数学必修1北师大版 3.3指数函数3 课件.
- 格式:ppt
- 大小:708.00 KB
- 文档页数:15
第三章 指数函数第1节 正整数指数函数知识点1:正整数指数函数的概念函数y=a x (a>0,1≠a +∈N x )叫做正整数指数函数,其中x 是自变量,定义域是正整数集N +。
知识点2:正整数指数函数的图像特征及其单调性 1、正整数指数函数的图像是散点图;2、当1>a 时,在定义域上递增;当10<<a 时,在定义域上递减。
知识点3:指数型函数我们把形如xka y =(1,0≠>∈a a R x k ,、)的函数叫作指数型函数。
例:已知正整数指数函数f(x)的图像经过点(3,27). (1)求函数f(x)的解析式; (2)求f (5)的值;(3)函数f(x)有最值吗?如有,试求出;若无,请说明理由。
第2节 指数扩充及其运算性质 知识点1:分数指数幂1、定义:给定正实数a ,对于任意给定的整数m ,n (m ,n 互素),存在唯一的正实数b ,使得mna b =,我们把b 叫作a 的nm次幂,记作n ma b =。
2、意义知识点2:无理数指数幂无理数指数幂αa (a>0,α是无理数)是一个确定的实数。
知识点3:实数指数幂及其运算性质1、当a>0时,对任意的R ∈α,αa 都有意义,且是唯一确定的实数。
2、实数指数幂的运算性质:对任意实数m 、n ,当a>0,b>0时,nm nma a a +=•;()mn nma a =;()n n nb a ab =。
知识点4:根式及其分数指数幂的运算 1、指数幂运算的常用技巧:(1)有括号先算括号里的,无括号先进行指数运算; (2)负指数幂化为正指数幂的倒数;(3)底数是小数,要先化成分数;底数是带分数,要先化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质. 2、根式化简的步骤:(1)将根式化成分数指数幂的形式; (2)利用分数指数幂的运算性质求解. 3.根式的性质(其中n ∈N +,且n>1); (1)当n 为奇数时,a a n n =;(2)当n 为偶数时,⎩⎨⎧<-≥==0,0,||a a a a a a nn;(3)00=n ;(4)负数没有偶次方根。