球,2次取到白球,∴P (X =12)=C 911(38)9·(58)2·38 =C 911(38)10·(58)2,故选D.3.如图,将1、2、3填入3×3的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有()A.6种C.24种D.48种[答案] B[解析]第一步,将1、2、3排在第一行,共A33=6种排法,对于每一种排法,第二行,都对应2种排法,第三行,有唯一一种排法,∴共有12种.4.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中抽出500件,量其内径尺寸的结果如下表:甲厂(2)由于以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.附:K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d),[解析] (1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%; 乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%.(2)K 2=1000×(360×180-320×140)500×500×680×320≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”.5.某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是13,每次测试通过与否互相独立.规定:若前4次都没有通过测试,则第5次不能参加测试.(1)求该学生考上大学的概率.(2)如果考上大学或参加完5次测试就结束,记该生参加测试的次数为ξ,求ξ的分布列及ξ的数学期望.[解析] (1)记“该学生考上大学”为事件A ,其对立事件为A ,则 P (A )=C 14(13)(23)3(23)+(23)4=64243+1681=112243. ∴P (A )=1-P (A )=1-112243=131243.(2)该生参加测试次数ξ的可能取值为2、3、4、5. P (ξ=2)=(13)2=19,P (ξ=3)=C 12·13·23·13=427, P (ξ=4)=C 13·13·(23)2·13+(23)4=427+1681=2881, P (ξ=5)=C 14·13·(23)3=3281. 故ξ的分布列为E (ξ)=2×19+3×427+4×2881+5×3281=32681.。