第11章 平面直角坐标系
- 格式:doc
- 大小:160.58 KB
- 文档页数:3
11.2图形在坐标系中的平移知识要点基础练知识点1点在坐标系中的平移1.将点A(1,-1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为(A)A.(-2,1)B.(-2,-1)C.(2,1)D.(2,-1)2.通过平移把点A(2,-3)移到点A'(4,-2),按同样的平移方式可将点B(-3,1)移到点B',则点B'的坐标是(-1,2).知识点2图形在坐标系中的平移3.如图所示,在平面直角坐标系中,点A,B,C的坐标分别为(-1,3),(-4,1),(-2,1),将△ABC 沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是(A)A.A1(4,4),C1(3,2)B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3)D.A1(3,4),C1(2,2)4.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1).将线段AB平移后得到线段A'B',若点A'的坐标为(-2,2),则点B'的坐标为(-5,4).知识点3图形的平移与坐标变化的互逆关系5.在平面直角坐标系中,将三角形各点的横坐标都减去3,纵坐标保持不变,所得图形与原图形相比(B)A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位6.如果将平面直角坐标系中的点P(a-3,b+2)平移到点(a,b)的位置,那么下列平移方法中正确的是(C)A.向左平移3个单位长度,再向上平移2个单位长度B.向下平移3个单位长度,再向右平移2个单位长度C.向右平移3个单位长度,再向下平移2个单位长度D.向上平移3个单位长度,再向左平移2个单位长度综合能力提升练7.在平面直角坐标系中,将点P(-2.5,3.5)向右平移4个单位长度,再向下平移6个单位长度后,得到的点位于(D)A.第一象限B.第二象限C.第三象限D.第四象限【变式拓展】在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是(D)A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)8.(青岛中考)如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A'B'上的对应点P'的坐标为(A)A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)9.将点P(-3,y)先向下平移3个单位长度,再向左平移2个单位长度后得到点Q(x,-1),则xy= -10.10.如图,三角形OAB的顶点B的坐标为(4,0),把三角形OAB沿x轴向右平移得到三角形CDE,如果BC=1,那么OE的长为7.11.写出下列各点平移后的点的坐标.(1)将点A(-3,2)向右平移3个单位;(2)将点B(1,-2)向左平移3个单位;(3)将点C(4,7)向上平移2个单位;(4)将点D(-1,2)向下平移1个单位;(5)将点E(2,-3)先向右平移1个单位,再向下平移1个单位.解:(1)(0,2).(2)(-2,-2).(3)(4,9).(4)(-1,1).(5)(3,-4).12.一个三角形ABC的三个顶点坐标分别为A(0,0),B(3,0),C(2,3).(1)把三角形ABC向右平移3个单位,再向下平移2个单位,得到三角形A'B'C',写出点A',B',C'的坐标.(2)若三角形A″B″C″三个顶点坐标分别是A″(-2,-3),B″(1,-3),C″(0,0),则三角形A″B″C″是由三角形ABC经过怎样的平移得到的?解:(1)A'(3,-2),B'(6,-2),C'(5,1).(2)将三角形ABC向左平移2个单位,再向下平移3个单位,得到三角形A″B″C″.13.在平面直角坐标系内,已知点A(3,0),B(-5,3),将点A向左平移6个单位到达C点,将点B 向下平移6个单位到达D点.(1)写出C点、D点的坐标:C(-3,0),D(-5,-3);(2)把这些点按A-B-C-D-A顺次连接起来,求所得图形的面积.解:(2)如图,S四边形ABCD=S△ABC+S△ACD=×3×6+×3×6=18.14.如图方格纸中的每个小方格都是边长为1个单位的正方形,以O为坐标原点建立平面直角坐标系,在坐标系中,将坐标是(0,4),(1,0),(3,0),(4,4),(2,4),(0,4)的点用线段依次连接起来形成一个封闭图形.(1)在所给的坐标系中画出这个图形;(2)图形中哪些点的坐标在坐标轴上,它们的坐标有什么特点;(3)写出图形中和坐标轴平行的线段;(4)求出此图形的面积.解:(1)如图.(2)点A (0,4),B (1,0),C (3,0)在坐标轴上,在y 轴上点的横坐标为0,在x 轴上点的纵坐标为0.(3)线段AE ,DE ,AD 与x 轴平行.(4)此图形的面积=×(2+4)×4=12.拓展探究突破练15.如图,在平面直角坐标系中,长方形ABCD 的边BC ∥x 轴,如果A 点坐标是(-1,2),C 点坐标是(3,-2).(1)直接写出B 点和D 点的坐标: B (-1,-2) ; D (3,2) .(2)将这个长方形先向右平移1个单位长度,再向下平移个单位长度,得到长方形A 1B 1C 1D 1,请你写出平移后四个顶点的坐标.(3)如果Q 点以每秒个单位长度的速度在长方形ABCD 的边上从A 点出发到C 点停止,沿着A →D →C 的路径运动,那么当Q 点的运动时间分别是1秒、4秒时,三角形BCQ 的面积各是多少?请你分别求出来.解:(2)A 1(0,),B 1(0,-3),C 1(4,-3),D 1(4,).(3)当运动时间是1秒时,三角形BCQ 的面积=×4×4=8,当运动时间是4秒时,三角形BCQ 的面积=×4×(4+4-4)=8.一分爸的白发不是老李娟①父亲病了。
第十一章平面直角坐标系11.1平面内点的坐标第1课时平面直角坐标系◇教学目标◇【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念;2.理解坐标平面内的点与有序实数对的一一对应关系;3.能在方格纸中建立平面直角坐标系来描述点的位置.【过程与方法】1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识.【情感、态度与价值观】让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.◇教学重难点◇【教学重点】理解平面直角坐标系的有关知识;在给定的平面直角坐标系中,会根据点的位置写出它的坐标.【教学难点】坐标轴上的数字与坐标系中的坐标之间的关系.◇教学过程◇一、情境导入假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(如图),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?二、合作探究1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.在了解有关平面直角坐标系的知识后,再返回刚才讨论的问题.结论:如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,则“碑林”的位置是(3,1),“大成殿”的位置是(-2,-2).问题:在(3)的条件下,你能把其他景点的位置表示出来吗?结论:能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,-5),科技大学的位置是(-5,-7).2.例题讲解典例写出图中多边形ABCDEF各顶点的坐标.此图中各顶点的坐标是否永远不变?你能举个例子吗?[解析]多边形ABCDEF各顶点的坐标分别为A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,如图,则六个顶点的坐标分别为A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).再思考这个结论是否是永恒的.结论:不是.还能再改变坐标轴的位置,得出不同的坐标.继续进行坐标轴的变换,总结一下共有多少种不同的变换方式.3.想一想在上例中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段测定位置有什么特点?(3)坐标轴上点的坐标有什么特点?【归纳总结】(1)坐标轴上的点的坐标中至少有一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.(2)x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限.(3)各个象限内的点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).变式训练如图,确定点A,B,C,D,E,F,G的坐标.[解析]点A(-1,-1),点B(0,-3),点C(2,-5),点D(4,-1),点E(3,2),点F(-2,3),点G(2,-2).三、板书设计平面直角坐标系1.平面直角坐标系:横轴、纵轴、横坐标、纵坐标、原点.2.象限的划分.◇教学反思◇学生在实际生活中经常遇到物体位置的问题,可能想不到这些问题与数学的联系,老师在这节课上应引导学生建立平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力,增强学生学习数学的兴趣.。
第11章平面直角坐标系——知识点归纳1.平面直角坐标系的定义:平面内画两条互相垂直并且有公共原点的数轴组成平面直角坐标系。
水平的数轴为x轴,习惯上取向右为正方向;竖直的数轴为y轴,取向上为正方向;它们的公共原点O为直角坐标系的原点。
两坐标轴把平面分成四个象限,坐标轴上的点不属于任何象限。
注意:同一平面、互相垂直、公共原点、数轴。
2.点的坐标:坐标平面内的点可以用一对有序实数对表示,这个有序实数对叫坐标。
表示方法为(a ,b)。
a是点对应 x 轴上的数值,表示点的横坐标;b是点对应 y 轴上的数值,表示点的纵坐标。
3.坐标系内点的坐标特点:练习1、下列说法正确的是()A平面内,两条互相垂直的直线构成数轴 B、坐标原点不属于任何象限。
C.x轴上点必是纵坐标为0,横坐标不为0 D、坐标为(3, 4)与(4,3)表示同一个点。
2、判断题(1)坐标平面上的点与全体实数一一对应()(2)横坐标为0的点在轴上()(3)纵坐标小于0的点一定在轴下方()(4)若直线轴,则上的点横坐标一定相同()(5)若,则点P ()在第二或第三象限()(6)若,则点P ()在轴或第一、三象限()3、已知坐标平面内点M(a,b)在第二象限,那么点N(b, -a)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4、在平面直角坐标系中,点(-1,m2+1)一定在()A、第一象限B、第二象限C、第三象限D、第四象限5、点E与点F的纵坐标相同,横坐标不同,则直线EF与y轴的关系是()A.相交 B.垂直 C.平行 D.以上都不正确6、若点A(m,n),点B(n,m)表示同一点,则这一点一定在( )yA第二、四象限的角平分线上 B 第一、三象限的角平分线上C平行于X轴的直线上 D平行于Y轴的直线上7、点P(3a-9,a+1)在第二象限,则a的取值范围为___________.8、如果点M (3a-9,1-a )是第三象限的整数点,则M 的坐标为4、平面直角坐标系中的距离 (1)点到坐标轴的距离点P (b a ,)到x 轴的距离= b ,点P (b a ,)到y 轴的距离= a (2)若P (a ,b ),Q (a ,n ),则PQ=(n -b ), 若P (a ,b ),Q(m ,b ),则PQ=( m -a ),练1、点E (a,b )到x 轴的距离是4,到y 轴距离是3,则有( )A .a=3, b=4 B .a=±3,b=±4 C .a=4, b=3 D .a=±4,b=±3 2、点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是3、5,则坐标是 .已知点M(2m+1,3m-5)到x 轴的距离是它到y 轴距离的2倍,则m= 。
沪科版八年级上册数学第11章平面直角坐标系含答案一、单选题(共15题,共计45分)1、如图,菱形ABCD中,AB∥y轴,且B(﹣10,1)、C(2,6),则点A的坐标为()A.(﹣10,12)B.(﹣10,13)C.(﹣10,14)D.(2,12)2、如图,在平面直角坐标系中,四边形OABC是正方形,点A的坐标是(4,0),P为边AB上一点,∠CPB=60°,沿CP折叠正方形OABC,折叠后,点B 落在平面内的点B'处,则点B'的坐标为()A.(2,)B.(,)C.(2,)D.(,)3、若xy=0,则点P(x,y)一定在( )A.x轴上B.y轴上C.坐标轴上D.原点4、下列几个汽车的车标图案中,可以看做是由“基本图案”经过平移得到的是()A. B. C. D.5、在平面直角坐标系中,将三角形各点的横坐标都减去3,纵坐标保持不变,所得图形与原图形相比()A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位6、如图,在的长方形网格中,动点从出发,沿箭头所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点第2020次碰到矩形的边时,点的坐标为()A. B. C. D.7、如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75º方向处B.在5km处C.在南偏东15º方向5km处 D.在南偏东75º方向5km处8、点P(﹣3,5)关于x轴的对称点P′的坐标是()A.(3,5)B.(5,﹣3)C.(3,﹣5)D.(﹣3,﹣5)9、已知菱形在平面直角坐标系的位置如图所示,顶点,,点是对角线上的一个动点,,当最短时,点的坐标为()A. B. C. D.10、以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限11、如图,如果★的坐标是(6,3),◆的坐标是(4,7),那么⊙的坐标是( )A.(7,4)B.(5,7)C.(8,4)D.(8,5)12、如图,在平而直角坐标系中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的项点C、D在第一象限,顶点D在反比例函数y=(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是()A.2B.3C.4.D.513、已知,如图,E(-4,2),F(-1,-1)以O为位似中心,按比例尺1:2把△EFO缩小,点E的对应点的坐标()A.(-2,1)B.(2,-1)C.(2,-1)或(-2,1)D.(8,-4)或(-8,4)14、点P(m,1)在第二象限,则点Q(m,0)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上15、在平面直角坐标系中,一矩形上各点的纵坐标不变,横坐标变为原来的,则该矩形发生的变化为()A.向左平移了个单位长度B.向下平移了个单位长度C.横向压缩为原来的一半D.纵向压缩为原来的一半二、填空题(共10题,共计30分)16、已知点P(4,﹣3),则点P到y轴的距离为________17、如果用(3,19)表示电影院的座位号是3排19号,那么(23,1)表示________;10排15号可表示为________.18、如图所示平面直角坐标系中,四边形ABCD是边长为1的正方形,以A为圆心,AC为半径画圆交x轴负半轴于点P,则点P的坐标为________.19、已知点A(1,-2),若A、B两点关于x轴对称,则B点的坐标为________20、已知点关于轴的对称点为,关于轴的对称点为,那么点的坐标是________.21、如果“2街5号”用坐标(2,5)表示,那么(3,1)表示________22、点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是________.23、在直角坐标系中,点的坐标为(3,),则点到轴的距离为________ .24、已知点A(3+2a,3a﹣5),点A到两坐标轴的距离相等,点A的坐标为________.25、经过点Q (2,﹣3)且平行y轴的直线可以表示为直线________.三、解答题(共5题,共计25分)26、如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2.(1)求点D的坐标;(2)求经过O、D、B三点的抛物线的函数关系式.27、在平面直角坐标系中,已知A(0,a),B(b,0)(a>0,b<0),点P 为△ABO的角平分线的交点.(1)连接OP,a=4,b=﹣3,则OP=?;(直接写出答案)(2)如图1,连接OP,若a=﹣b,求证:OP+OB=AB;(3)如图2,过点作PM⊥PA交x轴于M,若a2+b2=36,求AO﹣OM的最大值.28、如图,在平面直角坐标系中,点A在y轴上,点B在x轴上,∠OAB=30°.(Ⅰ)若点C在y轴上,且△ABC为以AB为腰的等腰三角形,求∠BCA的度数;(Ⅱ)若B(1,0),沿AB将△ABO翻折至△ABD.请根据题意补全图形,并求点D的横坐标.29、如图,在直角坐标系中,四边形ABCD各个顶点的坐标分别是A(2,3)、B(5,2)、C(2,4)、D(2,2),求这个四边形的面积。
坐标系与曲线的极坐标方程1.在极坐标系中,直线l 的方程为ρsin θ=3,求点⎝ ⎛⎭⎪⎫2,π6到直线l 的距离.解 ∵直线l 的极坐标方程可化为y =3,点⎝ ⎛⎭⎪⎫2,π6化为直角坐标为(3,1)∴点⎝ ⎛⎭⎪⎫2,π6到直线l 的距离为2. 2.在极坐标系中,圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,求实数a 的值.解化为平面直角坐标系:圆:x 2-2x +y 2=0,即:(x -1)2+y 2=1. 直线:3x +4y +a =0. ∵直线和圆相切,∴|3+a |32+42=1, ∴a =2或a =-8.3.在极坐标系中,已知点O (0,0),P ⎝ ⎛⎭⎪⎫32,π4,求以OP 为直径的圆的极坐标方程.解 设点Q (ρ,θ)为以OP 为直径的圆上任意一点(不包括端点),在Rt △OQP 中,ρ=32cos ⎝ ⎛⎭⎪⎫θ-π4,故所求圆的极坐标方程为ρ=32cos ⎝ ⎛⎭⎪⎫θ-π4.4.从极点O 作直线与另一直线ρcos θ=4相交于点M ,在OM 上取一点P ,使|OM |·|OP |=12,求点P 的轨迹方程. 解 设动点P 的坐标为(ρ,θ),则M (ρ0,θ). ∵|OM |·|OP |=12.∵ρ0ρ=12.ρ0=12ρ. 又M 在直线ρcos θ=4上,∴12ρcos θ=4, ∴ρ=3cos θ.这就是点P 的轨迹方程.5.在极坐标系中,P 是曲线ρ=12sin θ上的动点,Q 是曲线ρ=12cos (θ-π6)上的动点,试求PQ 的最大值. 解∵ρ=12sin θ.∴ρ2=12ρsin θ化为直角坐标方程为x 2+y 2-12y =0, 即x 2+(y -6)2=36. 又∵ρ=12cos (θ-π6),∴ρ2=12ρ(cos θcos π6+sin θsin π6),∴有x 2+y 2-63x -6y =0, 即(x -33)2+(y -3)2=36,∴PQ max =6+6+(33)2+(-3)2=18.6.设过原点O 的直线与圆(x -1)2+y 2=1的一个交点为P ,点M 为线段OP 的中点,当点P 在圆上移动一周时,求点M 轨迹的极坐标方程,并说明它是什么曲线.解 圆(x -1)2+y 2=1的极坐标方程为 ρ=2cos θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2,设点P 的极坐标为(ρ1,θ1),点M 的极坐标为(ρ,θ),∵点M 为线段OP 的中点,∴ρ1=2ρ,θ1=θ,将ρ1=2ρ,θ1=θ代入圆的极坐标方程,得ρ=cos θ.∴点M 轨迹的极坐标方程为ρ=cos θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2,它表示原心在点⎝ ⎛⎭⎪⎫12,0,半径为12的圆.7.⊙O 1和⊙O 2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ. (1)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; (2)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程. 解 (1)ρ=4cos θ,两边同乘以ρ,得ρ2=4ρcos θ; ρ=-4sin θ,两边同乘以ρ,得ρ2=-4ρsin θ. 由ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2, 得⊙O 1,⊙O 2的直角坐标方程分别为 x 2+y 2-4x =0和x 2+y 2+4y =0.(2)由⎩⎨⎧ x 2+y 2-4x =0,x 2+y 2+4y =0,①②①-②得-4x -4y =0,即x +y =0为所求直线方程. 8.求圆心为C ⎝ ⎛⎭⎪⎫3,π6,半径为3的圆的极坐标方程.解 如图,设圆上任一点为P (ρ,θ), 则OP =ρ,∠POA =θ-π6, OA =2×3=6,在Rt △OAP 中,OP =OA ×cos ∠POA ,∴ρ=6cos ⎝ ⎛⎭⎪⎫θ-π6.∴圆的极坐标方程为ρ=6cos ⎝ ⎛⎭⎪⎫θ-π6. 9.已知A 是曲线ρ=12sin θ上的动点,B 是曲线ρ=12cos ⎝ ⎛⎭⎪⎫θ-π6上的动点,试求线段AB 长的最大值.解 曲线ρ=12sin θ的直角坐标方程为x 2+(y -6)2=36, 其圆心为(0,6),半径为6;曲线ρ=12cos ⎝ ⎛⎭⎪⎫θ-π6的直角坐标方程为(x -33)2+(y -3)2=36,其圆心为(33,3),半径为6. 所以AB 长的最大值=(33-0)2+(3-6)2+6+6=18.10.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解 (1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22. 11.已知圆锥曲线C 的极坐标方程为ρ=8sin θ1+cos 2θ,以极点为坐标原点,极轴为x 轴的正半轴建立直角坐标系,求曲线C 的直角坐标方程,并求焦点到准线的距离. 解 由ρ=8sin θ1+cos 2θ,得ρcos 2θ=4sin θ,ρ2cos 2θ=4ρsin θ.又ρcos θ=x ,ρsin θ=y ,故所求曲线的直角坐标方程是x 2=4y ,故焦点到准线的距离为2. 12.已知直线l 的参数方程:⎩⎨⎧x =t ,y =1+2t (t 为参数)和圆C 的极坐标方程:ρ=22·sin ⎝ ⎛⎭⎪⎫θ+π4.(1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)判断直线l 和圆C 的位置关系.解 (1)消去参数,得直线l 的普通方程为y =2x +1. ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4,即ρ=2(sin θ+cos θ),两边同乘以ρ,得ρ2=2(ρsin θ+ρcos θ).得⊙C 的直角坐标方程为(x -1)2+(x -1)2=2. (2)圆心C 到直线l 的距离d =|2-1+1|22+12=255<2, 所以直线l 和⊙C 相交.13.在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数). (1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π2,判断点P 与直线l的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 解(1)把极坐标系下的点P ⎝⎛⎭⎪⎫4,π2化为直角坐标,得P (0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上. (2)因为点Q 在曲线C 上,故可设点Q 坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos ⎝⎛⎭⎪⎫α+π6+42=2cos ⎝⎛⎭⎪⎫α+π6+22,由此得,当cos ⎝⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2.14.已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合.若直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4=3 2.(1)把直线l 的极坐标方程化为直角坐标方程;(2)已知P 为椭圆C :x 216+y 29=1上一点,求P 到直线l 的距离的最大值. 解 (1)直线l 的极坐标方程ρsin ⎝ ⎛⎭⎪⎫θ-π4=32,则22ρsin θ-22ρcos θ=32,即ρsin θ-ρcos θ=6,所以直线l 的直角坐标方程为x -y +6=0.(2)P 为椭圆C :x 216+y 29=1上一点,设P (4cos α,3sin α),其中α∈[0,2π),则P 到直线l 的距离 d =|4cos α-3sin α+6|2=|5cos (α+φ)+6|2,其中cos φ=45,所以当cos(α+φ)=1时,d 的最大值为112 2.。
沪科版八年级上册数学第十一章《平面直角坐标系》测试卷(含答案)第11章平面直角坐标系一、填空题(每小题3分,满分30分)1、在平面直角坐标系中,点M(2020,-2020)在()A 第一象限B 第二象限C 第三象限D 第四象限2、已知点P的坐标为(1,-2),则点P到x轴的距离是()A 1B 2C -1D -23、根据下列表述,能确定一个点位置的是()A 北偏东10°B 合肥市长江东路C 解放电影院6排D 东经116°、北纬12°4、已知点A(a-2,2a+7),点B的坐标为(1,5),直线AB//y轴,则a的值是()A 1B 3C -1D 55、若点A(m+2,2m-5)在y轴上,则点A的坐标是()A (0,-9)B (2.5,0)C (2.5,-9)D (-9,0)6、若点A(-3,-2)向右平移5个单位,得到点B,再把点B向上平移4个单位得到点C,则点C的坐标为()A (2,2)B (-2,-2)C (-3,2)D (3,2)7、若点P(a,b)在第二象限,则点Q(b+2,2-a)所在象限应该是()A 第一象限B 第二象限C 第三象限D 第四象限8、在平面直角坐标系中,已知A(-2,3)、B(2,1),将线段AB平移后,A点的坐标变为(-3,2),则点B的坐标变为()A (-1,2)B (1,0)C (-1,0)D (1,2)9、在平面直角坐标系中,到两坐标轴的距离都是3的点有()A 1个B 2个C 3个D 4个10、无论x为何值,P(2x-6,x-5)不可能在()A 第一象限B 第二象限C 第三象限D 第四象限二、填空题(每小题4分,满分20分)11、教室里,大明坐在第3排第5列,用(3,5)表示,小华坐在第6排第4列表示为12、如图表示的象棋盘上,若“士”的坐标是(-2,-2),“相”的坐标是(3,2),则“炮”的坐标是13、已知点P(x,y)位于第四象限,并且x≤y+4(x、y为整数),写出一个符合上述条件的点P的坐标14、已知点M(1-2t,t-5),若点M在x轴的下方,y轴的右侧,则t的取值范围是15、已知点A(0,1)、B(0,2),点C在x轴上,且S△ABC=2,则点C的坐标三、解答题(每小题10分,共50分)16、(10分)已知:点A(m-1,4m+6)在第二象限。
第11章达标检测卷(120分,90分钟)题号— 二 三 总分得分一、选择题(每题4分,共40分)1. (2015-金华)点P(4, 3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2. 如果点P(m+3, 2m+4)在y 轴上,那么点P 的坐标是( )A. (-2, 0)B. (0, -2)C. (1, 0)D. (0, 1)3. 在平面直角坐标系中,将三角形各点的纵坐标都减去一3,横坐标保持不变,所得 图形与原图形相比()A.向上平移了 3个单位B.向下平移了 3个单位C.向右平移了 3个单位D.向左平移了 3个单位4. 仲考•昭通)已知点P(2a-1, 1-a)在第一象限,则a 的取值范围在数轴上表示正确 的是()5. 三角形DEF 是由三角形ABC 平移得到的,点A(-l, 一4)的对应点为D(l, —1), 则点B(l, 1)的対应点E,点C(-l, 4)的对应点F 的坐标分别为()(2, 2), (3, 4) B. (3, 4), (1, 7)C.・(一2, 2), (1, 7)D. (3, 4), (2, -2)6. 如图,若在象棋棋盘上建立平面直角坐标•系,使“将”位于点(0, -1), “象”位 于点(2, -1),则“炮”位于点()A 0 0.5 13(0,1) A (3』)A(2t 0) ”(第7题)B\ (a, 2)D⑵7)5)O 丨⑷(0,0) 3(9,;)(第9 题)7如图,己知点A, B的坐标分别为(2, 0), (0, 1),若将线段AB平移至A】B】,贝0 a + b的值为()A. 2B. 3C. 4D. 58.已知正方形ABCD的边长为3,点A在原点,点B在x轴正半轴上,点D在y轴负半轴上,则点C的坐标是()A. (3, 3)B. (一3, 3)C. (3, —3)D.(―3, —3)9.如图,已知四边形ABCD的四个顶点的坐标分别为A(0, 0), B(9, 0), C(7, 5), D(2, 7),将四边形各顶点的横坐标都增加2,纵坐标都增加3,所得新图形的面积为()A. 40B. 42C. 44D. 4610.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位..... 以此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2吋,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A. (66, 34)B. (67, 33)C. (100, 33)D. (99, 34)二、填空题(每题5分,共20分)11.若电影票上“4排5号”记作(4, 5),则“5排4号”记作_______________ .12.(2015<东)如果点M(3, x)在第一象限,则x的取值范围是___________ .13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1, 0),安化县城所在地用坐标表示为(一3, -1),那么南县县城所在地用坐标表示为_____________ .14.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1, 1),第2次接着运动到点(2, 0),第3次接着运动到点(3, 2)……按这样的运动规律,经过第2 016次运动后,动点P的坐标是 ________________ .三、解答题(15〜17题每题6分,22题10分,其余每题8分,共60分)15・如图,试写出坐标平面内各点的坐标.16.(1)如果点A(2m, 3-n)在第二象限内,那么点n—4)在第几象限?⑵如果点M(3m+1, 4—m)在第四象限内,那么m的取值范围是多少?17.已知点M(3a-2, a+6).试分别根据下列条件,求出M点的坐标.⑴点M在x轴上;(2)点N(2, 5),且直线MN〃x轴;⑶点M到x轴、y轴的距离相等.18.李明设计的广告模板草图如图所示(单位:米),李明想通过电话征求陈伟的意见,假如你是李明,你将如何把这个图形告知陈伟呢?19.如图,一长方形住宅小区长400 m,宽300 m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50加为1个单位,建立平面直角坐标系.住宅小区内和附近有5处违章建筑,它们分别是A(3, 3.5), B(-2, 2), C(0, 3.5), D(-3, 2),玖一4, 4).在坐标系中标出这些违章建筑的位置,并说明哪些在小区内,哪些不•在小区内.20. 平面直角坐标系中的任意一点Po (xo ,yo )经过平移后的对应点为Pi (x 0 + 5, y 0+3),若将三角形AOB 作同样的平移,在如图所示的坐标系中画出平移后得到的三角形 A'O'B',并写出点A ,的坐标.<y1 1 T 厂 11 1 1r ~i I 1 1 _ _ 1 _ . J 1 1 11 1 1I 1 1 I I I 1 1 1 1 11 1 1I 1 1 i I l 1 1 ------ 1 L ■・ 1 1 ! : : 17 i i i i i 1 1 11 1 11 1 1 i i i i i i 1 L -. ::\0 :1 :: 1111r --1I ___1 1 1 1 1 1 i i i i i i ■" 1 1 .• J 1 1 • • r • "i" • r • ■ 1 1 1 ""T " "i" " 1 " * i i i 1 1 _1 1 1 11 1 1I1 I i i i • • r •• r • • 1 1 1 1. A. ""T * "I" ■ T ■ ■ l 1 1 A 1 .1(笫19题)(第20题)21・如图,已知四边形ABCD,则四边形ABCD的面积是多少?22.如图,长方形OABC中,0为平面直角坐标系的原点,A点的坐标为(4, 0), C点的坐标「为(0, 6),点B在第一象限内,点P从原点出发,以每秒2个单位的速度沿着O—A—B—C—O 的路线移动.(1)写出点B的坐标;(第21题)(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位时,求点P移动的时间.如C ------------ Bo\ A (第22 题)答案—、1^42.B点拨:y轴上点的横坐标为0,所以m+3=0,解得m=—3, 2m+4=—6+4 =一2,所以P(0, -2).3. 4[2a-l>0,4.C点拨:根据题意得:八解得0.5<a<l.[1—a>0,5. B6.A7.A8.C9.B点拨:将四边形各顶点的横坐标都增加2,纵坐标都增加3,所得新图形可以看成是由原四边形平移得到的,面积不会改变.所以只要求出四边形ABCD的面积即可.过点D作DE丄x 轴于E,过点C作CF丄x轴于F,则E(2, 0), F(7, 0),所以AE=2, EF= 5, BF=2, DE=7, CF=5.所以S 四边形ABCD=S三角形DAE+S梯形DEFC+S三角形CBF=*X2X7+*X(7 + 5)X5+*X2X5=7+30+5=42.10.C点拨:由题意得,每3步为一个循环组依次循环,且一个循环组内向右走3个单位,向上走1个单位,因为100-3 = 33……1,所以走完第100步,为第34个循环组的第1步,所处位置的横坐标为33X3+1 = 100,纵坐标为33X 1=33,所以棋子所处位置的坐标是(100, 33).故选C.本题考查了坐标确定位置,点的坐标的变化规律,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.在1至100这100个数中:(1)能被3整除的有33个,故向上走了33个单位,(2)被3除,余数为1的数有34个,故向右走了34个单位,(3)被3除,余数为2的数有33个,故向右走了66个单位,故一共向右走了34+66=100(个)单位,向上走了33个单位.二、11.(5, 4) 12.x>0 13.(2, 4)14.(2 016, 0)点拨:本题运用了从特殊到一般的思想.根据图中点P的坐标变化规律,可以看出:①点P的横坐标依次为1, 2, 3, 4,…,即点P的横坐标等于运动•次数,所以第2 016次运动后,点P的横坐标是2 016;②点P的纵坐标依次是1, 0, 2, 0, 1, 0, 2, 0,…,即每运动四次一个循环,因为2016-4=504,所以第2 016次运动后,点P 的纵坐标与第4次运动后的纵坐标相同.所以经过第2 016次运动后,点P的坐标为(2 016, 0).三、15•解:由题图可知:A(-5, 0), B(0, -3), C(5, -2), D(3, 2), E(0, 2), F(-3, 4).2m<0,16.解:(1)根据点A在第二象限可知解得m<0, n<3,则m—1<0, n~43—n>0,<0,所以点B在第三象限.[3m+l>0,(2)因为点M(3m+I, f)在第四象限,所以匸*°,解得心,所以m的取值范围是m>4.17.解:⑴因为点M[在x轴上,所以a+6=0,解得a=—6.当a=—6吋,3a—2 = 3X(-6)-2=-20,因此点M 的坐标为(-20, 0).「(2)因为直线MN〃x轴,所以点M与点N的纵坐标相等,所以a+6 = 5,解得a=-l. 当a= —l 时,3a—2 = 3X(—l)—2=—5,所以点M 的坐标为(一5, 5).(3)因为点M到x轴、y轴的距离相等,所以|3a—2| = |a+6|,所以3a—2=a+6或3a— 2+a+6=0,解得a=4 或a= —1.当a=4 时,3a—2=3X4—2=10, a+6=4+6=10,此时,点M 的坐标为(10, 10);当a=-l 时,3a-2=3X( — 1)一2=—5, a+6=-l+6=5, 此时,点M的坐标为(一5, 5).因此点M的坐标为(10, 10)或(一5, 5).18.解:把图形放到直角坐标系中,用点的坐标的形式「告诉陈伟即可.如,这个图形的各顶点的坐标是(0, 0), (0, 5), (3, 5), (3, 3), (7, 3), (7, 0).点拨:方法不唯一.19.解:如图,在小区内的违章建筑有B, D,不在小区内的违章建筑有A, C, E.y(第19题)20.解:根据点Po%, yo)经过平移后的对应点为Pi(x°+5, y°+3),可知三角形AOB 的平移规律为:向右平移了5个单位,向上平移了3个单位,如图所示:点A,的坐标是(2, 7).21.解:由题图可知,A(0, 4), B(3, 3), C(5, 0), D(—1, 0).过B点分别作x轴、y轴的垂线,垂足分别为F, E.则S四边形ABCD=S三弁WADO+S三和形ABE+S三角形BCF+S正方形OFBE=^X 1 X4+㊁X3X 1+㊁X3X2 + 3X3=15寺.C 1BP0 4 X(笫22题)22.解:⑴点B的坐标为(4, 6).(2)当点P移动了4秒时,点P的位置如图所示,此时点P的坐标为(4, 4).(3)设点P移动的时间为x秒,当点P在AB上时,由题意得,92x=4+5,解得x=2;当.点P在0C上时,由题意得,2x=2X(4+6)—5,解得9 J5所以,当点P到x轴的距离为5个单位时,点P移动了㊁秒或迈■秒•(第20题)第11章平面直角坐标系单元培优测试卷(考试时间:90分钟满分:100分)班级:_________ 姓名:_________________________一、填空题(本大题共10小题,,每小题3分,满分30分)1.在平而直角坐标屮,已知点A(a, b)在第二角限,则点3(/皿历在( ).A.第一象限B.第二象限C.第三彖限D.第四象限2.若点P (°, 67-2)在第四象限,则a的取值范围是( )A. ~2<a<0B. 0<a<2C. a>2D. a<03.已知直角坐标系内有一点M (G,b),..且aZ?二0,则点M的位置一定在( )A.原点上B.无轴上C・y轴上 D.坐标轴上4.根据下列表述,能确定位置的是( )A.体「育馆内第2排B.校园内的北大路C.东经118°,北纬68。
第11章 平面直角坐标系
一、选择题
1、在平面直角坐标系中,点()
1,12+-m 一定在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2、如果点A (a.b )在第三象限,则点B (-a+1,3b -5)关于原点的对称点是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3、点P (a ,b )在第二象限,则点Q(a-1,b+1)在( )
A. 第一象限
B. 第二象限
C. 第三象限
D.第四象限
4、若4,5==b a ,且点M (a ,b )在第二象限,则点M 的坐标是( )
A.(5,4)
B.(-5,4)
C.(-5,-4)
D.(5,-4)
5、若△DEF 是由△ABC 平移得到的,点A (-1,-4)的对应点为D (1,-1),则点B (1,1)的对应点E 、点C (-1,4)的对应点F 的坐标分别为( )
A.(2,2),(3,4)
B.(3,4),(1,7)
C.(-2,2),(1,7)
D.(3,4),(2,-2)
6、过A (4,-2)和B (-2,-2)两点的直线一定( )
A .垂直于x 轴
B .与Y 轴相交但不平于x 轴
B . 平行于x 轴 D .与x 轴、y 轴平行
7、已知点A ()b a 2,3在x 轴上方,y 轴的左边,则点A 到x 轴、y
轴的距离分别为( )
A.b a 2,3-
B.b a 2,3-
C.a b 3,2-
D.a b 3,2-
8、如图3所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上,则○炮位于点( )
A.(-1,1)
B.(-1,2)
C.(-2,1)
D.(-2,2)
9、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)(– 1、2)、(3,– 1),则第四个顶点的坐标为( )
A .(2,2)
B .(3,2)
C .(3,3)
D .(2,3) 图3相
帅炮
10、若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )
A .(3,0)
B .(3,0)或(–3,0)
C .(0,3)
D .(0,3)或(0,–3)
一、填空题
1、x 轴上的点的坐标的特点是 ,y 轴上的点的坐标的特点是 ;点M (a ,0)在 轴上。
2、点A (﹣1,2)关于y 轴的对称点坐标是 ;点A 关于原点的对称点的坐标是 ;点A 关于x 轴对称的点的坐标为 。
3、点P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是 。
4、已知AB ∥x 轴,A 点的坐标为(3,2),并且AB =5,则B 的坐标为 。
5、在平面直角坐标系内,有一条直线PQ 平行于y 轴,已知直线PQ 上有两个点,坐标分别为(-a ,-2)和(3,6),则 a 。
6、在Y 轴上且到点A (0,-3)的线段长度是4的点B 的坐标为_____________。
7、在坐标系内,点P (2,-2)和点Q (2,4)之间的距离等于 个单位长度。
线段PQ 的中点的坐标是________________。
8、已知P 点坐标为(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是_________________。
9、已知点A (-3+a ,2a+9)在第二象限的角平分线上,则a 的值是____________。
10、已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是________________。
三、耐心做一做
1、如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.
2、如图,描出A (– 3,– 2)、B (2,– 2)、C (– 2,1)、D (3,1)四个点,线段AB 、CD 有什么关系?顺次连接
A 、
B 、
C 、
D 四点组成的图形是什么图形? X
y 01-11-1
体育场
文化宫
医院
火车站
宾馆
市场超市
3、如图,四边形ABCD各个顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0).
(1)确定这个四边形的面积,你是怎么做的?
(2)如果把原来ABCD各个顶点纵坐标保持不变,横、纵坐标都增加2,所得的四边形面积又是多少?
4、如图,△AOB中,A、B两点的坐标分别为(-4,-6),(-6,-3),求△AOB的面积。
(提示:△AOB的面积可以看作一个梯形的面积减去一些小三角形的面积).
四、附加题
1、建立两个适当的平面直角坐标系,分别表示边长为8的正方形的顶点的坐标.
2、如图,已知A l(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、….则点A2007的坐标为________.
3、在直角坐标系中,已知点A(-5,0),点B(3,0),△ABC的
面积为12,试确定点C的坐标。