2017年浙江省温州市中考数学试卷(含答案解析版)
- 格式:doc
- 大小:927.50 KB
- 文档页数:28
浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分。
每小题只有一个选项是正确的,不选,多选,错选,均不给分)1.(4分)(•温州)计算:(﹣2)×3的结果是()A.﹣6 B.﹣1 C.1D.6考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣2)×3=﹣2×3=﹣6.故选A.点评:本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.2.(4分)(•温州)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是()A.羽毛球B.乒乓球C.排球D.篮球考点:扇形统计图.分析:利用扇形图可得喜欢各类比赛的人数的百分比,选择同学们最喜欢的项目,即对应的扇形的圆心角最大的,由此即可求出答案.解答:解:喜欢乒乓篮球比赛的人所占的百分比最大,故该班最喜欢的球类项目是篮球.故选D.点评:本题考查的是扇形图的定义.在扇形统计图中,各部分占总体的百分比之和为1,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.3.(4分)(•温州)下列各图中,经过折叠能围成一个立方体的是()A.B.C.D.考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题.解答:解:A、可以折叠成一个正方体;B、是“凹”字格,故不能折叠成一个正方体;C、折叠后有两个面重合,缺少一个底面,所以也不能折叠成一个正方体;D、是“田”字格,故不能折叠成一个正方体.故选A.点评:本题考查了展开图折叠成几何体.注意只要有“田”、“凹”字格的展开图都不是正方体的表面展开图.4.(4分)(•温州)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11考点:三角形三边关系分析:看哪个选项中两条较小的边的和不大于最大的边即可.解答:解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为9﹣4<5<8+4,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选C.点评:本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.5.(4分)(•温州)若分式的值为0,则x的值是()A.x=3 B.x=0 C.x=﹣3 D.x=﹣4考点:分式的值为零的条件.分析:根据分式值为零的条件可得x﹣3=0,且x+4≠0,再解即可.解答:解:由题意得:x﹣3=0,且x+4≠0,解得:x=3,故选:A.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.6.(4分)(•温州)已知点P(1,﹣3)在反比例函数y=(k≠0)的图象上,则k的值是()A.3B.﹣3 C.D.﹣考点:反比例函数图象上点的坐标特征.分析:把点P(1,﹣3)代入反比例函数y=,求出k的值即可.解答:解:∵点P(1,﹣3)在反比例函数y=(k≠0)的图象上,∴﹣3=,解得k=﹣3.故选B.点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.7.(4分)(•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A.B.C.D.考点:垂径定理;勾股定理分析:根据垂径定理可得AC=BC=AB,在Rt△OBC中可求出OB.解答:解:∵OC⊥弦AB于点C,∴AC=BC=AB,在Rt△OBC中,OB==.故选B.点评:本题考查了垂径定理及勾股定理的知识,解答本题的关键是熟练掌握垂径定理的内容.8.(4分)(•温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是()A.B.C.D.考点:锐角三角函数的定义分析:利用正弦函数的定义即可直接求解.解答:解:sinA==.故选C.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.9.(4分)(•温州)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A.4.5 B.8C.10.5 D.14考点:平行线分线段成比例.分析:根据平行线分线段成比例定理列式进行计算即可得解.解答:解:∵DE∥BC,∴=,即=,解得EC=8.故选B.点评:本题考查了平行线分线段成比例定理,找准对应关系是解题的关键.10.(4分)(•温州)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()A.B.C.D.考点:圆的认识分析:首先根据AB、AC的长求得S1+S3和S2+S4的值,然后两值相减即可求得结论.解答:解:∵AB=4,AC=2,∴S1+S3=2π,S2+S4=,∵S1﹣S2=,∴(S1+S3)﹣(S2+S4)=(S1﹣S2)+(S3﹣S4)=π∴S3﹣S4=π,故选D.点评:本题考查了圆的认识,解题的关键是正确的表示出S1+S3和S2+S4的值.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(•温州)因式分解:m2﹣5m=m(m﹣5).考点:因式分解-提公因式法.分析:先确定公因式m,然后提取分解.解答:解:m2﹣5m=m(m﹣5).故答案为:m(m﹣5).点评:此题考查了提公因式法分解因式,关键是确定公因式m.12.(5分)(•温州)在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是8分.考点:算术平均数.分析:根据算术平均数的计算公式,先求出这5个数的和,再除以5即可.解答:解:根据题意得:(8.2+8.3+7.8+7.7+8.0)÷5=8(分);故答案为:8.点评:此题考查了算术平均数,用到的知识点是算术平均数的计算公式,熟记公式是解决本题的关键.13.(5分)(•温州)如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,则∠3=110度.考点:平行线的性质;三角形内角和定理.分根据两直线平行,内错角相等求出∠4,再根据对顶角相等解答.析:解答:解:∵a∥b,∠1=40°,∴∠4=∠1=40°,∴∠3=∠2+∠4=70°+40°=110°.故答案为:110.点评:本题考查了平行线的性质,对顶角相等的性质,是基础题,熟记性质是解题的关键.14.(5分)(•温州)方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.考点:解一元二次方程-配方法.分析:首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.解答:解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.点评:此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.15.(5分)(•温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是(1,3).考点:一次函数图象上点的坐标特征;坐标与图形变化-对称.分根据轴对称的性质可得OB=OB′,然后求出AB′,再根据直线y=x+b可得析:AB′=B′C′,然后写出点C′的坐标即可.解答:解:∵A(﹣2,0),B(﹣1,0),∴AO=2,OB=1,∵△A′B′C′和△ABC关于y轴对称,∴OB=OB′=1,∴AB′=AO+OB′=2+1=3,∵直线y=x+b经过点A,C′,∴AB′=B′C′=3,∴点C′的坐标为(1,3).故答案为:(1,3).点评:本题考查了一次函数图象上点的坐标特征,坐标与图形变化﹣对称,根据直线解析式的k值等于1得到AB′=B′C′是解本题的关键.16.(5分)(•温州)一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm),从点N沿折线NF﹣FM(NF∥BC,FM∥AB)切割,如图1所示.图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不记损耗),则CN,AM的长分别是18cm、31cm.考点:圆的综合题分析:如图,延长OK交线段AB于点M′,延长PQ交BC于点G,交FN于点N′,设圆孔半径为r.在Rt△KBG中,根据勾股定理,得r=16(cm).根据题意知,圆心O在矩形EFGH的对角线上,则KN′=AB=42cm,OM′=KM′+r=CB=65cm.则根据图中相关线段间的和差关系求得CN=QG﹣QN′=44﹣26=18(cm),AM=BC﹣PD﹣KM′=130﹣50﹣49=31(cm).解答:解:如图,延长OK交线段AB于点M′,延长PQ交BC于点G,交FN于点N′.设圆孔半径为r.在Rt△KBG中,根据勾股定理,得BG2+KG2=BK2,即(130﹣50)2+(44+r)2=1002,解得,r=16(cm).根据题意知,圆心O在矩形EFGH的对角线上,则KN′=AB=42cm,OM′=KM′+r=CB=65cm.∴QN′=KN′﹣KQ=42﹣16=26(cm),KM′=49(cm),∴CN=QG﹣QN′=44﹣26=18(cm),∴AM=BC﹣PD﹣KM′=130﹣50﹣49=31(cm),综上所述,CN,AM的长分别是18cm、31cm.故填:18cm、31cm.点评:本题以改造矩形桌面为载体,让学生在问题解决过程中,考查了矩形、直角三角形及圆等相关知识,积累了将实际问题转化为数学问题经验,渗透了图形变换思想,体现了数学思想方法在现实问题中的应用价值.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明,演算步骤或证明过程)17.(10分)(•温州)(1)计算:+()+()0(2)化简:(1+a)(1﹣a)+a(a﹣3)考点:整式的混合运算;实数的运算;零指数幂.专题:计算题.分析:(1)原式第一项化为最简二次根式,第二项去括号,最后一项利用零指数幂法则计算,合并即可得到结果;(2)原式第一项利用平方差公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.解答:解:(1)原式=2+﹣1+1=3;(2)原式=1﹣a2+a2﹣3a=1﹣3a.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.18.(8分)(•温州)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.考点:全等三角形的判定与性质;角平分线的性质;含30度角的直角三角形.分析:(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可;(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.解(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,答:∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.点评:本题考查了全等三角形的判定,角平分线性质,含30度角的直角三角形性质的应用,注意:角平分线上的点到角两边的距离相等.19.(8分)(•温州)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.考点:作图-旋转变换;作图-平移变换.专题:图表型.分析:(1)根据网格结构,把△ABC向右平移后可使点P为三角形的内部的三个格点中的任意一个;(2)把△ABC绕点C顺时针旋转90°即可使点P在三角形内部.解答:解:(1)平移后的三角形如图所示;(2)如图所示,旋转后的三角形如图所示.点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构是解题的关键.20.(10分)(•温州)如图,抛物线y=a(x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(﹣1,0)(1)求该抛物线的解析式;(2)求梯形COBD的面积.考点:待定系数法求二次函数解析式;二次函数的性质;抛物线与x轴的交点.专题:计算题.分析:(1)将A坐标代入抛物线解析式,求出a的值,即可确定出解析式;(2)抛物线解析式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,利用梯形面积公式即可求出梯形COBD的面积.解答:解:(1)将A(﹣1,0)代入y=a(x﹣1)2+4中,得:0=4a+4,解得:a=﹣1,则抛物线解析式为y=﹣(x﹣1)2+4;(2)对于抛物线解析式,令x=0,得到y=3,即OC=3,∵抛物线解析式为y=﹣(x﹣1)2+4的对称轴为直线x=1,∴CD=1,∵A(﹣1,0),∴B(3,0),即OB=3,则S梯形OCDA==6.点评:此题考查了利用待定系数法求二次函数解析式,二次函数的性质,以及二次函数与x 轴的交点,熟练掌握待定系数法是解本题的关键.21.(10分)(•温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?考点:概率公式;一元一次不等式的应用.分析:(1)根据概率公式,求摸到黄球的概率,即用黄球的个数除以小球总个数即可得出得到黄球的概率;(2)假设取走了x个黑球,则放入x个黄球,进而利用概率公式得出不等式,求出即可.解答:解:(1)∵一个不透明的袋中装有5个黄球,13个黑球和22个红球,∴摸出一个球摸到黄球的概率为:=;(2)设取走x个黑球,则放入x个黄球,由题意,得≥,解得:x≥,答:至少取走了9个黑球.点评:此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.22.(10分)(•温州)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.考点:圆周角定理;等腰三角形的判定与性质;勾股定理.分析:(1)由AB为⊙O的直径,易证得AC⊥BD,又由DC=CB,根据线段垂直平分线的性质,可证得AD=AB,即可得:∠B=∠D;(2)首先设BC=x,则AC=x﹣2,由在Rt△ABC中,AC2+BC2=AB2,可得方程:(x﹣2)2+x2=42,解此方程即可求得CB的长,继而求得CE的长.解答:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.点评:此题考查了圆周角定理、线段垂直平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度适中,注意掌握方程思想与数形结合思想的应用.23.(10分)(•温州)某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)七巧板拼图趣题巧解数学应用魔方复原甲 66 89 86 68乙 66 60 80 68丙 66 80 90 68(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算△记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?考点:二元一次方程组的应用;加权平均数.分析:(1)根据求加权平均数的方法就可以直接求出甲的总分;(2)设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由条件建立方程组求出其解就可以求出甲的总分而得出结论.解答:解:(1)由题意,得甲的总分为:66×10%+89×40%+86×20%+68×30%=79.8;(2)设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由题意,得,解得:,∴甲的总分为:20+89×0.3+86×0.4=81.1>80,∴甲能获一等奖.点评:本题考查了列二元一次方程组解实际问题的运用,加权平均数的运用,在解答时建立方程组求出趣题巧解和数学运用的百分比是解答本题的关键.24.(14分)(•温州)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A (6,0),B(0.8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作▱CDEF.(1)当0<m<8时,求CE的长(用含m的代数式表示);(2)当m=3时,是否存在点D,使▱CDEF的顶点F恰好落在y轴上?若存在,求出点D 的坐标;若不存在,请说明理由;(3)点D在整个运动过程中,若存在唯一的位置,使得▱CDEF为矩形,请求出所有满足条件的m的值.考点:相似形综合题.分析:(1)首先证明△BCE∽△BAO,根据相似三角形的对应边的比相等即可求得;(2)证明△EDA∽△BOA,根据相似三角形的对应边的比相等即可求得;(3)分m>0,m=0和m<0三种情况进行讨论,当m=0时,一定不成立,当m>0时,分0<m<8和m>8两种情况,利用三角函数的定义即可求解.当m<0时,分点E与点A重合和点E与点A不重合时,两种情况进行讨论.解答:解:(1)∵A(6,0),B(0,8).∴OA=6,OB=8.∴AB=10,∵∠CEB=∠AOB=90°,又∵∠OBA=∠EBC,∴△BCE∽△BAO,∴=,即=,∴CE=﹣m;(2)∵m=3,∴BC=8﹣m=5,CE=﹣m=3.∴BE=4,∴AE=AB﹣BE=6.∵点F落在y轴上(如图2).∴DE∥BO,∴△EDA∽△BOA,∴=即=.∴OD=,∴点D的坐标为(,0).(3)取CE的中点P,过P作PG⊥y轴于点G.则CP=CE=﹣m.(Ⅰ)当m>0时,①当0<m<8时,如图3.易证∠GCP=∠BAO,∴cos∠GCP=cos∠BAO=,∴CG=CP•cos∠GCP=(﹣m)=﹣m.∴OG=OC+OG=m+﹣m=m+.根据题意得,得:OG=CP,∴m+=﹣m,解得:m=;②当m≥8时,OG>CP,显然不存在满足条件的m的值.(Ⅱ)当m=0时,即点C与原点O重合(如图4).(Ⅲ)当m<0时,①当点E与点A重合时,(如图5),易证△COA∽△AOB,∴=,即=,解得:m=﹣.②当点E与点A不重合时,(如图6).OG=OC﹣OG=﹣m﹣(﹣m)=﹣m﹣.由题意得:OG=CP,∴﹣m﹣=﹣m.解得m=﹣.综上所述,m的值是或0或﹣或﹣.点本题是相似三角形的判定于性质以及三角函数的综合应用,正确进行分类是关键.评:。
2017年浙江省温州市中考数学试卷一、选择题(共10小题,每题4分,共40分):1.(4 分)﹣6 的相反数是()A.6 B.1 C.0 D.﹣62.(4 分)某校学生到校方式状况的统计图以下图,若该校步行到校的学生有100 人,则乘公共汽车到校的学生有()A.75 人B.100 人C.125 人D.200 人3.(4 分)某运动会颁奖台以下图,它的主视图是()A.B.C.D.4.(4 分)以下选项中的整数,与最靠近的是()A.3 B.4 C.5 D.65.(4 分)温州某公司车间有50 名工人,某一天他们生产的机器部件个数统计以下表:部件个数(个) 5 6 7 8人数(人)3 15 22 10表中表示部件个数的数据中,众数是()A.5 个B.6 个C.7 个D.8 个6.(4 分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2 的图象上,则y1,y2,0 的大小关系是()A.0<y1<y2 B.y1<0<y2 C.y1<y2<0 D.y2<0<y17.(4 分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13 米,已知cosα= ,则小车上涨的高度是()A.5 米B.6 米C.6.5 米D.12 米2+2x﹣3=0 的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)8(.4 分)我们知道方程x2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣39.(4 分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2 E F,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S10.(4 分)我们把1,1,2,3,5,8,13,21,⋯这组数称为斐波那契数列,为了进一步研究,挨次以这列数为半径作90°圆弧,,,⋯获得斐波那契螺旋线,而后按序连接P1P2,P2P3,P3P4,⋯获得螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9 的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二、填空题(共6小题,每题5分,共30分):2+4m=.11.(5分)分解因式:m12.(5分)数据1,3,5,12,a,此中整数a是这组数据的中位数,则该组数据的均匀数是.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每日多铺设5米,甲、乙达成铺设任务的时间同样,问甲每日铺设多少米?设甲每日铺设x米,依据题意可列出方程:.15.(5分)如图,矩形OABC的边O A,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=3°0,四边形O A′B′与D 四边形OABD对于直线OD 对称(点A′和A,B′和B分别对应).若AB=1,反比率函数y=(k≠0)的图象恰巧经过点A′,B,则k的值为.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完整开启后,水流路线呈抛物线,把手端点A,出水口B和落水滴C恰幸亏同向来线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的有关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.。
浙江省温州市永嘉县2017年中考数学三模试卷一.选择题1.下列等式计算正确的是()A. (﹣2)+3=﹣1B. 3﹣(﹣2)=1C. (﹣3)+(﹣2)=6D. (﹣3)+(﹣2)=﹣52.下列四个几何体中,主视图是三角形的是()A. B. C. D.3.要使二次根式有意义,则x应满足()A. x≠1B. x≥1C. x≤1D. x<14.抛物线y=x2﹣3x+2与y轴交点的坐标为()A.(0,2)B.(1,0)C.(2,0)D.(0,﹣3)5.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=22°,那么∠2的度数是()A. 22°B. 78°C. 68°D. 70°6.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=6,DB=3,则的值为()A. B. C. D. 27.四张完全相同的卡片上,分别画有圆、正方形、等边三角形和线段,现从中随机抽取两张,卡片上画的恰好都是中心对称图形的概率为()A. 1B.C.D.8.某校男子篮球队20名队员的身高如表:则此男子排球队20名队员身高的中位数是()A. 176cmB. 177cmC. 178cmD. 180cm9.某工厂接到加工600件衣服的订单,预计每天做25件,正好按时完成,后因客户要求提前3天交货,工人则需要提高每天的工作效率,设工人每天应多做x件,依题意列方程正确的是()A. ﹣=3B. +3=C. ﹣=3D. ﹣=310.如图,在菱形ABCD中,tan∠ABC= ,P为AB上一点,以PB为边向外作菱形PMNB,连结DM,取DM中点E,连结AE,PE,则的值为()A. B. C. D.二.填空题11.分解因式:m2﹣9=________.12.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是________.13.不等式组的解为________.14.如图,在△ABC中,两条中线BE、CD相交于点O,则S△ADE:S△COE=________.15.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,D为AC中点,P为AB上的动点,将P绕点D逆时针旋转90°得到P′,连CP′,则线段CP′的最小值为________.16.如图,在△ABC中,B、C两点恰好在反比例函数y= (k>0)第一象限的图象上,且BC= ,S△ABC= ,AB∥x轴,CD⊥x轴交x轴于点D,作D关于直线BC的对称点D′.若四边形ABD′C为平行四边形,则k为________.三.解答题17.计算题()﹣1+ +sin30°;(1)计算:()﹣1+ +sin30°;(2)先化简,再求值:(m+2)(m﹣2)﹣(m﹣2)2+1,其中m=2.18.温州市政府计划投资百亿元开发瓯江口新区,打造出一个“东方时尚岛、海上新温州”.为了解温州市民对瓯江口新区的关注情况,某学校数学兴趣小组随机采访部分温州市民,对采访情况制作了统计图表的一部分如下:(1)根据上述统计表可得此次采访的人数为________人;m=________,n=________;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,估计25000名温州市民中高度关注瓯江口新区的市民约________人.19.如图,在方格纸中,线段AB的两个端点都在小方格的格点上,AB=5,请找到一个格点P,连结PA,PB,使得△PAB为等腰三角形(请画出两种,若所画三角形全等,则视为一种).20.如图,一艘渔船位于码头M的南偏东45°方向,距离码头120海里的B处,渔船从B处沿正北方向航行一段距离后,到达位于码头北偏东60°方向的A处.(1)求渔船从B到A的航行过程中与码头M之间的最小距离.(2)若渔船以20海里/小时的速度从A沿AM方向行驶,求渔船从A到达码头M的航行时间.21.如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AB相切于点P.(1)求证:BP平分∠ABC;(2)若PC=1,AP=3,求BC的长.22.温州某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至于30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;(2)若建成后的寝室可供600人住宿,求单人间的数量;(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?23.如图,抛物线y=ax2+3x交x轴正半轴于点A(6,0),顶点为M,对称轴MB交x轴于点B,过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD于点F,作直线MF.(1)求a的值及M的坐标;(2)当BD为何值时,点F恰好落在该抛物线上?(3)当∠DCB=45°时:①求直线MF的解析式;________②延长OE交FM于点G,四边形DEGF和四边形OEDC的面积分别记为S1、S2,则S1:S2的值为________(直接写答案)24.如图,在矩形ABCD中,AD=10,E为AB上一点,且AE= AB=a,连结DE,F是DE中点,连结BF,以BF为直径作⊙O.(1)用a的代数式表示DE2=________,BF2=________;(2)求证:⊙O必过BC的中点;(3)若⊙O与矩形ABCD各边所在的直线相切时,求a的值;(4)作A关于直线BF的对称点A′,若A′落在矩形ABCD内部(不包括边界),则a的取值范围________.(直接写出答案)答案解析部分一.<b >选择题</b>1.【答案】D【考点】有理数的加减混合运算【解析】【解答】解:∵(﹣2)+3=1,故答案为:项A错误,∵3﹣(﹣2)=3+2=5,故答案为:项B错误,∵(﹣3)+(﹣2)=﹣5,故答案为:项C错误,∵(﹣3)+(﹣2)=﹣5,故答案为:项D正确,故答案为:D.【分析】异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;减去一个数,等于加上这个数的相反数;同号两数相加取相同的符号,并把绝对值相加。
2017年温州市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共40分)一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.-6的相反数是()A.6B.1C.0D.-62.某校学生到校方式情况的统计图如图所示.若该校步行到校的学生有100人,则乘公共汽车到校的学生有()某校学生到校方式情况统计图A.75人B.100人C.125人D.200人3.某运动会颁奖台如图所示,它的主视图是()4.下列选项中的整数,与最接近的是()A.3B.4C.5D.65.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个6.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y17.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米8.我们知道方程x2+2x-3=0的解是x1=1,x2=-3.现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=-3C.x1=-1,x2=3D.x1=-1,x2=-39.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD 的面积为()A.12SB.10SC.9SD.8S10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列.为了进一步研究,依次以这列数为半径作90°的圆弧,,,…得到斐波那契螺旋线,然后顺次连接P1P2,P2P3,P3P4,…得到螺旋折线(如图).已知点P1(0,1),P2(-1,0),P3(0,-1),则该折线上点P9的坐标为()A.(-6,24)B.(-6,25)C.(-5,24)D.(-5,25)第Ⅱ卷(非选择题,共110分)二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:m2+4m=.12.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.已知扇形的面积为3π,圆心角为120°,则它的半径为.14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA'B'D与四边形OABD关于直线OD对称(点A'和A,B'和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A',B,则k的值为.16.小明家的洗手盆上装有一种抬启式水龙头(如图1).完全开启后,水流路线呈抛物线,把手端点A、出水口B和落水点C恰好在同一直线上,点A到出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱形水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:2×(-3)+(-1)2+;(2)化简:(1+a)(1-a)+a(a-2).18.(本题8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.(本题8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”“魅力数独”“数学故事”“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图,根据该统计图,请估计该校七年级480名学生选“数学故事”的人数;(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(本题8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图中画一个△P1AB,使点P1的横、纵坐标之和等于点A的横坐标;(2)在图中画一个△P2AB,使点P2,B横坐标的平方和等于它们纵坐标和的4倍.21.(本题10分)如图,在△ABC中,AC=BC,∠ACB=90°,☉O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作☉O的切线交AC于点F,延长CO交AB于点G,作ED∥AC 交CG于点D.(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.(本题10分)如图,过抛物线y=x2-2x上一点A作x轴的平行线,交抛物线于另一点B,交y 轴于点C.已知点A的横坐标为-2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连接OP,作点C关于直线OP的对称点D.①连接BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.(本题12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB∶BC=2∶3,区域Ⅱ四周宽度相等.①求AB,BC的长;②若甲、丙两种瓷砖单价之和为300元/m2,乙、丙两种瓷砖单价之比为5∶3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(本题14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D 分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点为C(点C在线段BD上),连接AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB;(3)在点P的运动过程中.①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得点G,当点G恰好落在MN上时,连接AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.答案全解全析:一、选择题1.A-(-6)=6.故选A.2.D100÷20%×40%=200(人).故选D.3.C由三视图的定义知从主视方向所观察到的图形为主视图.故选C.4.B因为<<,所以4<<5,又<=4.5,∴比较接近4.故选B.5.C生产7个零件的人数最多,所以众数是7个.故选C.6.B解法一:将x=-1代入y=3x-2,得y=-5,∴y1=-5;将x=4代入y=3x-2得y=10,∴y2=10,所以y1<0<y2.解法二:∵k=3>0,∴y随x的增大而增大,易知x=时,y=0,又-1<<4,∴y1<0<y2.故选B.7.A因为cosα=,且小车沿斜坡向上行驶13米,所以小车水平向前移动了13×=12米,由勾股定理得小车上升的高度是5米.故选A.8.D通过两个方程的形式进行整体代换.由题意可得2x+3=1或2x+3=-3.所以x1=-1,x2=-3.故选D.9.C如图,由题意知AN=NM,四个白色的四边形为全等的矩形,即AK+KN=EF+FQ,KN=FQ,∴AK=EF,∴BM=EF,因为AM=2EF,AB2=BM2+AM2,所以AB2=9EF2,所以S正方形ABCD=AB2=9EF2=9S.故选C.10.B根据图示规律可知,P9的横坐标是0-1+1+2-3-5+8+13-21=-6,P9的纵坐标是1-1-1+2+3-5-8+13+21=25,∴P9(-6,25).二、填空题11.答案m(m+4)解析m2+4m=m(m+4).12.答案 4.8或5或5.2解析∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为4.8或5或5.2.13.答案3解析由扇形的面积为3π,圆心角为120°,可知整圆的面积是9π,根据圆的面积公式S=πr2,得半径为3.14.答案=解析根据时间=工程量÷工效,甲、乙完成铺设任务的时间相同,可以列出方程=.15.答案解析∵四边形ABCO是矩形,AB=1,∴可设B(m,1)(m>0),∴OA=BC=m,∵四边形OA'B'D与四边形OABD关于直线OD对称,∴OA'=OA=m,∠A'OD=∠AOD=30°,∴∠A'OA=60°,过A'作A'E⊥OA于E,∴OE=m,A'E=m,∴A',∵反比例函数y=(k≠0)的图象恰好经过点A',B,∴m·m=m,∴m=(∵m>0),∴k=.16.答案24-8解析如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,在Rt△APM中,MP==8,故DQ=OG=MP=8,∴BQ=12-8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),∵水流所在抛物线经过点D(0,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线解析式,可得解得∴抛物线的解析式为y=-x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=-x2+x+24,解得x1=6+8,x2=6-8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30-(6+8)=24-8.即点E到洗手盆内侧的距离EH为(24-8)cm.三、解答题17.解析(1)原式=-6+1+2=-5+2.(2)原式=1-a2+a2-2a=1-2a.18.解析(1)证明:∵AC=AD,∴∠ACD=∠ADC.∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE.∵BC=ED,∴△ABC≌△AED(SAS).(2)由(1)得△ABC≌△AED,∴∠B=∠E,∵∠B=140°,∴∠E=140°.∵五边形ABCDE的内角和为540°,∴∠BAE=540°-2×(140°+90°)=80°.19.解析(1)480×=90(人).∴估计该校七年级480名学生选“数学故事”的人数为90.(2)画树状图如下:∴P(同班)==.20.解析(1)如图1或图2.(2)如图3或图4.图1图2图3图4 21.解析(1)证明:连接OE.∵AC=BC,∠AC B=90°,∴∠B=45°,∴∠COE=90°.∵EF与☉O相切,∴∠FEO=90°,∴∠COE+∠FEO=180°,∴EF∥CO.∵DE∥CF,∴四边形CDEF是平行四边形.(2)过点G作GH⊥CB于点H.∵∠ACB=90°,∴AC∥GH,∴∠FCD=∠CGH.在▱CDEF中,∠DEF=∠FCD,∴∠DEF=∠CGH,∴tan∠CGH=tan∠DEF=2,∴=2.∵∠B=45°,∴GH=BH,∴CH=2BH.∵BC=3,∴BH=GH=1,∴BG=.22.解析(1)对称轴是直线x=-=-=4.∵点A,B关于直线x=4对称,点A的横坐标为-2,∴点B的横坐标为10.当x=10时,y=5,∴点B的坐标为(10,5).(2)①如图,连接OD,OB.∵点C,D关于直线OP对称,∴OD=OC=5.∵OD+BD≥OB,∴BD≥OB-OD=5-5,∴当点D在线段OB上时,BD有最小值5-5.②如图,连接OD,设抛物线的对称轴交x轴于点F,交BC于点H.∵OD=5,OF=4,∴DF=3,∴D(4,3),DH=HF-DF=2.设CP=a,则PD=PC=a,PH=4-a,在Rt△PHD中,(4-a)2+22=a2,∴a=,∴P.设直线PD的函数表达式为y=kx+b(k≠0),∴解得∴直线PD的函数表达式为y=-x+.23.解析(1)由题意得300S+200(48-S)≤12000,∴S≤24,∴S的最大值为24.(2)①设AB=2a m,则BC=3a m,由题意得6-2a=8-3a,∴a=2,∴AB=4m,BC=6m.②解法一:设丙瓷砖的单价为3x元/m2,铺设乙瓷砖的面积为S1m2.由PQ∥AD得铺设甲瓷砖的面积为12m2,∴12(300-3x)+5xS1+3x(12-S1)=4800,∴x=.∵0<S1<12,∴x>50,∴3x>150.又∵3x<300,∴150<3x<300,∴丙瓷砖的单价大于150元/m2且小于300元/m2.解法二:设丙瓷砖的单价为x元/m2,铺设丙瓷砖的面积为S2m2.由PQ∥AD得铺设甲瓷砖的面积为12m2.由题意得12(300-x)+x(12-S2)+xS2=4800,∴x=.∵0<S2<12,∴x>150.又∵x<300,∴150<x<300.∴丙瓷砖的单价大于150元/m2且小于300元/m2.24.解析(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B.∵∠AP B=28°,∴∠B=76°.如图1,连接MD.∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴的度数为2∠MDB=56°.图1(2)证明:∵∠BAC=∠MDC=∠APB,∠BAP=180°-∠APB-∠B,∠ACB=180°-∠BAC-∠B,∴∠BAP=∠ACB.∵∠BAP=∠B,∴∠B=∠ACB,∴AC=AB.(3)①如图2,记MP与圆的另一个交点为R,连接AR,CR.∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP.图2∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2.∴12+MR2=22+PR2,∴12+(4-PR)2=22+PR2,∴PR=,∴MR=.a.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=.b.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=.图3 c.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=.∵cos∠MPB==,∴PQ=,∴MQ=.图4 d.如图5,当∠AEQ=90°时,连接QD,由对称性得∠AEQ=∠BDQ=90°,∴MQ=.综上所述,MQ的值为或或.图5②.提示:如图6,∵DM∥AF,∴DF=AM=DE=1,可得△DEG为正三角形.易得∠GMD=∠GDM=15°,得MG=DG=1.作CH⊥AB于点H,由∠BAC=30°得CH=1=MG,CG=MH=-1,∴S△ACG=.∵S△DEG=,∴S△ACG∶S△DEG=.图6。
浙江省2017年中考数学真题分类汇编:方程(组)(解析版)一、单选题(共7题;共14分)1、(2017·衢州)二元一次方程组的解是()A、B、C、D、2、(2017·嘉兴)用配方法解方程时,配方结果正确的是()A、B、C、D、3、(2017·嘉兴)若二元一次方程组的解为则()A、B、C、D、4、(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A、x1=1,x2=3B、x1=1,x2=﹣3C、x1=﹣1,x2=3D、x1=﹣1,x2=﹣35、(2017•杭州)设x,y,c是实数,()A、若x=y,则x+c=y﹣cB、若x=y,则xc=ycC、若x=y,则D、若,则2x=3y6、(2017•杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A、10.8(1+x)=16.8B、16.8(1﹣x)=10.8C、10.8(1+x)2=16.8D、10.8[(1+x)+(1+x)2]=16.87、(2017·台州)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费运途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、运途费三部分,其中里程费按行车的实际里程计费;时长费按行车的实际时间计算,运途费的收取方式为:行车7公里以内(含7公里)不收运途费超过7公里的,超出部分每公里收0.8元小王与小张各自乘坐滴滴快车,行车里程分别为6公里和8.5公里,如果下车时所付车费相同,那么这两辆滴滴快车的行车时间相差()A、10分钟B、13分钟C、15分钟D、19分钟二、填空题(共5题;共5分)8、(2017•宁波)分式方程的解是________9、(2017·嘉兴)若分式的值为0,则的值为________.10、(2017•杭州)若•|m|= ,则m=________.11、(2017•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:________.12、(2017•杭州)某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉________千克.(用含t的代数式表示.)三、解答题(共2题;共15分)13、(2017·金华)(本题6分) 解分式方程: .14、(2017•宁波)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行.本届论坛期间,中国同30多个国家签署经贸合作协议.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?答案解析部分一、单选题1、【答案】B【考点】二元一次方程组的解【解析】【解答】解:①-②得:4y=8, 解得y=2;将y=2代入①得x=4;∴原方程组的解为:;故选B.【分析】利用两个方程作差就可以直接求出y=2,将其代入即可求出x=4,从而得出答案.2、【答案】B【考点】解一元二次方程-配方法【解析】【解答】解:方程两边都“+2”,得x2+2x+1=2,则(x+1)2=2。
2017年浙江省温州市瑞安市五校联考中考数学一模试卷一、选择题1.给出四个数0,,﹣,0.3,其中属于无理数的是()A.0 B.C.﹣ D.0.32.如图是由一个立方体挖去一个小立方体后的示意图,则它的主视图是()A.B.C.D.3.不等式组的解集是()A.﹣2≤x<1 B.x≥﹣2 C.x>1 D.﹣1≤x<24.已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,﹣3),那么该抛物线有()A.最小值﹣3 B.最大值﹣3 C.最小值2 D.最大值25.某学习小组13名学生的一次英语听力测试成绩分布如下表所示(满分20分):这13名学生听力测试成绩的中位数是()A.16分B.17分C.18分D.19分6.如图,在△ABC中,∠C=90°,BC=5,AB=13,则sinB是()A.B.C.D.7.P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知、的度数别为88°、32°,则∠P的度数为()A.26°B.28°C.30°D.32°8.要使关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则下列k的取值正确的是()A.1 B.2 C.D.9.如图,已知等腰直角三角形ABC中,∠ACB=90°,BC=1,在BC的延长线上任取一点P,过点P作PD⊥BC,使得PD=2PC,则当点P在BC延长线上向左移动时,△ABD的面积大小变化情况是()A.一直变大B.一直变小C.先变小再变大D.先变大再变小10.如图,反比例函数y=(x>0)的图象与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,若OC=2BD,则实数k的值为()A.B.C.D.二、填空题11.因式分解:9x2﹣4=.12.函数y=﹣3x+6的图象与x轴的交点坐标为.13.如图,将△ABC绕点C按逆时针方向旋转得到△A′B′C′,且AB∥B′C′,分别延长AB、CA′相交于点D,若∠A=70°,∠D=30°,则∠BCD的度数为.14.如图,正方形ABCD中,P,Q是BC边上的三等分点,连接AQ、DP交于点R.若正方形ABCD的面积为144cm2,则△PQR的面积为cm2.15.在“校园文化”建设中,某校用8 000元购进一批绿色植物,种植在礼堂前的空地处.根据建设方案的要求,该校又用7500元购进第二批绿植植物.若两次所买植物的盆数相同,且第二批每盆的价格比第一批的少10元.则第二批绿植每盆的价格为元.16.如图,在菱形ABCD中,AB=4,取CD中点O,以O为圆心OD为半径作圆交AD于E,交BC的延长线交于点F,(1)若cos∠AEB=,则菱形ABCD的面积为;(2)当BE与⊙O相切时,AE的长为.三、解答题(共8小题,满分80分)17.(1)计算: +(﹣2)3﹣(﹣1)0(2)化简:(m+3)2﹣m(m﹣4).18.△ABC在平面直角坐标系中的位置如图所示.(1)作△ABC关于原点O成中心对称的△A1B1C1.(2)请写出点B关于y轴对称的点B2的坐标.若将点B2向下平移h单位,使其落在△A1B1C1内部(不包括边界),直接写出h的值(写出满足的一个即可).19.如图,△ABC为等边三角形,过点B作BD⊥AC于点D,过D作DE∥BC,且DE=CD,连接CE,(1)求证:△CDE为等边三角形;(2)请连接BE,若AB=4,求BE的长.20.某调查机构将今年温州市民最关注的热点话题分为消费、教育、环保、反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)本次共调查人,请在答题卡上补全条形统计图并标出相应数据;(2)若温州市约有900万人口,请你估计最关注教育问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(列数状图或列表说明).21.如图,点C在以AB为直径的⊙O上,过C作⊙O的切线交AB的延长线于E,AD⊥CE于D,连结AC.(1)求证:AC平分∠BAD.(2)若tan∠CAD=,AD=8,求⊙O直径AB的长.22.某地区住宅用电之电费计算规则如下:每月每户不超过50度时,每度以4元收费;超过50度的部分,每度以5元收费,并规定用电按整数度计算(小数部份无条件舍去).(1)下表给出了今年3月份A,B两用户的部分用电数据,请将表格数据补充完整,(2)若假定某月份C用户比D用户多缴电费38元,求C用户该月可能缴的电费为多少?23.如图,抛物线y=x2﹣3x交x轴的正半轴于点A,点B(,a)在抛物线上,点C是抛物线对称轴上的一点,连接AB、BC,以AB、BC为邻边作□ABCD,记点C纵坐标为n,(1)求a的值及点A的坐标;(2)当点D 恰好落在抛物线上时,求n 的值;(3)记CD 与抛物线的交点为E ,连接AE ,BE ,当△AEB 的面积为7时,n= .(直接写出答案)24.如图1,直角坐标系中有一矩形OABC ,其中O 是坐标原点,点A ,C 分别在x 轴和y 轴上,点B 的坐标为(3,4),直线y=x 交AB 于点D ,点P 是直线y=x 位于第一象限上的一点,连接PA ,以PA 为半径作⊙P , (1)连接AC ,当点P 落在AC 上时,求PA 的长; (2)当⊙P 经过点O 时,求证:△PAD 是等腰三角形; (3)设点P 的横坐标为m ,①在点P 移动的过程中,当⊙P 与矩形OABC 某一边的交点恰为该边的中点时,求所有满足要求的m 值;②如图2,记⊙P 与直线y=x 的两个交点分别为E ,F (点E 在点P 左下方),当DE ,DF 满足<<3时,求m 的取值范围.(请直接写出答案)2017年浙江省温州市瑞安市五校联考中考数学一模试卷参考答案与试题解析一、选择题1.给出四个数0,,﹣,0.3,其中属于无理数的是()A.0 B.C.﹣ D.0.3【考点】26:无理数.【分析】根据无理数的定义即可判定选择项.【解答】解:是无理数,0,﹣,0.3是有理数,故选:B.2.如图是由一个立方体挖去一个小立方体后的示意图,则它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从几何体的正面看所得到的图形即可.【解答】解:从几何体的正面看所得到的图形是,故选:A.3.不等式组的解集是()A.﹣2≤x<1 B.x≥﹣2 C.x>1 D.﹣1≤x<2【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+2≥0,得:x≥﹣2,解不等式x﹣1>0,得:x>1,∴不等式组的解集为x>1,故选:C.4.已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,﹣3),那么该抛物线有()A.最小值﹣3 B.最大值﹣3 C.最小值2 D.最大值2【考点】H7:二次函数的最值.【分析】根据抛物线开口向下和其顶点坐标为(2,﹣3),可直接做出判断.【解答】解:因为抛物线开口向下和其顶点坐标为(2,﹣3),所以该抛物线有最大值﹣3.故选B.5.某学习小组13名学生的一次英语听力测试成绩分布如下表所示(满分20分):这13名学生听力测试成绩的中位数是()A.16分B.17分C.18分D.19分【考点】W4:中位数.【分析】按从小到大的顺序排列后,第7个数即为中位数.【解答】解:由题意,可得按从小到大的顺序排列后,第7个数据是17分,所以中位数为17分.故选B.6.如图,在△ABC中,∠C=90°,BC=5,AB=13,则sinB是()A.B.C.D.【考点】T1:锐角三角函数的定义.【分析】利用勾股定理求得AC的长,然后根据正弦的定义求解.【解答】解:在Rt△ABC中,AC===12,则sinB==.故选C.7.P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知、的度数别为88°、32°,则∠P的度数为()A.26°B.28°C.30°D.32°【考点】M4:圆心角、弧、弦的关系.【分析】先由圆周角定理求出∠A与∠ADB的度数,然后根据三角形外角的性质即可求出∠P的度数即可.【解答】解:∵和所对的圆心角分别为88°和32°,∴∠A=×32°=16°,∠ADB=×88°=44°,∵∠P+∠A=∠ADB,∴∠P=∠ADB﹣∠P=44°﹣16°=28°.故选B.8.要使关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则下列k的取值正确的是()A.1 B.2 C.D.【考点】AA:根的判别式.【分析】先利用判别式的意义得到△=(﹣2)2﹣4•3k>0,再解不等式求出k的范围,然后对各选项进行判断.【解答】解:根据题意得△=(﹣2)2﹣4•3k>0,解得k<.故选D.9.如图,已知等腰直角三角形ABC中,∠ACB=90°,BC=1,在BC的延长线上任取一点P,过点P作PD⊥BC,使得PD=2PC,则当点P在BC延长线上向左移动时,△ABD的面积大小变化情况是()A.一直变大B.一直变小C.先变小再变大D.先变大再变小【考点】E7:动点问题的函数图象.【分析】根据题意和函数图象可以得到ABD的面积大小变化情况,从而可以解答本题.【解答】解:设PC=x,则PD=2x,PB=x+1,=S梯形ADPC+S△ACB﹣S△PBD==,则S△ABD∴△ABD的面积随x的增大而减小,故选B.10.如图,反比例函数y=(x>0)的图象与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,若OC=2BD,则实数k的值为()A.B.C.D.【考点】G6:反比例函数图象上点的坐标特征;KK:等边三角形的性质.【分析】过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,分别表示出点C、点D的坐标,代入函数解析式求出k,继而可建立方程,解出x的值后即可得出k的值.【解答】解:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,在Rt△OCE中,∠COE=60°,则OE=x,CE=x,则点C坐标为(x,x),在Rt△BDF中,BD=x,∠DBF=60°,则BF=x,DF=x,则点D的坐标为(5﹣x,x),将点C的坐标代入反比例函数解析式可得:k=x2,将点D的坐标代入反比例函数解析式可得:k=x﹣x2,则x2=x﹣x2,解得:x1=2,x2=0(舍去),故k=x2=×4=4.故选A.二、填空题11.因式分解:9x2﹣4=(3x﹣2)(3x+2).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式得出即可.【解答】解:9x2﹣4=(3x﹣2)(3x+2).故答案为:(3x﹣2)(3x+2).12.函数y=﹣3x+6的图象与x轴的交点坐标为(2,0).【考点】F8:一次函数图象上点的坐标特征.【分析】令y=0,可求得与x轴交点横坐标,进而求出与x轴交点坐标.【解答】解:把y=0代入y=﹣3x+6得,x=2,于是图象与y轴的交点坐标为(2,0).故答案为:(2,0).13.如图,将△ABC绕点C按逆时针方向旋转得到△A′B′C′,且AB∥B′C′,分别延长AB、CA′相交于点D,若∠A=70°,∠D=30°,则∠BCD的度数为50°.【考点】R2:旋转的性质;JA:平行线的性质.【分析】直接利用平行线的性质结合旋转的性质得出∠ACB的度数,进而得出答案.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C′,且AB∥B′C′,∠A=70°,∠D=30°,∴∠B′CD=∠D=∠ACB=30°,且∠A+∠B′CA=180°,∴∠BCD的度数为50°.故答案为:50°.14.如图,正方形ABCD中,P,Q是BC边上的三等分点,连接AQ、DP交于点R.若正方形ABCD的面积为144cm2,则△PQR的面积为6cm2.【考点】S9:相似三角形的判定与性质;LE:正方形的性质.【分析】根据BP=PQ=QC,由相似三角形的性质可得△PQR的底边=正方形ABCD边长的,高是正方形ABCD边长的,根据三角形的面积公式和已知条件即可求得△PQR的面积.【解答】解:∵四边形ABCD是正方形,∴AD∥BC,∴△PRQ∽△DRA,∵BP=PQ=QC,∴△PQR的底边=正方形ABCD边长的,高是正方形ABCD边长的,∴△PQR的面积=××正方形ABCD的面积=×144=6(cm2).故答案为:615.在“校园文化”建设中,某校用8 000元购进一批绿色植物,种植在礼堂前的空地处.根据建设方案的要求,该校又用7500元购进第二批绿植植物.若两次所买植物的盆数相同,且第二批每盆的价格比第一批的少10元.则第二批绿植每盆的价格为150元.【考点】B7:分式方程的应用.【分析】设第一批绿植的价格是每盆x元,则第二批绿植的价格是每盆(x﹣10)元,根据“两次所买植物的盆数相同”列出方程并解答.【解答】解:设第一批绿植的价格是每盆x元,则第二批绿植的价格是每盆(x ﹣10)元,依题意得:=,解得x=160.经检验,x=160是所列方程的解.则x﹣10=160﹣10=150(元).故答案是:150.16.如图,在菱形ABCD中,AB=4,取CD中点O,以O为圆心OD为半径作圆交AD于E,交BC的延长线交于点F,(1)若cos∠AEB=,则菱形ABCD的面积为8;(2)当BE与⊙O相切时,AE的长为6﹣2.【考点】MC:切线的性质;L8:菱形的性质;T7:解直角三角形.【分析】(1)作BG⊥AD于G,连接CE,根据圆周角定理得出∠CED=90°,即CE ⊥AD,进而证得四边形BCEG是矩形,得出GE=BC=4,解直角三角形求得BE=6,然后根据勾股定理求得BG,根据四边形的面积公式即可求得菱形的面积;(2)连接OE,根据切线的性质得出FE⊥BE,即可得出∠BEG=∠CEO,进而求得∠ECD=∠GEB,通过解直角三角形得出=,由GE=AD,得出AG=ED,设BG=CE=a,得出=,通过变形得出AE2﹣12AE+16=0,解一元二次方程求得即可.【解答】解:(1)作BG⊥AD于G,连接CE,∵四边形ABCD是菱形,∴AB=AD=BC=CD=4,AD∥BC,∵CD是直径,∴∠CED=90°,∴CE⊥AD,∴BG∥CE,∴四边形BCEG是矩形,∴GE=BC=4,∵cos∠AEB=,∴=,∴BE=×4=6,∴BG===2,∴菱形ABCD的面积=AD•BG=4×2=8;故答案为8;(2)连接OE,∵BE与⊙O相切,∴FE⊥BE,∴∠BEG=∠CEO,∵OE=OC,∴∠DCE=∠CEO,∴∠ECD=∠GEB,∴=,∵GE=AD,∴AG=ED,设BG=CE=a,∴=,∴16﹣a2=4AE,∴AG2=4AE,即(4﹣AE)2=4AE,∴AE2﹣12AE+16=0,解得AE=6﹣2或AE=6+2(不合题意,舍去),故答案为6﹣2.三、解答题(共8小题,满分80分)17.(1)计算: +(﹣2)3﹣(﹣1)0(2)化简:(m+3)2﹣m(m﹣4).【考点】4A:单项式乘多项式;4C:完全平方公式;6E:零指数幂.【分析】(1)根据二次根式的性质、乘方法则、零指数幂的性质计算即可;(2)根据完全平方公式、单项式乘多项式的法则、合并同类项法则计算即可.【解答】解:(1)原式=3﹣8﹣1=3﹣9;(2)原式=m2+6m+9﹣m2+4m=10m+9.18.△ABC在平面直角坐标系中的位置如图所示.(1)作△ABC关于原点O成中心对称的△A1B1C1.(2)请写出点B关于y轴对称的点B2的坐标(1,1).若将点B2向下平移h单位,使其落在△A1B1C1内部(不包括边界),直接写出h的值2<h<3.5(写出满足的一个即可).【考点】R8:作图﹣旋转变换;P5:关于x轴、y轴对称的点的坐标;Q3:坐标与图形变化﹣平移.【分析】(1)根据图形旋转的性质画出△A1B1C1即可;(2)根据关于y轴对称的点的坐标特点得出点B2的坐标,再由△A1B1C1各点的坐标即可得出结论.【解答】解:(1)如图,△A1B1C1即为所求;(2)∵B(﹣1,1),∴B2(1,1);∵B2(1,﹣1),H(﹣1,﹣2.5),∴2<h<3.5.故答案为:(1,1),2<h<3.5.19.如图,△ABC为等边三角形,过点B作BD⊥AC于点D,过D作DE∥BC,且DE=CD,连接CE,(1)求证:△CDE为等边三角形;(2)请连接BE,若AB=4,求BE的长.【考点】KM:等边三角形的判定与性质;KQ:勾股定理;T7:解直角三角形.【分析】(1)根据∠EDC=60°,DE=DC,运用有一个角是60°的等腰三角形是等边三角形进行判断即可.(2)过点E作EH⊥BC于H,构造直角三角形,先求得EH=EC•sin60°=2×=,CH=EC•cos60°=1,进而得到.【解答】解:(1)∵△ABC为等边三角形,∴∠ACB=60°,∵DE∥BC,∴∠EDC=∠ACB=60°,又∵DE=DC,∴△CDE为等边三角形;(2)过点E作EH⊥BC于H,∵BD⊥AC,∴CD=AC=AB=2,又∵△CDE为等边三角形,∴CE=CD=2,∵∠ECH=60°,∴EH=EC•sin60°=2×=,CH=EC•cos60°=1,∴.20.某调查机构将今年温州市民最关注的热点话题分为消费、教育、环保、反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)本次共调查1400人,请在答题卡上补全条形统计图并标出相应数据;(2)若温州市约有900万人口,请你估计最关注教育问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(列数状图或列表说明).【考点】X6:列表法与树状图法;V5:用样本估计总体;VA:统计表;VC:条形统计图.【分析】(1)根据关注消费的人数是420人,所占的比例式是30%,即可求得总人数,然后利用总人数乘以关注教育的比例求得关注教育的人数,进而可补全条形统计图并标出相应数据;(2)利用总人数乘以对应的百分比即可;(3)利用列举法即可求解即可.【解答】解:(1)调查的总人数是:420÷30%=1400(人),关注教育的人数是:1400×25%=350(人).;(2)900×(1﹣0.3﹣0.1﹣0.15﹣0.2)=225(万)答:估计最关注教育问题的人数约为225万人.(3)画树形图得:则P(抽取的两人恰好是甲和乙)=P=.21.如图,点C在以AB为直径的⊙O上,过C作⊙O的切线交AB的延长线于E,AD⊥CE于D,连结AC.(1)求证:AC平分∠BAD.(2)若tan∠CAD=,AD=8,求⊙O直径AB的长.【考点】MC:切线的性质;T7:解直角三角形.【分析】(1)连接OC,由DE为圆O的切线,得到OC垂直于CD,再由AD垂直于DE,得到AD与OC平行,得到一对内错角相等,根据OA=OC,利用等边对等角得到一对角相等,等量代换即可得证;(2)在直角三角形ADC中,利用锐角三角函数定义求出CD的长,根据勾股定理求出AD的长,由三角形ACD与三角形ABC相似,得到对应边成比例,即可求出AB的长.【解答】证明:(1)连结OC,∵DE是⊙O的切线,∴OC⊥DE,∵AD⊥CE,∴AD∥OC,∵OA=OC,∴∠DAC=∠ACO=∠CAO,∴AC平分∠BAD;(2)解:∵AD⊥CE,tan∠CAD=,AD=8,∴CD=6,∴AC=10,∵AB是⊙O的直径,∴∠ACB=90°=∠D,∵∠DAC=∠CAO,∴△ACD∽△ABC,∴AB:AC=AC:AD,∴AB=.22.某地区住宅用电之电费计算规则如下:每月每户不超过50度时,每度以4元收费;超过50度的部分,每度以5元收费,并规定用电按整数度计算(小数部份无条件舍去).(1)下表给出了今年3月份A,B两用户的部分用电数据,请将表格数据补充完整,(2)若假定某月份C用户比D用户多缴电费38元,求C用户该月可能缴的电费为多少?【考点】95:二元一次方程的应用.【分析】(1)根据收费标准和电费=相应段的收费标准×用电量进行计算;(2)设3月份C用户用电x度,D用户用电y度.结合(1)中求得的相关数据得到:x>50,y≤50,200+5(x﹣50)﹣4y=38,求x、y的整数解即可.【解答】解:(1)设A用户用电量为x度,则4×50+5(x﹣50)=240,解得x=58;B用户的用电量:90﹣58=32(度).B用户的电费:32×4=128(元)A、B用户的电费:240+128=368(元),故答案是:(2)设3月份C用户用电x度,D用户用电y度.∵38不能被4和5整除,∴x>50,y≤50,∴200+5(x﹣50)﹣4y=38∴5x﹣4y=88,∴.∵,∴50<x≤57.6.又∵x是4的倍数,∴x=52,56 C用户可能缴的缴电费为210元或230元.23.如图,抛物线y=x2﹣3x交x轴的正半轴于点A,点B(,a)在抛物线上,点C是抛物线对称轴上的一点,连接AB、BC,以AB、BC为邻边作□ABCD,记点C纵坐标为n,(1)求a的值及点A的坐标;(2)当点D恰好落在抛物线上时,求n的值;(3)记CD与抛物线的交点为E,连接AE,BE,当△AEB的面积为7时,n=.(直接写出答案)【考点】HF:二次函数综合题.【分析】(1)将x=﹣,y=a代入抛物线的解析式可求得a的值,求得方程x2﹣3x=0的解可得到点A的横坐标;(2)过D作DG⊥y轴于G,BH⊥x轴于H.先证明△ABH≌△DCG,从而得到CG=BH=,DG=AH═,然后由x D=OF+DG可求得点D的横坐标,然后将x=5代入抛物线的解析式可求得点D的纵坐标,最后由点D的坐标可得到点C的纵坐标;(3)连结AC,过点B作BH⊥OA,垂足为H.先证明△AFG∽△ABH,依据相似=FC•AH=7可得到关三角形的性质可求得GF=,则CF=n﹣,然后依据S△ABC于n的方程,从而可求得n的值.【解答】解:(1)当x=﹣时,a=(﹣)2﹣3×(﹣)=.∴B(﹣,).由x2﹣3x=0,得x1=0(舍去),x2=3.∴A(3,0).(2)如图1所示:过D作DG⊥y轴于G,BH⊥x轴于H.∵ABCD为平行四边形,∴CD∥AB,CD=AB.∴∠DCG=∠AEF.∵BH∥EF,∴∠HBA=∠FEA.∴∠HBA=∠DCG.在△ABH和△DCG中,∴△ABH≌△DCG.∴CG=BH=,DG=AH=+3=.∴x D=OF+DG=+=5.将x=5代入抛物线的解析式得:y=10.∴n=10+=.(3)如图2所示:连结AC,过点B作BH⊥OA,垂足为H.∵DC∥BA,=S△BAC.∴S△ABE由(2)可知:AG=,AH=,BH=.∵GF∥BH,∴△AFG∽△ABH.∴=,即=,解得:GF=.∴CF=n﹣.=S△ABC=FC•AH,∵S△ABE∴×(n﹣)×=7,解得n=.故答案为:.24.如图1,直角坐标系中有一矩形OABC,其中O是坐标原点,点A,C分别在x轴和y轴上,点B的坐标为(3,4),直线y=x交AB于点D,点P是直线y= x位于第一象限上的一点,连接PA,以PA为半径作⊙P,(1)连接AC,当点P落在AC上时,求PA的长;(2)当⊙P经过点O时,求证:△PAD是等腰三角形;(3)设点P的横坐标为m,①在点P移动的过程中,当⊙P与矩形OABC某一边的交点恰为该边的中点时,求所有满足要求的m值;②如图2,记⊙P与直线y=x的两个交点分别为E,F(点E在点P左下方),当DE,DF满足<<3时,求m的取值范围.(请直接写出答案)【考点】MR:圆的综合题.【分析】(1)由△OPC∽△ADP,可得,求出AC、AD即可解决问题;(2)只要证明∠PDA=∠DAP即可.(3)①分三种情形分别求解即可ⅰ)如图2中,交点M是OC中点,PM=PA;ⅱ)如图3中,交点M是OA中点,PM=PA;ⅲ)如图4中,交点M是AB中点,PM=PA;ⅳ)如图5中,交点M是BC中点,PM=PA;②如图6中,当DE=3DF时,易知PA=2PD.由此列出方程即可解决问题.【解答】解:(1)如图1中,∵B(3,4)∴BC=3,AB=4∵∠B=90°∴AC=5∵OC∥AB,∴△OPC∽△ADP,∴,即∴.(2)∵⊙P经过点O,∴OP=AP∴∠POA=∠PAO,∵∠PDA+∠POA=∠DAP+∠PAO,∴∠PDA=∠DAP,∴△PAD是等腰三角形.(3)①分4种情形讨论:ⅰ)如图2中,交点M是OC中点,PM=PA则,解得.ⅱ)如图3中,交点M是OA中点,PM=PA∴MG=GA=,∴.ⅲ)如图4中,交点M是AB中点,PM=PA∴PG=AM=1,∴PH=2DH=2×=1,∴m=2.ⅳ)如图5中,交点M是BC中点,PM=PA则,解得.综上所述,满足要求的m值为或或2或.②如图6中,当DE=3DF时,易知PA=2PD.设P(m,),则=2,解得m=或4,当m=4时,ED=DF,综上可知,当DE,DF满足<<3时,m的取值范围为<m<4.2017年5月25日。
2017年浙江中考真题分类汇编(数学):四边形1、(2017·衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE 交AD于点F,则DF的长等于()A、B、C、D、2、(2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2 EF,则正方形ABCD的面积为()A、12S B、10S C、9S D、8S3、(2017•绍兴)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD 是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA。
若∠ACB=21°,则∠ECD的度数是()A、7°B、21°C、23°D、24°4、(2017·嘉兴)一张矩形纸片,已知,,小明按所给图步骤折叠纸片,则线段长为()A、B、C、D、16、(2017•舟山)如图,是的中线,是线段上一点(不与点重合).交于点,,连结.(1)如图1,当点与重合时,求证:四边形是平行四边形;(2)如图2,当点不与重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长交于点,若,且.当,时,求的长.15、(2017•杭州)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.5、(2017·嘉兴)如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A、向左平移1个单位,再向下平移1个单位B、向左平移个单位,再向上平移1个单位C、向右平移个单位,再向上平移1个单位D、向右平移1个单位,再向上平移1个单位7、(2017•宁波)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE的中点,则MN的长为()A、3B、C、D、48、(2017·台州)如图,矩形EFGH四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的时,则为()A、B、2 C、D、4二、填空题(共6题;共7分)9、(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y= (k≠0)的图象恰好经过点A′,B,则k的值为________.10、(2017•绍兴)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪得行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为________m.11、(2017·丽水)我国三国时期数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ//AB,则正方形EFGH的边长为________.12、(2017•宁波)如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则cos∠EFG的值为________.13、(2017·台州)如图,有一个不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是________17、(2017•宁波)在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解.如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.18、(2017·丽水)如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.19、(2017•温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.21、(2017•绍兴)如图1,已知□ABCD,AB//x轴,AB=6,点A的坐标为(1,-4),点D的坐标为(-3,4),点B在第四象限,点P是□ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x-1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标(直接写出答案).22、(2017•绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB//CD,求对角线BD的长. ②若AC⊥BD,求证:AD=CD.(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.求AE的长.23、(2017·衢州)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连结OB,D为OB的中点。
2017年浙江省各市中考数学试题汇编(含参考答案)(word 10份)目录1.浙江省杭州市中考数学试题及参考答案 (2)2.浙江省衢州市中考数学试题及参考答案 (18)3.浙江省丽水市中考数学试题及参考答案 (39)4.浙江省湖州市中考数学试题及参考答案 (54)5.浙江省台州市中考数学试题及参考答案 (64)6.浙江省宁波市中考数学试题及参考答案 (73)7.浙江省温州市中考数学试题及参考答案 (90)8.浙江省金华市中考数学试题及参考答案 (103)9.浙江省舟山市嘉兴市中考数学试题及参考答案 (112)10.浙江省绍兴市义乌市中考数学试题及参考答案 (121)2017年浙江省杭州市中考数学试题及参考答案一.选择题(本大题共10个小题,每小题3分,共30分)1.﹣22=()A.﹣2 B.﹣4 C.2 D.42.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×1073.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.4.|1+|+|1﹣|=()A.1 B.C.2 D.25.设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则D.若,则2x=3y6.若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<127.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.88.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:49.设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m﹣1)a+b>0 D.若m<1,则(m﹣1)a+b<010.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21二.填空题(本大题共6个小题,每小题4分,共24分)11.数据2,2,3,4,5的中位数是.12.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=.13.一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.14.若•|m|=,则m=.15.如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.16.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.19 81.19~1.29 121.29~1.39 A1.39~1.49 10(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE 于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.参考答案与解析一.选择题1.﹣22=()A.﹣2 B.﹣4 C.2 D.4【分析】根据幂的乘方的运算法则求解.【解答】解:﹣22=﹣4,故选B.【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.2.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将150 000 000用科学记数法表示为:1.5×108.故选A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴===,则=,∴A,C,D选项错误,B选项正确,故选:B.【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.4.|1+|+|1﹣|=()A.1 B.C.2 D.2【分析】根据绝对值的性质,可得答案.【解答】解:原式1++﹣1=2,故选:D.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.5.设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则D.若,则2x=3y【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A不符合题意;B、两边都乘以c,故B符合题意;C、c=0时,两边都除以c无意义,故C不符合题意;D、两边乘以不同的数,故D不符合题意;故选:B.【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关.6.若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.【解答】解:∵x+5>0,∴x>﹣5,A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<﹣5,故本选项不符合题意;D、根据﹣2x<12得出x>﹣6,故本选项符合题意;故选D.【点评】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.7.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.【解答】解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:4【分析】根据圆的周长分别计算l1,l2,再由扇形的面积公式计算S1,S2,求比值即可.【解答】解:∵l1=2π×BC=2π,l2=2π×AB=4π,∴l1:l2=1:2,∵S1=×2π×=π,S2=×4π×=2π,∴S1:S2=1:2,故选A.【点评】本题考查了圆锥的计算,主要利用了圆的周长为2πr,侧面积=lr求解是解题的关键.9.设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m﹣1)a+b>0 D.若m<1,则(m﹣1)a+b<0【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得b=﹣2a.(m﹣1)a+b=ma﹣a﹣2a=(m﹣3)a当m<1时,(m﹣3)a>0,故选:C.【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.10.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM 中,根据勾股定理求出即可.【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.二.填空题11.数据2,2,3,4,5的中位数是.【分析】根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【解答】解:从小到大排列为:2,2,3,4,5,位于最中间的数是3,则这组数的中位数是3.故答案为:3.【点评】本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=.【分析】根据切线的性质即可求出答案.【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,∴∠BA T=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°【点评】本题考查切线的性质,解题的关键是根据切线的性质求出∠A TB=90°,本题属于基础题型.13.一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.【分析】根据题意画出相应的树状图,找出所有可能的情况个数,进而找出两次都是红球的情况个数,即可求出所求的概率大小.【解答】解:根据题意画出相应的树状图,所以一共有9种情况,两次摸到红球的有4种情况,∴两次摸出都是红球的概率是,故答案为:.【点评】此题考查了列表法与树状图,根据题意画出相应的树状图是解本题的关键.14.若•|m|=,则m=.【分析】利用绝对值和分式的性质可得m﹣1≠0,m﹣3=0或|m|=1,可得m.【解答】解:由题意得,m﹣1≠0,则m≠1,(m﹣3)•|m|=m﹣3,∴(m﹣3)•(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.【点评】本题主要考查了绝对值和分式的性质,熟记分式分母不为0是解答此题的关键.15.如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.【分析】由勾股定理求出BC==25,求出△ABC的面积=150,证明△CDE∽△CBA,得出,求出CE=12,得出BE=BC﹣CE=13,再由三角形的面积关系即可得出答案.【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=15,AC=20,∴BC==25,△ABC的面积=AB•AC=×15×20=150,∵AD=5,∴CD=AC﹣AD=15,∵DE⊥BC,∴∠DEC=∠BAC=90°,又∵∠C=∠C,∴△CDE∽△CBA,∴,即,解得:CE=12,∴BE=BC﹣CE=13,∵△ABE的面积:△ABC的面积=BE:BC=13:25,∴△ABE的面积=×150=78;故答案为:78.【点评】本题考查了相似三角形的判定与性质、勾股定理、三角形的面积;熟练掌握勾股定理,证明三角形相似是解决问题的关键16.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)【分析】设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程,求出x即可.【解答】解:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据题意,得:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.【点评】本题主要考查列代数式的能力,解题的关键是理解题意,抓住相等关系列出方程,从而表示出第三天销售香蕉的千克数.三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.19 81.19~1.29 121.29~1.39 A1.39~1.49 10(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.【分析】(1)利用总人数50减去其它组的人数即可求得a的值;(2)利用总人数乘以对应的比例即可求解.【解答】解:(1)a=50﹣8﹣12﹣10=20,;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【解答】解:设解析式为:y=kx+b,将(1,0),(0,﹣2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的性质,求得解析式上解题的关键.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE 于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=【点评】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,本题属于中等题型.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【分析】(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;(2)直接利用x+y的值结合根的判别式得出答案.【解答】解:(1)①由题意可得:xy=3,则y=;②当y≥3时,≥3解得:x≤1;(2)∵一个矩形的周长为6,∴x+y=3,∴x+=3,整理得:x2﹣3x+3=0,∵b2﹣4ac=9﹣12=﹣3<0,∴矩形的周长不可能是6;∵一个矩形的周长为10,∴x+y=5,∴x+=5,整理得:x2﹣5x+3=0,∵b2﹣4ac=25﹣12=13>0,∴矩形的周长可能是10.【点评】此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC 中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN= x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可解决问题;【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=.【点评】本题考查正方形的性质、矩形的判定和性质、勾股定理直角三角形30度的性质等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象上的点满足函数解析式,可得答案(3)根据二次函数的性质,可得答案.【解答】解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a=﹣2,a=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时x2﹣x﹣2=0,解得x1=﹣1,x2=2,y1的图象与x轴的交点是(﹣1,0)(2,0),当y2=ax+b经过(﹣1,0)时,﹣a+b=0,即a=b;当y2=ax+b经过(2,0)时,2a+b=0,即b=﹣2a;(3)当P在对称轴的左侧时,y随x的增大而增大,(1,n)与(0,n)关于对称轴对称,由m<n,得x0<0;当时P在对称轴的右侧时,y随x的增大而减小,由m<n,得x0>1,综上所述:m<n,求x0的取值范围x0<0或x0>1.【点评】本题考查了二次函数图象上点的坐标特征,解(1)的关键是利用待定系数法;解(2)的关键是把点的坐标代入函数解析式;解(3)的关键是利用二次函数的性质,要分类讨论,以防遗漏.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.【分析】(1)由圆周角定理即可得出β=α+90°,然后根据D是BC的中点,DE⊥BC,可知∠EDC=90°,由三角形外角的性质即可得出∠CED=α,从而可知O、A、E、B四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面积为△ABC的面积的4倍,所以,根据勾股定理即可求出AE、AC的长度,从而可求出AB的长度,再由勾股定理即可求出⊙O的半径r;【解答】解:(1)猜想:β=α+90°,γ=﹣α+180°连接OB,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣(180°﹣2α),∴β=α+90°,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90°∵∠BCA=∠EDC+∠CED,∴β=90°+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA=90°,∠BCE=45°,由(1)可知:O、A、E、B四点共圆,∴∠BEC=90°,∵△ABE的面积为△ABC的面积的4倍,∴,∴,设CE=3x,AC=x,由(1)可知:BC=2CD=6,∵∠BCE=45°,∴CE=BE=3x,∴由勾股定理可知:(3x)2+(3x)2=62,x=,∴BE=CE=3,AC=,∴AE=AC+CE=4,在Rt△ABE中,由勾股定理可知:AB2=(3)2+(4)2,∴AB=5,∵∠BAO=45°,∴∠AOB=90°,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.【点评】本题考查圆的综合问题,涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,综合程度较高,需要学生灵活运用所学知识.2017年浙江省衢州市中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,满分30分) 1.﹣2的倒数是( ) A .12-B .12C .﹣2D .2 2.如图是由四个相同的小立方体搭成的几何体,它的主视图是( )A .B .C .D .3.下列计算正确的是( ) A .2a+b=2ab B .(﹣a )2=a 2 C .a 6÷a 2=a 3 D .a 3•a 2=a 6 4.据调查,某班20为女同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是( )尺码(码)34 35 36 37 38 人数2 5 10 2 1 A .35码,35码 B .35码,36码 C .36码,35码 D .36码,36码 5.如图,直线AB ∥CD ,∠A=70°,∠C=40°,则∠E 等于( )A .30°B .40°C .60°D .70° 6. 二元一次方程组⎩⎨⎧-=-=+236y x y x 的解是( )A. ⎩⎨⎧==15y x B.⎩⎨⎧==24y x C. ⎩⎨⎧-=-=15y x D. ⎩⎨⎧-=-=24y x 7.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,则对应选项中作法错误的是( )A .①B .②C .③D .④8.如图,在直角坐标系中,点A 在函数y=4x(x >0)的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数y=4x(x >0)的图象交于点D ,连结AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于( )A .2B .C .4D .9.如图,矩形纸片ABCD 中,AB=4,BC=6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A.53 B. 35 C. 37 D. 45 10.运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD 、EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )A.252π B .10π C .24+4π D .24+5π二、填空题(本大题共有6小题,每小题4分,共24分)11中字母a 的取值范围是 . 12.化简:2111x xx x -+=++ . 13.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是 .14.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是 .15.如图,在直角坐标系中,⊙A 的圆心A 的坐标为(﹣1,0),半径为1,点P 为直线334y x =-+上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是 .16.如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方形作无滑动的翻滚,经一次翻滚后得到△A 1B 1O ,则翻滚3次后点B 的对应点的坐标是 ,翻滚2017次后AB 中点M 经过的路径长为 .三、解答题(本题共有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分) 170(1)2tan 60π-⨯--︒.18.解下列一元一次不等式组:12232x x x⎧≤⎪⎨⎪+>⎩.19.如图,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆O 于点D ,连接OD .作BE ⊥CD于点E ,交半圆O 于点F .已知CE=12,BE=9. (1)求证:△COD ∽△CBE . (2)求半圆O 的半径r 的长.20.根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业,第二产业,第三产业所占比例如图2所示.请根据图中信息,解答下列问题:(1)求2016年第一产业生产总值(精确到1亿元)(2)2016年比2015年的国民生产总值增加了百分之几?(精确到1%)(3)若要使2018年的国民生产总值达到1573亿元,求2016年至2018年我市国民生产总值的平均增长率(精确到1%)21.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.22.定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.(1)直接写出抛物线y=﹣x2+1的勾股点的坐标.(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1C的勾股点,求抛物线C的函数表达式.(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.23.问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.24.在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB 的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A 点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.参考答案与解析一、选择题(共10小题,每小题3分,满分30分)1.﹣2的倒数是()A.12- B.12C.﹣2 D.2【考点】倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是12 -.故选:A.2.如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】主视图是从正面看所得到的图形,从左往右分2列,正方形的个数分别是:2,1;依此即可求解.【解答】解:如图是由四个相同的小立方体搭成的几何体,它的主视图是.故选:D.3.下列计算正确的是()A.2a+b=2ab B.(﹣a)2=a2C.a6÷a2=a3D.a3•a2=a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)2a与b不是同类项,故不能合并,故A不正确;(C)原式=a4,故C不正确;(D)原式=a5,故D不正确;故选(B)4.据调查,某班20为女同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是()尺码(码)34 35 36 37 38人数 2 5 10 2 1 A.35码,35码B.35码,36码C.36码,35码D.36码,36码【考点】众数;中位数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:数据36出现了10次,次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36. 故选D .5.如图,直线AB ∥CD ,∠A=70°,∠C=40°,则∠E 等于( )A .30°B .40°C .60°D .70°【考点】三角形的外角性质;平行线的性质.【分析】先根据两直线平行,同位角相等求出∠1,再利用三角形的外角等于和它不相邻的两个内角的和即可求出∠E 的度数.【解答】解:如图,∵AB ∥CD ,∠A=70°, ∴∠1=∠A=70°,∵∠1=∠C+∠E ,∠C=40°,∴∠E=∠1﹣∠E=70°﹣40°=30°. 故选:A .6. 二元一次方程组⎩⎨⎧-=-=+236y x y x 的解是( )A. ⎩⎨⎧==15y x B.⎩⎨⎧==24y x C. ⎩⎨⎧-=-=15y x D. ⎩⎨⎧-=-=24y x 【考点】解二元一次方程组.【分析】用加减消元法解方程组即可.【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,∴42x y =⎧⎨=⎩,故选B .7.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,则对应选项中作法错误的是( )A .①B .②C .③D .④ 【考点】作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P 作已知直线的垂线的作法进而判断得出答案. 【解答】解:①作一个角等于已知角的方法正确; ②作一个角的平分线的作法正确;。
浙江省温州外国语学校2017年中考数学三模试卷(解析版)一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的不选、多选、错选,均不给分)1.下列等式计算正确的是()A.(﹣2)+3=﹣1 B.3﹣(﹣2)=1 C.(﹣3)+(﹣2)=6 D.(﹣3)+(﹣2)=﹣5【分析】根据各个选项中的式子可以计算出正确的结果,从而可以判断各个选项中的式子是否正确.【解答】解:∵(﹣2)+3=1,故选项A错误,∵3﹣(﹣2)=3+2=5,故选项B错误,∵(﹣3)+(﹣2)=﹣5,故选项C错误,∵(﹣3)+(﹣2)=﹣5,故选项D正确,故选D.【点评】本题考查有理数的加减混合运算,解答本题的关键是明确有理数加减混合运算的计算方法.2.下列四个几何体中,主视图是三角形的是()A.B.C.D.【分析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【解答】解:主视图是三角形的一定是一个锥体,只有B是锥体.故选:B.【点评】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.3.要使二次根式有意义,则x应满足()A.x≠1 B.x≥1 C.x≤1 D.x<1【分析】根据二次根式有意义的条件可得1﹣x≥0,再解即可.【解答】解:由题意得:1﹣x≥0,解得:x≤1,故选:C.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.4.抛物线y=x2﹣3x+2与y轴交点的坐标为()A.(0,2)B.(1,0)C.(2,0)D.(0,﹣3)【分析】根据y轴上点的横坐标为0计算即可.【解答】解:对于y=x2﹣3x+2,当x=0时,y=2,则抛物线y=x2﹣3x+2与y轴交点的坐标为(0,2),故选:A.【点评】本题考查的是二次函数图象上点的坐标特征,掌握y轴上点的坐标特点是解题的关键.5.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=22°,那么∠2的度数是()A.22°B.78°C.68°D.70°【分析】由题意可求得∠3的度数,然后由两直线平行,同位角相等,求得∠2的度数.【解答】解:如图,∵把一块直角三角板的直角顶点放在直尺的一边上,∴∠3=90°﹣∠1=90°﹣22°=68°,∵a∥b,∴∠2=∠3=68°.故选C.【点评】此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.6.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=6,DB=3,则的值为()A.B.C.D.2【分析】先求出AB,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AD=6,DB=3,∴AB=AD+DB=9,∵DE∥BC,∴===;故选A.【点评】本题考查了平行线分线段成比例定理;熟记平行线分线段成比例定理是解决问题的关键.7.四张完全相同的卡片上,分别画有圆、正方形、等边三角形和线段,现从中随机抽取两张,卡片上画的恰好都是中心对称图形的概率为()A.1 B.C.D.【分析】根据题意列出相应的表格,得到所有等可能出现的情况数,进而找出满足题意的情况数,即可求出所求的概率.所有等可能情况数为12种,其中两张卡片上图形都是中心对称图形的有6种,∴卡片上画的恰好都是中心对称图形的概率为=,故选:C.【点评】此题考查了列表法与树状图法,以及中心对称图形,用到的知识点为:概率=所求情况数与总情况数之比.()【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:中位数是第10、11位队员的身高的平均数,即(176+178)÷2=177(cm).故选B.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.9.某工厂接到加工600件衣服的订单,预计每天做25件,正好按时完成,后因客户要求提前3天交货,工人则需要提高每天的工作效率,设工人每天应多做x件,依题意列方程正确的是()A.﹣=3 B. +3=C.﹣=3 D.﹣=3【分析】根据关键描述语“提前3天交货”得到等量关系为:原来所用的时间﹣实际所用的时间=3.【解答】解:设工人每天应多做x件,则原来所用的时间为:,实际所用的时间为:.所列方程为:﹣=3.故选D .【点评】此题考查由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.10.如图,在菱形ABCD 中,tan ∠ABC=,P 为AB 上一点,以PB 为边向外作菱形PMNB ,连结DM ,取DM 中点E ,连结AE ,PE ,则的值为( )A .B .C .D .【分析】如图,延长AE 交MP 的延长线于F ,作AH ⊥PF 于H .证明△AED ≌△FEM ,可得AE=EF .AD=MF=AB ,由PM=PB ,推出PA=PF ,推出PE ⊥AF ,∠APE=∠FPE ,由∠APF=∠ABC ,可得tan ∠APE=tan ∠ABC==,设AH=4k ,PH=3k ,解直角三角形求出AE 、PE 即可解决问题.【解答】解:如图,延长AE 交MP 的延长线于F ,作AH ⊥PF 于H .∵AD ∥CN ∥PM ,∴∠ADE=∠EMF ,∵ED=EM ,∠AED=∠MEF ,∴△AED ≌△FEM ,∴AE=EF .AD=MF=AB ,∵PM=PB ,∴PA=PF ,∴PE ⊥AF ,∠APE=∠FPE ,∵∠APF=∠ABC ,∴tan ∠APE=tan ∠ABC==,设AH=4k ,PH=3k ,则PA=PF=5k ,FH=2k ,AF==2k,∵•PF•AH=•AF•PE,∴PE=2k,AE=k∴AE:PE=k:2=1:2,故选C.【点评】本题考查全等三角形的判定和性质、菱形的性质、勾股定理、等腰三角形的判定和性质、平行线的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)因式分解:x2﹣9=(x+3)(x﹣3).【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(5分)有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是小林.【分析】观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.【解答】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.(5分)不等式组的解为3≤x<4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣3≥0,得:x≥3,解不等式3x<2x+4,得:x<4,∴不等式组的解集为3≤x<4,故答案为:3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(5分)如图,在△ABC中,两条中线BE、CD相交于点O,则S△ADE:S△COE=2:1.【分析】由题意可得DE为三角形的中位线,利用中位线定理得到DE与BC平行,可得出三角形ADE与三角形ABC相似,进而得到面积之比,且得到三角形COE与三角形BOC相似,进而求出所求.【解答】解:∵在△ABC中,两条中线BE、CD相交于点O,∴DE为中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,△DOE∽△COB,∴S△ADE:S△ABC=1:4,S△DOE:S△COB=1:4,∵OD:OC=1:2,∴S△DOE:S△COE=1:2,S△DOB:S△COB=1:2,∴S△COE=S四边形DBCE,则S△ADE:S△COE=2:1.故答案为:2:1【点评】此题考查了三角形的重心,以及三角形面积,熟练掌握相似三角形的性质是解本题的关键.15.(5分)如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,D为AC中点,P为AB上的动点,将P绕点D逆时针旋转90°得到P′,连CP′,则线段CP′的最小值为2.【分析】先过P'作P'E⊥AC于E,根据△DAP≌△P'ED,可得P'E=AD=2,再根据当AP=DE=2时,DE=DC,即点E与点C重合,即可得出线段CP′的最小值为2.【解答】解:如图所示,过P'作P'E⊥AC于E,则∠A=∠P'ED=90°,由旋转可得,DP=P'D,∠PDP'=90°,∴∠ADP=∠EP'D,在△DAP和△P'ED中,,∴△DAP≌△P'ED(AAS),∴P'E=AD=2,∴当AP=DE=2时,DE=DC,即点E与点C重合,此时CP'=EP'=2,∴线段CP′的最小值为2,故答案为:2.【点评】本题主要考查了旋转的性质以及全等三角形判定与性质的综合应用,解决问题的关键是作辅助线构造全等三角形,依据垂线段最短进行求解.16.(5分)如图,在△ABC中,B、C两点恰好在反比例函数y=(k>0)第一象限的图象上,且BC=,S△ABC=,AB∥x轴,CD⊥x轴交x轴于点D,作D关于直线BC的对称点D′.若四边形ABD′C为平行四边形,则k为8.【分析】设AB交CD于H.首先证明B、C关于直线y=x对称,设C(a,b),则B(b,a),想办法列出方程求出k即可.【解答】解:设AB交CD于H.由题意AB=CD′=CD,∴B、C两点关于直线y=x对称,设C(a,b),则B(b,a),∵S△ABC=,∴•b•(b﹣a)=,∵ab=k,∴b=2,a=,∴CH=BH=,∵BC=,∴BC=BH,∴k=•,解得k=8.故答案为8.【点评】本题考查反比例函数图象上点的特征、k的几何意义、平行四边形的性质等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共80分,需写出必要的文字说明、演算步骤,方程)17.计算:()﹣1++sin30°;(2)先化简,再求值:(m+2)(m﹣2)﹣(m﹣2)2+1,其中m=2.【分析】(1)原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果;(2)原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把m的值代入计算即可求出值.【解答】解:(1)原式=3+2+=3+2;(2)原式=m2﹣4﹣m2+4m﹣4+1=4m﹣7,当m=2时,原式=8﹣7=1.【点评】此题考查了整式的混合运算﹣化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(10分)温州市政府计划投资百亿元开发瓯江口新区,打造出一个“东方时尚岛、海上新温州”.为了解温州市民对瓯江口新区的关注情况,某学校数学兴趣小组随机采访部分温)根据上述统计表可得此次采访的人数为200人;m=20,n=0.15;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,估计25000名温州市民中高度关注瓯江口新区的市民约2500人.【分析】(1)根据题意列式计算即可;(2)根据题意补全条形统计图即可;(3)根据题意列式计算即可得到结论.【解答】解:(1)此次采访的人数为:100÷0.5=200(人),m=200×0.1=20,n==0.15,(2)补全条形统计图如图所示,(3)25000×0.1=2500(人),答:计25000名温州市民中高度关注瓯江口新区的市民约2500人.故答案为:200,20,0.15,2500.【点评】本题考查了条形统计图以及统计表,掌握用样本件总体以及频率的求法是解题的关键.19.(6分)如图,在方格纸中,线段AB的两个端点都在小方格的格点上,AB=5,请找到一个格点P,连结PA,PB,使得△PAB为等腰三角形(请画出两种,若所画三角形全等,则视为一种).【分析】根据AB=5,运用勾股定理作出AP=5或BP=5,即可得到△PAB为等腰三角形.【解答】解:如图所示,△PAB即为所求.【点评】本题主要考查了等腰三角形的判定,以及应用与设计作图的运用,解题时注意:等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.20.(8分)如图,一艘渔船位于码头M的南偏东45°方向,距离码头120海里的B处,渔船从B处沿正北方向航行一段距离后,到达位于码头北偏东60°方向的A处.(1)求渔船从B到A的航行过程中与码头M之间的最小距离.(2)若渔船以20海里/小时的速度从A沿AM方向行驶,求渔船从A到达码头M的航行时间.【分析】(1)作AC⊥AB于C,根据余弦的定义计算;(2)利用余弦的定义求出AM,计算即可.【解答】解:(1)作AC⊥AB于C,则MC=BM×cos45°=60海里,答:渔船从B到A的航行过程中与码头M之间的最小距离为60海里;(2)在Rt△ACM中,AM==40,40÷20=2,答:渔船从A到达码头M的航行时间为2小时.【点评】本题考查的是解直角三角形的应用﹣方向角问题以及勾股定理的应用,正确标注方向角、熟记锐角三角函数的定义是解题的关键.21.(10分)如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AB 相切于点P.(1)求证:BP平分∠ABC;(2)若PC=1,AP=3,求BC的长.【分析】(1)连接OP,首先证明OP∥BC,推出∠OPB=∠PBC,由OP=OB,推出∠OPB=∠OBP,由此推出∠PBC=∠OBP;(2)作PH⊥AB于H.首先证明PC=PH=1,在Rt△APH中,求出AH,由△APH∽△ABC,推出=,求出AB、BH,由Rt△PBC≌Rt△PBH,推出BC=BH即可解决问题;【解答】(1)证明:连接OP,∵AC是⊙O的切线,∴OP⊥AC,BC⊥AC,∴OP∥BC,∴∠OPB=∠PBC,∵OP=OB,∴∠OPB=∠OBP,∴∠PBC=∠OBP,∴BP平分∠ABC.(2)作PH⊥AB于H.∵PB平分∠ABC,PC⊥BC,PH⊥AB,∴PC=PH=1,在Rt△APH中,AH==2,∵∠A=∠A,∠AHP=∠C=90°,∴△APH∽△ABC,∴=,∴=,∴AB=3,∴BH=AB﹣AH=,在Rt△PBC和Rt△PBH中,,∴Rt△PBC≌Rt△PBH,∴BC=BH=.【点评】本题考查切线的性质、角平分线的性质、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考常考题型.22.(12分)温州某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至于30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;(2)若建成后的寝室可供600人住宿,求单人间的数量;(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?【分析】(1)可设2015至2017年的平均增长率是x,根据等量关系:2015年学校寝室数×(1+平均增长率)2=2017年学校寝室数,列出方程求解即可;(2)设双人间的数量为5y间,则四人间的数量为5y间,根据不等量关系:单人间的数量在20至于30之间(包括20和30),列出不等式,再根据整数的性质即可求解;(3)由于四人间的数量是双人间的5倍,可知四人间和双人间的数量是5+1=6的倍数,找到150~160间6的最大倍数,再进一步求出双人间和四人间的数量,以及单人间的数量,从而求解.【解答】解:(1)设2015至2017年的平均增长率是x,依题意有64(1+x)2=121,解得x1=0.375,x2=﹣2.375.故2015至2017年的平均增长率为37.5%;(2)设双人间的数量为y间,则四人间的数量为5y间,依题意有20≤600﹣2y﹣4×5y≤30,解得25≤y≤26,∵y为整数,∴y=26,600﹣2y﹣4×5y=600﹣52﹣520=28.故单人间的数量是28间;(3)由于四人间的数量是双人间的5倍,则四人间和双人间的数量是5+1=6的倍数,∵150~160间6的最大倍数是156,∴双人间156÷6=26(间),四人间的数量26×5=130(间),单人间180﹣156=24(间),24+26×2+130×4=596(名).答:该校的寝室建成后最多可供596名师生住宿.【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.(12分)如图,抛物线y=ax2+3x交x轴正半轴于点A(6,0),顶点为M,对称轴MB 交x轴于点B,过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD于点F,作直线MF.(1)求a的值及M的坐标;(2)当BD为何值时,点F恰好落在该抛物线上?(3)当∠DCB=45°时:①求直线MF的解析式;②延长OE交FM于点G,四边形DEGF和四边形OEDC的面积分别记为S1、S2,则S1:S2的值为.(直接写答案)【分析】(1)把A点坐标代入y=ax2+3x中可求出a的值,从而得到抛物线解析式,然后把解析式配成顶点式即可得到M点的坐标;(2)易得四边形OCFE为平行四边形,则EF=OC=2,所以F点的横坐标为5,利用抛物线解析式可确定F(5,),则BE=,然后证明△BCD∽△EFD,利用相似比可求出BD的长;(3)①先证明△BOE和△BCD为等腰直角三角形,则BE=OE=3,则E(3,3),BD=BC=1,同时可得到直线OE的解析式为y=x,再利用EF∥OC,EF=OC=2得到F(5,3),然后利用待定系数法求直线MF的解析式;②通过解方程组得G点坐标,利用三角形面积公式,利用S1=S△GEF+S△DEF求S1的值,利用S2=S△BOE﹣S△BCD求S2的值,从而可得到的值.【解答】解:(1)把A(6,0)代入y=ax2+3x得36a+18=0,解得a=﹣;抛物线解析式为y=﹣x2+3x,∵y=﹣(x﹣3)2+,∴M点的坐标为(3,);(2)∵CF∥OE,EF∥OC,∴四边形OCFE为平行四边形,∴EF=OC=2,∵抛物线的对称轴为直线x=3,B(3,0),∴F点的横坐标为5,当x=5时,y=﹣x2+3x=,即F(5,),∴BE=,∵EF∥BC,∴△BCD∽△EFD,∴==,∴BD=BE=×=,即当BD为时,点F恰好落在该抛物线上;(3)①∵CD∥OE,∴∠BOE=∠DCB=45°∴△BOE为等腰直角三角形,∴BE=OE=3,则E(3,3),∴直线OE的解析式为y=x,同理可得△BCD为等腰直角三角形,∴BD=BC=1,∴DE=2,∵EF∥OC,EF=OC=2,∴F(5,3),设直线MF的解析式为y=kx+b,把M(3,),F(5,3)代入得,解得,∴直线MF的解析式为y=﹣x+;②解方程组得,则G(,),∴S1=S△GEF+S△DEF=×2×(﹣3)+×2×2=,S2=S△BOE﹣S△BCD=×3×3﹣×1×1=4,∴==.故答案为.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质,记住三角形面积公式.24.(14分)如图,在矩形ABCD中,AD=10,E为AB上一点,且AE=AB=a,连结DE,F 是DE中点,连结BF,以BF为直径作⊙O.(1)用a的代数式表示DE2=a2+100,BF2=;(2)求证:⊙O必过BC的中点;(3)若⊙O与矩形ABCD各边所在的直线相切时,求a的值;(4)作A关于直线BF的对称点A′,若A′落在矩形ABCD内部(不包括边界),则a的取值范围<a<.(直接写出答案)【分析】(1)如图1,根据勾股定理得:ED2=AE2+AD2=a2+102=a2+100,在Rt△BGF中,由勾股定理得:BF2=BG2+GF2,代入可得结果;(2)如图1,证明四边形BGFH是矩形,得BH=GF=AD=BC,所以⊙O必过BC的中点;(3)因为⊙O不可能与边AB和BC相切,所以分两种情况:①如图2,当⊙O与边CD相切时,根据Rt△ONF中,ON2+NF2=OF2=OM2,列式+()2=,求a的值;②如图3,当⊙O与边AD相切时,设切点为Q,根据:且BF=2OQ,列式可得结论;(4)分别计算当a最小和最大时,即A′在边BC上和边CD上,作辅助线,根据对称点的连线被对称轴垂直平分,由线段垂直平分线的性质列式可得结论.【解答】解:(1)如图1,∵四边形ABCD是矩形,∴∠A=90°,在Rt△AED中,AE=a,AD=10,由勾股定理得:ED2=AE2+AD2=a2+102=a2+100,设⊙O交AB于G,连接FG,∵BF是⊙O的直径,∴∠BGF=90°,∵∠A=90°,∴∠BGF=∠A,∴FG∥AD,∵F是ED的中点,∴GF=AD=5,EG=AG=a,∵AE=AB=a,∴AB=4a,∴BG=4a﹣a=a,由勾股定理得:BF2=BG2+GF2,∴BF 2=+52=+25=,故答案为:a 2+100;;(2)如图1,设⊙O 交BC 于H ,连接FH ,∵BF 是⊙O 的直径,∴∠BHF=90°,∴∠ABC=∠BHF=∠AGF=90°,∴四边形BGFH 是矩形,∴BH=GF=AD=BC ,∴H 是BC 的中点,即:⊙O 必过BC 的中点;(3)分两种情况:①如图2,当⊙O 与边CD 相切时,设切点为M ,连接OM 、FH 交于N ,则OM ⊥CD ,∴OM=ON +MN=+5=,∵OM ⊥FH ,∴NF=FH=×=a ,Rt △ONF 中,ON 2+NF 2=OF 2=OM 2,∴+()2=,a=,∵a >0,∴a=,②如图3,当⊙O 与边AD 相切时,设切点为Q ,连接OQ ,则OQ ⊥AD ,连接FG ,交OQ 于P ,∴OQ=OP +PQ=BG +AG=+=a ,由(1)知:且BF=2OQ ,∴25+a 2=(2×a )2,a=,综上所述,若⊙O 与矩形ABCD 各边所在的直线相切时,a 的值为或;(4)如图4,当A 的对称点A′恰好在边BD 上时,连接AA′交BF 于H ,连接AF 、A′F ,过F 作MN ⊥BC ,交BC 于M ,交AD 于N ,则MN ⊥AD ,∵A关于直线BF的对称点A′,∴BF是AA′的垂直平分线,∴AF=A′F,AB=A′B=4a,由(1)(2)得:FN=a,FM=a,A′M=4a﹣5,AN=5,由勾股定理得:=(4a﹣5)2+,解得:a1=0(舍),a2=,∴当a<时,A′落在矩形ABCD外部(包括边界),如图5,当A′落在边CD上时,连接AA′、A′B,过F作MG⊥AB,则MG⊥CD,设射线BF交AD于N,易得A′G=AM=DG=a,A′C=3a,∵BF是AA′的垂直平分线,∴AB=A′B,则(4a)2=102+(3a)2,a=,∴a的取值范围是:<a<,故答案为:<a<.【点评】本题是圆和四边形的综合题,考查了三角形中位线定理、线段垂直平分线性质、对称的性质、勾股定理、矩形的性质,第三问和第四问中采用分类讨论的思想,注意不要丢解,第四问有难度,准确画出图形是关键.。
永嘉县2017年初中毕业升学考试第二次适应性测试数 学 试 题 卷亲爱的同窗:欢迎参加考试! 请你认真审题,踊跃试探,细心答题,发挥最正确水平. 答题时,请注意以下几点:1.全卷共4页,有三大题,24小题.全卷总分值150分.考试时刻120分钟. 2.答案必需写在答题纸相应的位置上,写在试题卷、草稿纸上均无效. 3.答题前,认真阅读答题纸上的《注意事项》,按规定答题.祝你成功!卷Ⅰ一、选择题(此题有10小题,每题4分,共40分,每题只有一个选项是正确的,不选、多项选择、错选,均不给分)1.在-4,2,-1,3这四个数中,最小的数是( ▲ ) A .-1 B .2 C .3 D .-4 2.小明对九(1)班同窗“你最喜爱的球类项目是什么?(只选一项)”的 问题进行了调查,把所得数据绘制成如下图的扇形统计图. 由图可知, 该班同窗最喜爱的球类项目是( ▲ )A .羽毛球B .篮球C .排球D .乒乓球 3.假设3a -在实数范围内成心义,那么a 的取值范围是( ▲ ) A .a ≤3 B .a ≥3 C .a ≤-3 D .a ≥-3 4.如图是由四个相同的小正方体组成的立体图形,它的主视图是( ▲ )5.假设点A (2,3)在反比例函数ky x=的图象上,那么该图象必然通过点( ▲ ) A .(-2,3) B .(1,-6) C .(-3,-2) D .(3,3)6.用配方式解一元二次方程542=-x x 时,以下配方正确的选项是 ( ▲ )A .9)2(2=-xB .1)2(2=-xC .9)2(2=+xD .1)2(2=+x 7.如图,直线1l ∥2l ∥3l , 直线AC 别离交1l ,2l ,3l 于点A ,B ,C , 直线DF 别离交1l ,2l ,3l 于点D ,E ,F .若DE =3,EF =6,AB =4, 则AC 的长是( ▲ )(第7题)l 1l 2l 3FE CB A D A . B .C .D .(第2题)九(1)班同学最喜欢 的球类项目统计图排球23%午餐40%篮球 32%乒乓球 20%羽毛球A .6B .8C .9D .128.如图,在平面直角坐标系中,点A ,B 的坐标别离为(0,4)和(1,3)△OAB 沿x 轴向右平移后取得△O ′A ′B ′,点A 的对应点A ′ 在直线y =45x 上,那么点B 与O ′ 间的距离为( ▲ )A .3B .4C .5D .349.如图,扇形OAB 中,∠AOB =120°,半径OA =6,C 是AB 的中点, CD ⊥OA ,交AB 于点 D ,那么CD 的长为( ▲ ) A .23B .3C .3D .32 10.已知二次函数2(0)y ax bx c a =++≠图象上部份点的坐标()x y ,的对应值如下表所示:x… 0 50 200 … y…1-11…那么方程220ax bx ++=的根是( ▲ )A .x 1=x 2=100B .x 1=0,x 2=200C .x 1=50,x 2=150D .x 1=50,x 2=250卷Ⅱ二、填空题(此题有6小题,每题5分,共30分) 11.分解因式:m 2-2m +1 = ▲ .12.一个不透明的袋中装有3个黄球,4个黑球和5个红球,它们除颜色外都相同.那么从袋中摸出一个球是黑球的概率为 ▲ . 13.如图,已知△ABC ≌△BAD ,若∠DAC =20°,∠C =88°,则∠DBA = ▲ 度.14.九年级某班同窗,每人都会游泳或滑冰,其中会游泳的人数比会滑冰的人数多10人,两种都会的有5人.设会游泳的有a 人, 那么该班同窗共有 ▲ 人(用含a 的代数式表示). 15.如图,矩形ABCD 中,AB =10,AD =6,以A 为圆心,AB 为半径作圆弧交CD 于E ,连结EA ,EB .那么tan ∠AEB 的值为 ▲ . 16.如图,正方形ABCD 的边长为6,E ,F 别离是边CD 和AD 上的点,且DF =DE =2,连结AE ,作点F 关于AE 的对称点G ,连结AG 并延 长交CD 于点H ,过点G 的直线l 别离交线段AF ,BC 于点M ,N , 且MN =AH .则AH 和MF 的长别离是 ▲ 和 ▲ .D CAB(第13题)(第16题) H GFE ACD B(第9题)DC BOA(第8题)O'B'A'BAOxy(第15题)三、解答题(此题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明进程) 17.(此题10分)(1)计算:20170-8+|1|.(2)先化简,再求值:⎪⎪⎭⎫⎝⎛++÷--x x x x x 121222,其中x =99.18.(此题8分)某县在一次九年级数学模拟测试中,有一道总分值为8分的解答题,按评分标准,所有考生的得分只有四种情形:0分、3分、5分、8分.教师为了了解学生的得分情形与题目的难易程度,从全县9000名考生的试卷中随机抽取假设干份,通过度析与整理,绘制了如下两幅不完整的统计图.请依照以上信息解答以下问题:(1)该题学生得分情形的众数是 ▲ . (2)求所抽取的试卷份数,并补全条形统计图. (3)已知难度系数的计算公式为L =XW,其中L 为难度系数,X 为样本平均得分,W 为试题总分值值.一样来讲,依照试题的难度系数可将试题分为以下三类:当0≤L <时,此题为难题;当≤L ≤时,此题为中等难度试题;当<L ≤1时,此题为容易题.通过计算,说明此题关于该县的九年级学生来讲属于哪一类?19.(此题8分)如图,在10×10的方格中有线段AD ,作三边互不相等的△ABC ,使其知足以下条件:(1)在图甲中,作格点△ABC ,使AD 为△ABC 的中线. (2)在图乙中,作格点△ABC ,使AD 为△ABC 的高线.(图甲、图乙在答题纸上)20.(此题8分)如图,点A ,D 在BC 的同侧,AB ⊥BC ,CD ⊥BC ,点E 在线段BC 上,且AE ⊥DE . (1)要取得△ABE ≌△ECD ,请你添加一个条件: ▲ ,并证明结论成立.(2)在(1)的结论下,假设已知BC =5,ADABE 的面积.(第20题)BA12243648607284961081200分3分5分8分类别九年级数学质量检测一道解答题学生得分情况统计图(第18题)(第19题)21.(此题10分)已知抛物线2y ax bx =+通过点A (-3,-3)和点P (m ,0(1)如图,假设该抛物线的对称轴通过点A ,求现在y 的最小值和m (2)假设m=-2时,设现在抛物线的极点为B ,求四边形OAPB 的面积.22.(此题10分)如图,已知AB 是半圆O 的直径,OC ⊥AB 交半圆于点C ,D 是射线OC 上一点,连结AD 交半圆O 于点E ,连结BE ,CE . (1)求证:EC 平分∠BED . (2)当EB =ED 时,求证:AE =CE .23.(此题12分)为了迎接浙江省中小学生健康体质测试,某学校开展“健康校园,阳光跳绳”活动,为此学校预备购买A ,B ,C 三种跳绳.已知某厂家的跳绳的规格与价钱如下表:(1)已知购买A ,B 两种绳索共20条花了180元,问A ,B 两种绳子各购买了多少条? (2)假设该厂家有一根长200米的绳索,现将其裁成A ,C 两种绳子销售总价为240元,则剩余的绳索长度最多可加工几条B 种绳子?(3)假设该厂家有一根长200米的绳索,现将其裁成A ,B ,C 三种绳子共40条(没有剩余)销售给学校,学校要求A 种绳子的数量少于B 种绳子的数量但很多于B 种绳子的数量的一半,请直接写出所有的裁剪方案.24.(此题14分)如图,在△ABC 中,∠ACB =90º,AC =8,CB =6,点D 在线段CB 的延长线上,且BD =2,点P 从点D 动身沿着DC 向终点C 以每秒1个单位的速度运动,同时点Q 从点C 动身沿着折线C -B -A 往终点A 以每秒2个单位的速度运动.以PQ 为直径构造⊙O ,设运动的时刻为t (t ≥0)秒.(1)当0≤t <3时,用含t 的代数式表示BQ 的长度.(2)当点Q 在线段CB 上时,求⊙O 和线段AB 相切时t 的值. (3)在整个运动进程中,①点O 是不是会出此刻△ABC 的内角平分线上?假设存在, 求t 的值;假设不存在,说明理由. ②直接写出点O 运动途径的长度.(第24题)(第21题)(第22题)永嘉县2017年初中升学考试第二次适应性考试数学学科参考答案一、选择题(此题有10小题,每题4分,共40分,每题只有一个选项是正确的,不选、多项选择、二、填空题(此题有6小题,每题5分,共30分) 11.(m -1)212.1313.36 14.(2a -15) 15.3 16.152,135(过E 作PE ⊥AH 于点P ,设HE =x ,由sin ∠AHD ==AD PE AH HE ,得62=AH x,∴AH =3x ,∴62+(2+x )2=(3x )2,解得x =52,∴AH =152.过G作GQ ⊥AD 于点Q ,并反向延长交BC 于点R ,易患GQ =AG ·sin ∠DAH =125,∴GR =185,∴23=GM GN ,∴GM =3,∴MQ =95,由tan ∠QGF =tan ∠DAE =13,得QF =1214535⨯=,∴MF =9413555+=)三、解答题(此题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明进程) 17.(此题10分) 解:(1)原式=1--1=.……5分(2)原式=1x x÷221x x x =1x x ·2(1)xx =11x , 当x =99时,原式=111100x . ……5分18.(此题8分)(1)5. ………………………2分(2)24÷10%=240(份).………………………2分………………………2分(3)010%325%545%820%0.5758L ⨯+⨯+⨯+⨯==∵<L <,∴此题为中等难度试题.………………………2分12243648607284961081200分3分5分8分19.(此题8分)参考答案(不唯一),每图4分.20.(此题8分)(1)BE=CD .证明:∵AB ⊥BC ,CD ⊥BC , AE ⊥DE ,∴∠B =∠C =∠AED =Rt ∠,∴∠AEB +∠DEC =90°,∠DEC +∠EDC =90° ∴∠AEB =∠EDC 又∵BE =DC∴△ABE ≌△ECD (ASA ). ………………………4分(2)∵△ABE ≌△ECD ∴AE =ED ,AB =EC ∵AD 26 ∴AE =ED 13 设BE =x ,那么AB =EC =5-x .在△ABE 中,x ²+(5-x )²=13,解得1x =2, 2x =3. 13232ABES=⨯⨯= ………………………4分21.(此题10分)解:(1)依照题意得,A 是抛物线的极点,∴现在y 的最小值-3,对称轴是直线x =-3,∴m =-6. ………………………4分(2)将(-2,0)和(-3,-3)别离代入2y ax bx =+,得420933a b a b -=⎧⎨-=-⎩,解得12a b =-⎧⎨=-⎩.∴244144ac b a --==-,∴S △OP A =12332⨯⨯=,S △OP A =12112⨯⨯=. ∴四边形OAPB 的面积是4. ………………………6分(第20题)B甲乙(图2) 22.(此题10分)(1)∵AB 是半圆O 的直径,∴∠AEB =90°,∴∠DEB =90°.∵OC ⊥AB ,∴90AC BC ==︒,∴∠BEC =45°,∴∠DEC =45°. ∴∠BEC =∠DEC ,即EC 平分∠BEC .…………5分 (2)连结BC .∵BE =DE ,∠BEC =∠DEC ,EC =EC , ∴△BEC ≌△DEC ,∴∠CBE =∠CDE . ∵∠CDE =90°-∠A =∠ABE , ∴∠ABE =∠CBE .∴AE EC =,∴AE =CE . …………5分23.(此题12分)(1)设A 种绳索买了x 条,B 种绳索买了y 条. 则20128180x y x y +=⎧⎨+=⎩,解得515x y =⎧⎨=⎩………………………4分(2)设A 种绳索裁了a 条,C 种绳索裁了c 条.则12a +6c =240,化简得c =40-2a .B 种绳索的总长度为:200-8a -4c =200-8a -4(40-2a )=40(米)40646=,B 种绳索最多可加工6条.. ………………………4分(3)A ,B ,C 三种绳索别离为5条、10条、25条或6条、8条、26条. ……4分 24.(此题14分)(1)6-2t .…………………………………………………………2分 (2)分两种情形讨论:①当P ,Q 还未相遇时,如图1,CQ=2t ,DP=t , QP=8-3t ,OE=12QP=832t -,OB=BP +OP =832t-+()222t -=42t -,∵⊙O 与AB 相切,∴OE ⊥AB ,∵sin ∠ABC=OE AC OB AB =,∴8342452tt -=-,解得t =2411.……………3分 ②当P ,Q 相遇后,如图2,BQ =6-2t ,PQ =BP -BQ =(t -2)-(6-2t )=3t -8,OE=12QP=382t -,OB =OQ +BQ =42t -,∵⊙O 与AB 相切, ∴OE ⊥AB ,∵sin ∠ABC=OE AC OB AB =,∴3842452t t -=-,解得t =5619.………3分 (图1)(第22题)CDEB综上所述,知足条件的t 的值有t =2411,5619. (3)①i)当点O 在∠B 的角平分线上时,如图3,可得BQ =BP ,即2 t -6=t -2,解得t =4. …………………………………………2分 ii)当点O 在∠C 的角平分线上时,如图4, 过点O ,Q 别离做AC 的垂线交点为F ,G .则GQ = AQ ·sin ∠BAC =35AQ =3(162)5t -.同理可得GC =45BQ =4(26)5t - 在梯形CPQG 中,OF 是中位线,那么OF =12(GQ +CP )=13(162)(8)25t t -⎡⎤+-⎢⎥⎣⎦=881110t-∵点O 在∠C 的角平分线上,∴CF =OF .88112(26)105t t --=,解得t =11219.……………………………………………2分iii)当点O 在∠A 的角平分线上时,如图5,作∠A 的角平分线交BC 于点H ,过点H 做HI ⊥AB 于I , 则HI =CH .∵sin ∠ABC =HI AC HB AB=,那么45HI HB =, ∴CH =HI =83,∴tan ∠CAH=13,由ii)中得OF =12(GQ +CP )=881110t-,CF =2(26)5t -,AF =AC -CF =5245t-,∴tan ∠CAH=881111052435tOF t AF -==-,解得t =325.………………………………2分 综上所述,当t =4,11219,325时,点O 会出此刻△ABC 的内角平分线上. ②1853+………………………………………………………………………2分(图4)(图5)OQ B ADP(图3)略解:133(64)2222+--+=+=。
2017年浙江中考数学真题分类汇编--三角形(解析版)DBE,CF两两相交于D,E,F三点(D,E,F三点不重合)。
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;(2)△DEF是否为正三角形?请说明理由;(3)进一步探究发现,△ABD的三边存在一定的等量关系,设,,,请探索,,满足的等量关系。
10、(2017•绍兴)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=________°,β=________°.②求α,β之间的关系式.________(2)是否存在不同于以上②中的α,β之间的关系式?若存在,请求出这个关系式(求出一个即可);若不存在,说明理由.11、(2017·台州)如图,已知等腰直角△ABC,点P 是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求的值12、(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.13、(2017•温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.答案解析部分一、单选题1、【答案】C【考点】三角形三边关系【解析】【解答】解:A.2+3>4,故能组成三角形;B.5+7>7,故能组成三角形;C.5+6<12,故不能组成三角形;D.6+8>10,故能组成三角形;故答案为C。
2017年浙江省温州十七中中考数学三模试卷一、选择题(共10小题,每小题4分,共40分):1.(4分)下列属于无理数的是()A.0B.C.D.﹣0.42.(4分)如图所示的几何体,它的俯视图()A.B.C.D.3.(4分)若式子在实数范围内有意义,则x的取值范围是()A.x<2B.x>2C.x≤2D.x≥24.(4分)如图,已知BE∥CF∥DG,AB:BC:CD=2:1:3,若AE=4,则EG的长是()A.2B.4C.8D.125.(4分)如图,斜坡AB的坡比1:1.5,BC⊥AC,若AC=6m,则BC的高度是()A.4m B.6m C.7.5m D.9m6.(4分)某班6个合作小组的人数分别是4,6,4,5,7,8,现第4小组调出1人去第2小组,则新各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是()A.调配后平均数变小了B.调配后众数变小了C.调配后中位数变大了D.调配后方差变大了7.(4分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4B.5C.6D.78.(4分)某公司生产大、小两种礼盒装粽子,大礼盒内装有12枚粽子,小礼盒内装5枚粽子,端午将至,该公司赠送夕阳红养老院大、小礼盒各若干(礼盒的总数超过20盒),装有粽子共150枚,则该公司赠送了大、小礼盒总数共有()A.21盒B.22盒C.23盒D.24盒9.(4分)如图,在边长为2的正方形DEFG中作扇形ABC,点B是DG中点,且与EF 相切,则的长度是()A.B.C.D.10.(4分)如图,点A在函数图象上,点B,C在函数图象上,且AB∥x轴,AC=BC,则△ABC的面积为()A.15B.12.5C.D.9二、填空题(共6小题,每小题5分,共30分):11.(5分)因式分解:x2﹣4=.12.(5分)请写出一个经过第二,四象限的一次函数表达式:.13.(5分)光明中学七年级甲、乙、丙三个班中,每班的学生人数都为40名,某次数学考试的成绩统计如下:(每组分数含最小值,不含最大值)根据以上图、表提供的信息,则80~90分这一组人数最多的班是班.14.(5分)分式方程﹣=0的根是.15.(5分)如图,在三角形纸片中,∠C=90°,∠A=30°,点D是边AC上的一点,且AD=2CD,若将此三角形纸片按图折叠,使点A,C与点D重合,若AC=6cm,则△DEF 的面积为.16.(5分)如图,抛物线y=a(x﹣9)(x+12)(a<0)与x轴交于点A,B,与y轴交点C,在y轴上取点E,使OE=OA,以OB,OE为边作矩形OBDE,边DE与抛物线的交点为F,连接BF,作△BDF的外接圆⊙M,若⊙M与y轴相切,则a的值为.三、解答题(共8小题,共80分):17.(10分)(1)计算:;(2)化简:a2+(﹣2a)2b2÷b2.18.(8分)有一个不透明的口袋,里边装有3个分别标有数学﹣1,1,2的小球,它们除标的数字外其它都相同,现随机从口袋中摸出一个小球记下数字作为点的横坐标,不放回去,再摸出一个小球记下数字作为纵坐标.(1)请用列表或树状图的方法,表示出两次所得数字可能出现的所有结果;(2)求出点的坐标在第四象限的概率.19.(8分)如图,在6×6的两张方格纸中,每个小正方形的边长均为1,两张方格纸中分别画有线段AB,CD,线段的端点A,B,C,D均在小正方形的顶点上.(1)在图1中以AB为边画等腰直角三角形ABE,点E在小正方形顶点上;(2)在图2中以CD为对角线画菱形CFDG,点F,G均在小正方形顶点上,且菱形CFDG 的面积为15.20.(8分)如图,已知在Rt△ABC中,∠ABC=90°,在AB上取点D,使得AD=CD,若CD∥BE.(1)求证:AB=BE;(2)若CD平分∠ACB,求∠ABE的度数.21.(10分)如图,在△ABC中,以BC为直径作⊙O,分别交AC,AB于点E,D,连结ED,且ED∥BC.(1)求证:△BDC≌△CEB;(2)若BC=10,tan∠AED=,求AD的长.22.(10分)某玩具公司生产玩具,若第一年每件生产成本是16元,接下来两年每件生产成本每年平均升高的百分率是x.(1)第二年每件玩具的生产成本是(用含x的代数式表示);第三年每件玩具的生产成本是(用含x的代数式表示);(2)若第三年每件生产成本比第一年多9元,试求x的值;(3)该玩具第二年每件的销售价是40元,第三年每件的销售价比第二年有所下降,若下降的百分率与每件玩具年平均升高成本的百分率相同,且第三年每件玩具的销售价不高于30元,设第三年每件玩具获得的利润是y元,试求y关于x的函数关系式,并确定单件利润y的最大值.(注:利润=销售价﹣生产成本)23.(12分)如图,在平面直角坐标系中,抛物线与x轴交于点A,与y 轴交于点C,点P是抛物线上一点,点D坐标为(0,2).(1)求A,B,C的坐标;(2)如图1,以BD,BP为边作▱DBPE,当抛物线的对称轴恰好经过▱DBPE对称中心时,求点P的坐标,并说明此时点E是否在抛物线上;(3)如图2,当点P在第一象限上时,连结OP交BD于点Q,求的最大值.24.(14分)如图1,在△ABC中,AB=AC=5,sin A=,点P从点A出发沿AC以每秒1个单位长度的速度向终点C运动:点Q从点B点出发,以每秒2个单位长度的速度沿B→A→B运动,当点P到达点C时,停止所有运动.在运动过程中,以点P为圆心,P A 为半径的⊙P交射线AB于点E,同时以点Q为旋转中心将QB按逆时针方向旋转90°得到QD,设P,Q运动的时间为t秒.(1)用含t的代数式表示AE=;(2)当t为何值时,⊙P与DQ相切?(3)①如图2,过点D,E作直线DE,在整个运动过程中,是否存在直线DE与△ABC 的边垂直?若存在,求出所有对应的t的值;若不存在,请说明理由;②连结AD,则线段AD长的最小值为.(直接写出答案即可)2017年浙江省温州十七中中考数学三模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.【解答】解:无理数的是,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【解答】解:俯视图如选项B所示,故选:B.【点评】本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.3.【解答】解:根据题意得:x﹣2≥0,解得:x≥2.故选:D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.4.【解答】解:∵BE∥CF∥DG,AB:BC:CD=2:1:3,∴,∵AE=4,∴EG=8,故选:C.【点评】此题考查平行线分线段成比例,关键是根据平行线分线段成比例解答.5.【解答】解:∵BC⊥AC,∴∠C=90°,∴△ABC是直角三角形,在Rt△ABC中,∵i==,且AC=6m,∴BC=i×AC=×6=4(m),故选:A.【点评】本题主要考查解直角三角形的应用﹣坡度坡角问题,解题的关键是掌握坡度和坡比的概念及其应用.6.【解答】解:A、调配后的平均数不变,故本选项错误;B、原小组的众数是4,调配后的众数任然是4,故本选项错误;C、把原数从小到大排列为:4,4,5,6,7,8,则中位数是=5.5,调配后中位数的中位数是=5.5,则调配后的中位数不变.故本选项错误;D、原方差是:[2(4﹣5.5)2+(6﹣5.5)2+(5﹣5.5)2+(7﹣5.5)2+(8﹣5.5)2]=,调配后的方差是[3(4﹣5.5)2+2(7﹣5.5)2+(8﹣5.5)2]=,则调配后方差变大了,故本选项正确;故选:D.【点评】此题考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.7.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.8.【解答】解:设该公司赠送大礼盒x盒,赠送小礼盒y盒,依题意,得:12x+5y=150,∴y=30﹣x.∵x,y均为正整数,∴,.又∵x+y>20,∴x+y=5+18=23.故选:C.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.【解答】解:作BH⊥EF于H,如图,则BH=DE=2,∵与EF相切∵BH=BA=2,在Rt△ABD中,∵cos∠ABD==,∴∠ABD=60°,同理可得∠CBG=60°,∴∠ABC=60°,∴的长度==π.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了正方形的性质和弧长公式.10.【解答】解:如图,作CH⊥AB于H,设A(﹣m,),∵AB∥x轴,∴B(4m,),∵AC=BC,∴AH=BH,∴点C的横坐标为m,∴点C的坐标为(,),∴△ABC的面积=.故选:B.【点评】本题考查反比例函数上点的坐标的特征,解题的关键是设出点A的坐标,再根据条件确定点B,C的坐标.二、填空题(共6小题,每小题5分,共30分):11.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.12.【解答】解:∵一次函数位于二、四象限,∴k<0,解析式为:y=﹣x+1,故答案为:y=﹣x+1.【点评】此题考查了一次函数的性质.关键是根据位于二、四象限的一次函数比例系数k <0解答.13.【解答】解:根据频数分布直方图可知,甲班80~90分这一组人数大于12人,根据扇形统计图可知,乙班80~90分这一组人数为40×(1﹣35%﹣10%﹣5%﹣20%)=12人,根据频数统计表可知,丙班80~90分这一组人数最多为11人,所以80~90分这一组人数最多的班是甲班;故答案为甲班.【点评】本题难度中等,考查统计图表的识别;解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.14.【解答】解:方程两边都乘以最简公分母x(x﹣3)得:4x﹣(x﹣3)=0,解得:x=﹣1,经检验:x=﹣1是原分式方程的解,故答案为:x=﹣1.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.【解答】解:如图,∵AD=2CD,AC=6cm,∴AD=4,CD=2∵折叠∴AG=GD=2,AE=DE,∠EAD=∠EDA=30°,∴∠AED=120°,EG⊥AD,∴∠FED=60°,∠AEG=∠DEG=60°,AE=DE=∵DF∥EG∴∠EFD=∠AEG=60°,∠GED=∠EDF=60°∴△DEF是等边三角形,∴S△DEF==故答案为:【点评】本题考查了翻折变换的性质、直角三角形的性质;熟练掌握翻折变换的性质,直角三角形的性质是解决问题的关键.16.【解答】解:由题意抛物线y=a(x﹣9)(x+12)(a<0)与x轴交于点A,B,令y=0,a(x﹣9)(x+12)=0,解得x1=9,x2=﹣12,∴A(﹣12,0),B(9,0),如图,若⊙M与y轴的切点为G,与x轴的交点为N,连接MG、FN,交点为H,四边形OBDE为矩形,BF为直径,则四边形OEFN为矩形,∵⊙M与y轴相切,∴MG⊥OE,过点M作MK⊥OB,则四边形MHNK为矩形,∵OE=OA=12,∴由垂径定理得,NH=HF=6,在Rt△MKB中,设MB=x,则MK=HN=6,BK=9﹣x,由勾股定理MK2+BK2=BM2可得,62+(9﹣x)2=x2,解得,.∴BN==5,∴EF=ON=OB﹣BN=9﹣5=4,∴F点的坐标为(4,12),把F点的坐标为(4,12)代入抛物线解析式得,12=a(4﹣9)(4+12),∴.【点评】本题主要考查二次函数与圆的综合问题,解题的关键是掌握二次函数解析式的求法、切线的性质及圆的有关性质等知识点.解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.三、解答题(共8小题,共80分):17.【解答】解:(1)原式=﹣+﹣3=﹣3;(2)原式=a2+4a2b2÷b2=a2+4a2=5a2.【点评】此题主要考查了整式的除法运算以及实数运算,正确掌握相关运算法则是解题关键.18.【解答】解:(1)根据题意画树状图如下:共有6种等情况数;(2)点的坐标有(﹣1,1),(﹣1,2),(1,﹣1)(1,2)(2,﹣1),(2,1),在第四象限的有(1,﹣1)(2,﹣1),共有2种情况,则点的坐标在第四象限的概率=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.【解答】解:(1)如图1所示,等腰直角△ABE即为所求.(2)如图2所示,菱形CFDG即为所求.【点评】本题考查作图﹣应用与设计作图,掌握菱形的面积的求法与等腰直角三角形和菱形的判定与性质是解题的关键.20.【解答】(1)证明:如图,∵AD=CD,∴∠A=∠1.又∵CD∥BE,∴∠1=∠E.∴∠A=∠E.∴AB=BE;(2)如图,在Rt△ABC中,∠ABC=90°,则∠A+∠ACB=90°.∵CD平分∠ACB,∴∠1=∠2.又由(1)知,∠A=∠1,∴∠A+∠1+∠2=3∠A=90°.∴∠A=30°.由(1)知,∠A=∠E=30°.∴∠ABE=180°﹣2∠A=120°.【点评】考查了等腰三角形的性质,平行线的性质.解题过程中,注意“等角对等边”、“等边对等角”以及三角形内角和是180度等性质的运用,难度一般.21.【解答】(1)证明:∵DE∥BC,∴∠DEB=∠CBE,∴=,∴BD=EC,∵BC是直径,∴∠CDB=∠BEC,∵BC=CB,∴Rt△CDB≌Rt△BEC(HL).(2)∵△BDC≌△CEB,∴∠CBD=∠ECB,∴AC=AB,∵EC=BD,∴AE=AE,设AE=AD=x,∵∠AED+∠CED=180°,∠CED+∠CBD=180°,∴∠AED=∠CBD,∴tan∠CBD=tan∠AED==,∵BC=10,∴CD=8,BD=6,∴EC=BD=6,在Rt△ADC中,∵AC2=CD2+AD2,∴(x+6)2=82+x2,∴x=,∴AD=.【点评】本题考查圆周角定理,全等三角形的判定和性质,勾股定理,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【解答】解:(1)由题意得:第二年每件玩具的生产成本是16(1+x);第三年每件玩具的生产成本是16(1+x)2,故:答案为:16(1+x),16(1+x)2;(2)由题意得:16(1+x)2=9,解得:x=0.25(负值已舍去);(3)由题意得:40(1﹣x)≤30,解得:x≥0.25y=40(1﹣x)﹣16(1+x)2=﹣16x2﹣72x+24,∵﹣16<0,故y有最大值,当x=0.25时,函数取得最大值为2.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.23.【解答】解:(1)当y=0时,,解得x=﹣3或x=4,∴点A的坐标为(﹣3,0),点B的坐标为(4,0),当x=0时,y=6,∴点C的坐标为(0,6);(2)如图1,连结BE,DP相交于点M,则M是▱DBPE对称中心,且BE,DP互相平分,∵抛物线的对称轴为x=,恰好经过▱DBPE对称中心,点D坐标为(0,2),∴点P的横坐标为x=1,此时y=,∴求点P的坐标为(1,6),∵M(,4),∴点E的坐标为(﹣3,8),当x=﹣3时,y=,∴此时点E不在抛物线上;(3)如图2,过点P作x轴的平行线交BD的延长线于点K,∵D(0,2),B(4,0),设直线BD的表达式为y=kx+b,∴,解得,∴直线BD的表达式为y=x+2,设点P为(m,),令=,解得x=m2﹣m﹣8,∴点K的坐标为(m2﹣m﹣8,),∴PK=m﹣(m2﹣m﹣8)=﹣m2+2m+8,∵PK∥x轴,∴△PQK∽△OQB,∴,∴=,∴当m=1时,的最大值为.【点评】本题考查用待定系数法求抛物线和直线表达式,平行四边形的性质,相似三角形判定与性质,二次函数最值.解决(3)问的关键是构造三角形相似把面积的比转化为线段的比.24.【解答】解:(1)如图1,由题意得:AP=t,∵AP⊥PE,∴∠APE=90°,在Rt△APE中,sin∠A==,设PE=4k,AE=5k,则P A=3k,∴3k=t,∴k=∴AE=t;故答案为:t;(2)如图2,由旋转得:∠BQD=90°,∴∠AQD=90°,∵⊙E与DQ相切,∴EQ=PE,∵BQ=2t,∴AQ=AB﹣BQ=5﹣2t,Rt△APE中,PE=t,∴PE=EQ=t,∵AQ=t+t=3t,∴3t=5﹣2t,t=1,如图3,∵BQ=2t,AB=5,∴AQ=5﹣2t,∵⊙E与DQ相切,∴EQ=PE=t,∴AE=AQ+QE,∴t=5﹣2t+t,t=,综上所述,当t为1秒或秒时,⊙E于DQ相切;(3)①分三种情况:i)如图4,当点Q从B向A运动时,DE⊥BC,过C作CM⊥AB于M,设直线DE交BC 于N,Rt△ACM中,cos∠A==,∴=,∴AM=3,CM=4,∴BM=5﹣3=2,∵EN⊥BC,∴∠ENB=90°,∴∠MCB+∠B=∠NEB+∠B=90°,∴∠MCB=∠NEB,∴tan∠MCB=tan∠NEB==,∴=,EQ=4t,∵AB=AE+EQ+BQ=5,∴t+4t+2t=5,t=;ii)如图5,当点Q从B向A运动时,DE⊥AB,此时E与Q重合,∵AE+BE=AB,即t+2t=5,t=;iii)如图6,当点Q从A向B运动时,DE⊥AC,此时DE与AC交于P,∴AQ+AB=2t,∴AQ=2t﹣5,BQ=10﹣2t,∴EQ=AE﹣AQ=t﹣(2t﹣5)=5﹣t,Rt△DQE中,tan∠AEP===,∴=,4DQ=3QE,4(10﹣2t)=3(5﹣t),t=,综上所述,t的值为秒或秒或秒;②如图7,DQ=BQ=2t,AQ=5﹣2t,由勾股定理得:AD2=DQ2+AQ2,AD2=(2t)2+(5﹣2t)2=8t2﹣20t+25=8(t﹣)2+,∵8>0,∴当t=时,AD2有最小值是,即AD有最小值是.故答案为.【点评】本题属于圆综合题,动点运动问题,考查了三角函数,勾股定理,二次函数的最值问题,切线的性质等知识点,本题的关键是找等量关系,列关于t的方程;第3问采用了分类讨论的思想解决问题,并利用了数形结合的思想.。
浙江省温州市永嘉县2017年中考数学三模试卷一.选择题1.下列等式计算正确的是()A. (﹣2)+3=﹣1B. 3﹣(﹣2)=1C. (﹣3)+(﹣2)=6D. (﹣3)+(﹣2)=﹣52.下列四个几何体中,主视图是三角形的是()A. B. C. D.3.要使二次根式有意义,则x应满足()A. x≠1B. x≥1C. x≤1D. x<14.抛物线y=x2﹣3x+2与y轴交点的坐标为()A.(0,2)B.(1,0)C.(2,0)D.(0,﹣3)5.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=22°,那么∠2的度数是()A. 22°B. 78°C. 68°D. 70°6.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=6,DB=3,则的值为()A. B. C. D. 27.四张完全相同的卡片上,分别画有圆、正方形、等边三角形和线段,现从中随机抽取两张,卡片上画的恰好都是中心对称图形的概率为()A. 1B.C.D.8.某校男子篮球队20名队员的身高如表:则此男子排球队20名队员身高的中位数是()A. 176cmB. 177cmC. 178cmD. 180cm9.某工厂接到加工600件衣服的订单,预计每天做25件,正好按时完成,后因客户要求提前3天交货,工人则需要提高每天的工作效率,设工人每天应多做x件,依题意列方程正确的是()A. ﹣=3B. +3=C. ﹣=3D. ﹣=310.如图,在菱形ABCD中,tan∠ABC= ,P为AB上一点,以PB为边向外作菱形PMNB,连结DM,取DM中点E,连结AE,PE,则的值为()A. B. C. D.二.填空题11.分解因式:m2﹣9=________.12.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是________.13.不等式组的解为________.14.如图,在△ABC中,两条中线BE、CD相交于点O,则S△ADE:S△COE=________.15.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,D为AC中点,P为AB上的动点,将P绕点D逆时针旋转90°得到P′,连CP′,则线段CP′的最小值为________.16.如图,在△ABC中,B、C两点恰好在反比例函数y= (k>0)第一象限的图象上,且BC= ,S△ABC=,AB∥x轴,CD⊥x轴交x轴于点D,作D关于直线BC的对称点D′.若四边形ABD′C为平行四边形,则k为________.三.解答题17.计算题()﹣1+ +sin30°;(1)计算:()﹣1+ +sin30°;(2)先化简,再求值:(m+2)(m﹣2)﹣(m﹣2)2+1,其中m=2.18.温州市政府计划投资百亿元开发瓯江口新区,打造出一个“东方时尚岛、海上新温州”.为了解温州市民对瓯江口新区的关注情况,某学校数学兴趣小组随机采访部分温州市民,对采访情况制作了统计图表的一部分如下:.一般关注100 0.5(1)根据上述统计表可得此次采访的人数为________人;m=________,n=________;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,估计25000名温州市民中高度关注瓯江口新区的市民约________人.19.如图,在方格纸中,线段AB的两个端点都在小方格的格点上,AB=5,请找到一个格点P,连结PA,PB,使得△PAB为等腰三角形(请画出两种,若所画三角形全等,则视为一种).20.如图,一艘渔船位于码头M的南偏东45°方向,距离码头120海里的B处,渔船从B处沿正北方向航行一段距离后,到达位于码头北偏东60°方向的A处.(1)求渔船从B到A的航行过程中与码头M之间的最小距离.(2)若渔船以20海里/小时的速度从A沿AM方向行驶,求渔船从A到达码头M的航行时间.21.如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AB相切于点P.(1)求证:BP平分∠ABC;(2)若PC=1,AP=3,求BC的长.22.温州某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至于30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;(2)若建成后的寝室可供600人住宿,求单人间的数量;(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?23.如图,抛物线y=ax2+3x交x轴正半轴于点A(6,0),顶点为M,对称轴MB交x轴于点B,过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD于点F,作直线MF.(1)求a的值及M的坐标;(2)当BD为何值时,点F恰好落在该抛物线上?(3)当∠DCB=45°时:①求直线MF的解析式;________②延长OE交FM于点G,四边形DEGF和四边形OEDC的面积分别记为S1、S2,则S1:S2的值为________(直接写答案)24.如图,在矩形ABCD中,AD=10,E为AB上一点,且AE= AB=a,连结DE,F是DE中点,连结BF,以BF为直径作⊙O.(1)用a的代数式表示DE2=________,BF2=________;(2)求证:⊙O必过BC的中点;(3)若⊙O与矩形ABCD各边所在的直线相切时,求a的值;(4)作A关于直线BF的对称点A′,若A′落在矩形ABCD内部(不包括边界),则a的取值范围________.(直接写出答案)答案解析部分一.<b >选择题</b>1.【答案】D【考点】有理数的加减混合运算【解析】【解答】解:∵(﹣2)+3=1,故答案为:项A错误,∵3﹣(﹣2)=3+2=5,故答案为:项B错误,∵(﹣3)+(﹣2)=﹣5,故答案为:项C错误,∵(﹣3)+(﹣2)=﹣5,故答案为:项D正确,故答案为:D.【分析】异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;减去一个数,等于加上这个数的相反数;同号两数相加取相同的符号,并把绝对值相加。
2017年浙江省温州市初中毕业生学业考试数学试题一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6 B.1 C.0 D.﹣62.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人3.(4分)某运动会颁奖台如图所示,它的主视图是()A.B.C.D.4.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.65.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y17.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知co sα=,则小车上升的高度是()A .5米B .6米C .6.5米D .12米8.(4分)我们知道方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是( )A .x 1=1,x 2=3B .x 1=1,x 2=﹣3C .x 1=﹣1,x 2=3D .x 1=﹣1,x 2=﹣39.(4分)四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .已知AM 为Rt △ABM 较长直角边,AM=2EF ,则正方形ABCD 的面积为( )A .12SB .10SC .9SD .8S10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P 1P 2,P 2P 3,P 3P 4,…得到螺旋折线(如图),已知点P 1(0,1),P 2(﹣1,0),P 3(0,﹣1),则该折线上的点P 9的坐标为( )A .(﹣6,24)B .(﹣6,25)C .(﹣5,24)D .(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m= .12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD 对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A 至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.三、解答题(共8小题,共80分):17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO 交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C 在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.参考答案一、选择题(共10小题,每小题4分,共40分):1.(4分)(2017•温州)﹣6的相反数是()A.6 B.1 C.0 D.﹣6分析:根据相反数的定义求解即可.解答:解:﹣6的相反数是6,故选:A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017•温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人分析:由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;解答:解:所有学生人数为 100÷20%=500(人);所以乘公共汽车的学生人数为 500×40%=200(人).故选D.点评:此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.(4分)(2017•温州)某运动会颁奖台如图所示,它的主视图是()A. B.C.D.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看,故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4分)(2017•温州)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6分析:依据被开放数越大对应的算术平方根越大进行解答即可.解答:解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.点评:本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.5.(4分)(2017•温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个) 5 6 7 8人数(人) 3 15 22 10表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个分析:根据众数的定义,找数据中出现最多的数即可.解答:解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.点评:本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.6.(4分)(2017•温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2 B.y1<0<y2 C.y1<y2<0 D.y2<0<y1分析:根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.解答:解:∵点(﹣1,y1),(4,)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.点评:本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.(4分)(2017•温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米分析:在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.解答:解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.点评:此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4分)(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3分析:先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.解答:解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4分)(2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S分析:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.解答:解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.点评:本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10.(4分)(2017•温州)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)分析:观察图象,推出P9的位置,即可解决问题.解答:解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.点评:本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.二、填空题(共6小题,每小题5分,共30分):11.(5分)(2017•温州)分解因式:m2+4m= m(m+4).分析:直接提提取公因式m,进而分解因式得出答案.解答:解:m2+4m=m(m+4).故答案为:m(m+4).点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(5分)(2017•温州)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2 .分析:根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.解答:解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.点评:本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.13.(5分)(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为 3 .分析:根据扇形的面积公式,可得答案.解答:解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.点评:本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.(5分)(2017•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.分析:设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.解答:解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.点评:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.15.(5分)(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.分析:设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.解答:解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.点评:本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.(5分)(2017•温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD 的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.分析:先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.解答:解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.点评:本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题(共8小题,共80分):17.(10分)(2017•温州)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).分析:(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.解答:解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.点评:本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.18.(8分)(2017•温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.分析:(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.解答:解:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.点评:本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.19.(8分)(2017•温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)分析:(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.解答:解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.点评:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\20.(8分)(2017•温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.分析:(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;解答:解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)等,△PAB如图所示.点评:本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.21.(10分)(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC 内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.分析:(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEO=90°,得到EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.解答:解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∴∠COE=2∠B=90°,∵EF是⊙O的切线,∴∠FEO=90°,∴EF∥OC,∵DE∥CF,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.点评:本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.22.(10分)(2017•温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.分析:(1)首先确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;解答:解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.点评:本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.23.(12分)(2017•温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.分析:(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;解答:解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,又∵300﹣3x>0,综上所述,50<x<100,150<3x<300,∴丙瓷砖单价3x的范围为150<3x<300元/m2.点评:本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14分)(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN 上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.分析:(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB 的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的面积之比.解答:解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴GMD=∠GDM,∴GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,∴S△ACG=CG×CH=,∵S△DEG=,∴S△ACG:S△DEG=.点评:本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.。
主视方向2017年浙江省温州市初中毕业生学业考试 数学试题卷 一、选择题(共10小题,每小题4分,共40分)1.6-的相反数是( )A .6B .1C .0D .6-2.某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有( )A .75人B .100人C .125人D .200人乘公共汽车40%步行20%其他15%骑自行车25%3.某运动会颁奖台如图所示,它的主视图是( )A .B .C .D .4.下列选项中的整数,与17最接近的是( )A .3B .4C .5D .65.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个) 5 6 7 8人数(人) 3 15 22 10表中表示零件个数的数据中,众数是( )A .5个B .6个C .7个D .8个6.已知点(1-,1y ),(4,y2)在一次函数32y x =-的图象上,则1y ,2y ,0的大小关系是() A .120y y << B .120y y << C .120y y << D .210y y <<7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知12cos 13α=,则小车上升的高度是()A .5米B .6米C .6.5米D .12米α 8.我们知道方程2230x x +-=的解是11x =,23x =-,现给出另一个方程2(23)2(23)30x x +++-=,它的解是( )A .11x =,23x =B .11x =,23x =-C .11x =- ,23x =D .11x =-,23x =-9.四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH ,已知AM 为Rt △ABM 较长直角边,AM=22EF ,则正方形AB CD 的面积为( ) DB M AH EF GA .12sB .10sC .9sD .8s10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧¼12PP ,¼23P P ,¼34P P ,…得到斐波那契螺旋线,然后顺次连结12P P ,23P P ,34P P ,…得到螺旋折线(如图),已知点1P (0,1),2P (1-,0),3P (0,1-),则该折线上的点9P 的坐标为( )x yP 6P 5P 2P 4P 3P 1OA .(6-,24)B .(6-,25)C .(5-,24)D .(5-,25) 二、填空题(共6小题,每小题5分,共30分):11.分解因式:24m m +=_______________.12.数据1,3,5,12,a ,其中整数a 是这组数据的中位数,则该组数据的平均数是__________.13.已知扇形的面积为3π,圆心角为120°,则它的半径为________.14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:_____________________.15.如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA ′B ′D 与四边形OABD 关于直线OD 对称(点A ′和A ,B ′和B 分别对应),若AB=1,反比例函数(0)k y k x=≠的图象恰好经过点 A ′,B ,则k 的值为_________. y B 'A 'C A O B第15题图 第16题图16.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A ,出水口B 和落水点C 恰好在同一直线上,点A 至出水管BD 的距离为12cm ,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E ,则点E 到洗手盆内侧的距离EH 为_________cm .三、解答题(共8小题,共80分):17.(本题10分)(1)计算:22(3)(1)8⨯-+-+;(2)化简:(1)(1)(2)a a a a +-+-.18.(本题8分)如图,在五边形ABCDE 中,∠BCD=∠EDC=90°,BC=ED ,AC=AD .(1)求证:△ABC ≌△AED ;(2)当∠B=140°时,求∠BAE 的度数.EC B19.(本题8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图,根据该统计图,请估计该校七年级480名学生选“数学故事”的人数。
(2)学校将选“数学故事”的学生分成人数相等的A ,B ,C 三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A 班,求他和小慧被分到同一个班的概率.(要求列表或画树状图) 课程人数1527183610203040神奇魔方魅力数独数学故事趣题巧解某校七年级部分学生选课情况统计图O20.(本题8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A (2,3),B (4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB ,使点P 的横、纵坐标之和等于点A 的横坐标;(2)在图2中画一个△PAB ,使点P ,B 横坐标的平方和等于它们纵坐标和的4倍.x y1234512345B A O x y 1234512345B AO21.(本题10分)如图,在△ABC 中,AC=BC ,∠ACB=90°,⊙O (圆心O 在△ABC 内部)经过B 、C 两点,交AB 于点E ,过点E 作⊙O 的切线交AC 于点F .延长CO 交AB 于点G ,作ED ∥AC 交CG 于点D(1)求证:四边形CDEF 是平行四边形;(2)若BC=3,tan ∠DEF=2,求BG 的值.(图2) (图1)D F EGBC O22.(本题10分)如图,过抛物线2124y x x =-上一点A 作x 轴的平行线,交抛物线于另一点B ,交y 轴于点C ,已知点A 的横坐标为2-.(1)求抛物线的对称轴和点B 的坐标;(2)在AB 上任取一点P ,连结OP ,作点C 关于直线OP 的对称点D ;①连结BD ,求BD 的最小值;②当点D 落在抛物线的对称轴上,且在x 轴上方时,求直线PD 的函数表达式.xyD BA C O P23.(本题12分)小黄准备给长8m ,宽6m 的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD 区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ ∥AD ,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/2m ,面积为S (2m ),区域Ⅱ的瓷砖均价为200/2m ,且两区域的瓷砖总价为不超过12000元,求S 的最大值;(2)若区域Ⅰ满足AB :BC=2:3,区域Ⅱ四周宽度相等①求AB ,BC 的长;②若甲、丙两瓷砖单价之和为300元/2m ,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求两瓷砖单价的取值范围.甲乙丙乙甲8m 6m Q D C ABP24.(本题14分)如图,已知线段AB=2,MN ⊥AB 于点M ,且AM =BM ,P 是射线MN 上一动点,E ,D 分别是PA ,PB 的中点,过点A ,M ,D 的圆与BP 的另一交点C (点C 在线段BD 上),连结AC ,DE .(1)当∠APB=28°时,求∠B 和¼CM的度数; (2)求证:AC=AB 。
(3)在点P 的运动过程中①当MP=4时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值;②记AP 与圆的另一个交点为F ,将点F 绕点D 旋转90°得到点G ,当点G 恰好落在MN 上时,连结AG ,CG ,DG ,EG ,直接写出△ACG 和△DEG 的面积之比.NC EDMAP2017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6 B.1 C.0 D.﹣6【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为 100÷20%=500(人);所以乘公共汽车的学生人数为 500×40%=200(人).故选D.【点评】此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.(4分)某运动会颁奖台如图所示,它的主视图是()A. B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【分析】依据被开方数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.5.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个) 5 6 7 8人数(人) 3 15 22 10表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【点评】本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2 B.y1<0<y2 C.y1<y2<0 D.y2<0<y1【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.【点评】本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m= m(m+4).【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2 .【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.【解答】解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.【点评】本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为 3 .【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.【点评】本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C (20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题(共8小题,共80分):17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.【解答】解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.【点评】本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】(1)证明:∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)解:当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)等,△PAB如图所示.【点评】本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB 于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEO=90°,得到EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∴∠COE=2∠B=90°,∵EF是⊙O的切线,∴∠FEO=90°,∴EF∥OC,∵DE∥CF,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.【分析】(1)首先确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.【点评】本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x •(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,又∵300﹣3x>0,综上所述,50<x<100,150<3x<300,∴丙瓷砖单价3x的范围为150<3x<300元/m2.【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB 的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴GMD=∠GDM,∴GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,∴S△ACG=CG×CH=,∵S△DEG=,∴S△ACG:S△DEG=.【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.。