太和二中高二上学期期终考试 数学
- 格式:doc
- 大小:67.50 KB
- 文档页数:4
高二级上学期期中考试题数学本试卷共8页,22小题,满分150分,考试时间120分钟。
第一部分选择题(共60分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( )A .0B .-1C .0或1D .0或-12.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( )A.2π B .22π C .2πD .4π3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 5.下列命题中,正确的是( )A .任意三点确定一个平面B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( )A. 5 B .23 C . 22D .3 37.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上, 则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .D .⎡⎣二、多选题:本题共4小题,每小题5分,共20分.9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .410.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+=B .30x y +-=C .20x y -=D .10x y --=12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,BC =CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6第二部分非选择题(90分)三、填空题:本题共4小题,每小题5分,共20分.13.命题“20210x x x ∃<-->,”的否定是______________.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.15.若直线:l y kx =与曲线:1M y =+有两个不同交点,则k 的取值范围是________________.16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程.18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,P A ⊥平面ABCD ,P A =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值;(2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l 与圆C 相离,求a 的取值范围.20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点.(1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.21. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.22. (本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点? 若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.高二级上学期期中考试题 数学答案及说明一、选择题:1.D ,2.A ,3.C ,4.B ,5.C ,6.B ,7.D ,8.A ,9.BCD ,10.ACD ,11.ABC ,12.BC.二、填空题:13.0x ∀<,2210x x --≤;14.y =-2x -2;15.13,24⎡⎫⎪⎢⎣⎭;16.36π.题目及详细解答过程:一、单选题(本题共8小题,每小题5分,共40分)1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( ) A .0 B .-1 C .0或1 D .0或-1 解析:因为l 1⊥l 2,所以2m 2+2m =0,解得m =0或m =-1. 答案:D2.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( ) A.2π B .22π C .2π D .4π 解析:设底面圆的半径为r ,高为h ,母线长为l ,由题可知,r =h =22l ,则12(2r )2=1,r =1,l =2.所以圆锥的侧面积为πrl =2π. 答案:A3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°解析:当三棱锥D ABC 体积最大时,平面DAC ⊥平面ABC .取AC 的中点O ,则∠DBO 即为直线BD 和平面ABC 所成的角.易知△DOB 是等腰直角三角形,故∠DBO =45°.答案:C4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 【答案】B【解析】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为22553255d ⨯--== 圆心到直线230x y --=的距离均为22555d -==; 所以,圆心到直线230x y --=25. 故选:B .5.下列命题中,正确的是( ) A .任意三点确定一个平面 B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行 解析:由线面垂直的性质,易知C 正确. 答案:C6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( ) A. 5 B .23 C . 22D .3 3解析:易知NF 的斜率k =-3,故NF 的方程为y =-3(x -1),即3x +y -3=0. 所以M 到NF 的距离为|33+23-3|(3)2+12=2 3. 答案:B7.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π解析:由题意知正四棱柱的底面积为4,所以正四棱柱的底面边长为2,正四棱柱的底面对角线长为22,正四棱柱的对角线为2 6.而球的直径等于正四棱柱的对角线,即2R =2 6.所以R = 6.所以S 球=4πR 2=24π. 答案:D8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,【答案】A 【解析】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则22AB =.点P 在圆22(2)2x y -+=上,∴圆心为(2,0),则圆心到直线的距离1202222d ++==.故点P 到直线20x y ++=的距离2d 的范围为2,32⎡⎤⎣⎦,则[]22122,62ABP S AB d d ==∈△.故答案为A.二、多选题(每题5分,共20分)9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .4【答案】BCD【解析】:由220x x --<,解得12x -<<.又220x x --<是2x a -<<的充分不必要条件,(1∴-,2)(2-,)a ,则2a .∴实数a 的值可以是2,3,4.故选:BCD .10.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 【答案】ACD 【解析】若m α⊥,则,a b α∃⊂且a b P =使得m a ⊥,m b ⊥,又//m n ,则n a ⊥,n b ⊥,由线面垂直的判定定理得n α⊥,故A 对; 若//m α,n αβ=,如图,设m AB =,平面1111D C B A 为平面α,//m α,设平面11ADD A 为平面β,11A D n αβ⋂==,则m n ⊥,故B 错;垂直于同一条直线的两个平面平行,故C 对;若,//m m n α⊥,则n α⊥,又n β⊥,则//αβ,故D 对; 故选:ACD .11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+= B .30x y +-= C .20x y -= D .10x y --=【答案】ABC【解析】:当直线经过原点时,斜率为20210k -==-,所求的直线方程为2y x =,即20x y -=; 当直线不过原点时,设所求的直线方程为x y k ±=,把点(1,2)A 代入可得12k -=,或12k +=,求得1k =-,或3k =,故所求的直线方程为10x y -+=,或30x y +-=; 综上知,所求的直线方程为20x y -=、10x y -+=,或30x y +-=. 故选:ABC .12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,23BC =,26CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6 【答案】BC【解析】作图在四棱锥P ABCD -中:为矩形,由题:侧面PCD ⊥平面ABCD ,交线为CD ,底面ABCDBC CD ⊥,则BC ⊥平面PCD ,过点B 只能作一条直线与已知平面垂直,所以选项A错误;连接AC 交BD 于O ,连接MO ,PAC ∆中,OM ∥PA ,MO ⊆面MBD ,PA ⊄面MBD ,所以//PA 面MBD ,所以选项B 正确;四棱锥M ABCD -的体积是四棱锥P ABCD -的体积的一半,取CD 中点N ,连接PN ,PN CD ⊥,则PN平面ABCD ,32PN =,四棱锥M ABCD -的体积112326321223M ABCD V -=⨯⨯⨯⨯=所以选项D 错误.矩形ABCD 中,易得6,3,3AC OC ON ===,PCD 中求得:16,2NM PC ==在Rt MNO 中223MO ON MN =+=即: OM OA OB OC OD ====,所以O 为四棱锥M ABCD -外接球的球心,半径为3, 所以其体积为36π,所以选项C 正确, 故选:BC三、填空题(每题5分,共20分)13.命题“20210x x x ∃<-->,”的否定是______. 【答案】0x ∀<,2210x x --≤【解析】因为特称命题的否定是全称命题,所以,命题20210x x x ∃<-->,, 则该命题的否定是:0x ∀<,2210x x --≤ 故答案为:0x ∀<,2210x x --≤.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.解析:由斜截式方程知直线l 1的斜率k 1=-2,又l ∥l 1,所以l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,所以l 在y 轴上的截距b =-2.由斜截式方程可得直线l 的方程为y =-2x -2.答案:y =-2x -215.若直线:l y kx =与曲线()2:113M y x =+--有两个不同交点,则k 的取值范围是________________.解析:曲线M :y =1+1-(x -3)2是以(3,1)为圆心,1为半径的,且在直线y =1上方的半圆.要使直线l 与曲线M 有两个不同交点,则直线l 在如图所示的两条直线之间转动,即当直线l 与曲线M 相切时,k 取得最大值34;当直线l 过点(2,1)时,k 取最小值12.故k 的取值范围是13,24⎡⎫⎪⎢⎣⎭. 答案:13,24⎡⎫⎪⎢⎣⎭16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.解析:如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .又由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,知OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r ,所以三棱锥S ABC 的体积为311323r V SC OB OA ⎛⎫=⨯⋅⋅= ⎪⎝⎭,即r 33=9.所以r =3.所以3344336.33=O V r πππ=⨯=球答案:36π四、解答题(每题5分,共70分)17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程. 解:(1)设l 2的方程为2x -y +m =0,..........1分因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3,即l 2:2x -y -3=0.....3分联立⎩⎪⎨⎪⎧x +2y -4=0,2x -y -3=0,得⎩⎪⎨⎪⎧x =2,y =1.所以直线l 1与l 2的交点坐标为(2,1)...........5分 (2)当l 3过原点时,l 3的方程为y =12x ..........6分当l 3不过原点时,设l 3的方程为12x y a a +=...........7分 又直线l 3经过l 1与l 2的交点,所以2112a a+=, 得52a =,l 3的方程为2x +y -5=0...........8分 综上,l 3的方程为y =12x 或2x +y -5=0...........10分18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,PA ⊥平面ABCD ,PA =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.18.解:(1)证明:因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以PA ⊥AB ,..........1分又因为AB ⊥AD ,AD ∩PA =A ,..........3分 所以AB ⊥平面PAD ,..........4分又PD ⊂平面PAD ,..........5分所以AB ⊥PD ...........6分 (2)解:S 梯形ABCD =12(AB +CD )·AD =332,.......8分又PA ⊥平面ABCD ,..........9分所以V 四棱锥P-ABCD =13×S 梯形ABCD ·PA =13×332×3=32...........12分19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值; (2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l与圆C 相离,求a 的取值范围.19.解:(1)由题意可知,圆C 的方程为(x -1)2+y 2=1...........2分又|MC |=(4-1)2+(4-0)2=5,..........4分 所以|MN |的最小值为5-1=4...........5分(2)因为直线l 的斜率为43,且与y 轴相交于点20,3⎛⎫- ⎪⎝⎭,所以直线l 的方程为y =43x -23.即4x -3y -2=0..........7分因为直线l 与圆C 相离,所以圆心C (a ,0)到直线l 的距离d >r . 则224243a a ->+.........9分又0a <,所以245a a ->-,解得2a >-..........11分 所以a 的取值范围是(-2,0)..........12分20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点. (1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.20.解:(1)证明:如图,连接BC 1,交B 1C 于点E ,连接DE ,则点E 是BC 1的中点,又点D 是AB 的中点,由中位线定理得DE ∥AC 1,.........1分 因为DE ⊂平面B 1CD ,.........2分AC 1⊄平面B 1CD ,.........3分所以AC 1∥平面B 1CD ..........4分(2)解:当CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1........5分 证明:因为AA 1⊥平面ABC ,CD ⊂平面ABC , 所以AA 1⊥CD ..........6分又CD ⊥AB ,AA 1∩AB =A ,.........7分所以CD ⊥平面ABB 1A 1,因为CD ⊂平面CDB 1,.........8分 所以平面ABB 1A 1⊥平面CDB 1,.........9分故点D 满足CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1......10分 因为AB =5,AC =3,BC =4,所以AC 2+BC 2=AB 2, 故△ABC 是以角C 为直角的三角形, 又CD ⊥AB ,所以AD =95..........12分22. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.21.解: 作于点G ,连接FG , 四边形ABCD 是菱形,,,为等边三角形,,-----1分平面ABCD ,平面ABCD ,,又,,平面AFG ,BC FG ∴⊥-----2分 G∴为二面角的平面角,------3分----------------------------4分连接AE ,设点E 到平面AFC 的距离为h , 则, ----------------------5分即,也就是,--------------------6分解得:; ------------------------------------------------7分(3)作CH AB ⊥于点H ,连接FH ,ABC ∆为等边三角形,H ∴为AB 的中点,221,3,5,AH CH FH FA AH ===+= FA ⊥平面ABCD ,CH ⊂平面ABCD ,FA CH ∴⊥,----8分 又,CH AB AB AF A ⊥⋂=,CH ∴⊥平面ABF ,-----9分CFH ∴∠为直线FC 与平面ABF 所成的角,-------10分36sin 422CH CFH CF ∴∠===.-----------------12分 22.(本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点?若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.22.解:(1)当直线AB CD 、的斜率存在且不为0,设直线AB 的方程为:()()()112220,,,,y kx k A x y B x y =-≠------------1分由2229+=y kx x y =-⎧⎨⎩得:()221450k x kx +--=--------------------2分 点()0,2P -在圆内,故0∆>. 又 1212222422,21211M M Mx x k k x x x y kx k k k +∴+=∴===-=-+++ 即 2222,11kM k k ⎛⎫- ⎪++⎝⎭--------------------3分AB CD ⊥以1k -代换k 得22222,11k k N k k ⎛⎫-- ⎪++⎝⎭22222222111.22211MNk k k k k k k k k k -+-++∴==+++---------------4分∴直线MN 的方程为:222212121k k y x k k k -⎛⎫+=- ⎪++⎝⎭化简得2112k y x k-=-,故直线MN 恒过定点()01-,--------------------5分 当直线AB CD 、的斜率不存在或为0时,显然直线MN 恒过定点()01-, 综上,直线MN 恒过定点()01-,--------------------.6分 (2) 解法一:圆心O 到直线AB的距离1d =AB ==分 (或由第(1)问得:21AB x =-==以1k -代换k 得CD =)AB CD ⊥∴以1k -代换k 得:CD =分12ACBD S AB CD ∴=⋅==分14=≤= 当且仅当221,1k k k==±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=-----------12分 解法二:设圆心O 到直线AB 、CD 的距离分别为12,d d 、则22222211229,9AB r d d CD r d d =-=-=-=---------------------7分AB CD ⊥222124d d OP ∴+==--------------------8分()()()2222121221991821818414ACBD S AB CD d d d d OP ∴=⋅=≤-+-=-+=-=-=--------------------10分当且仅当12d d =,即1k =±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=---------12分。
太和区第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则( )A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-<2. 常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()3. 已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( ) A .(1,+∞) B .(2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)4. 方程1x -=表示的曲线是( )A .一个圆B . 两个半圆C .两个圆D .半圆 5. 已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( ) A .α∥β且l ∥α B .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l6. 若函数y=x 2+bx+3在[0,+∞)上是单调函数,则有( )A .b ≥0B .b ≤0C .b >0D .b <07. 已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=8. 已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).A .),3[]1,2(+∞--B .),3()1,35(+∞--C .),3[]1,35[+∞-- D .),3()1,2(+∞-- 9. 已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3D .﹣1或﹣310.已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .111.已知f (x )是定义在R 上周期为2的奇函数,当x ∈(0,1)时,f (x )=3x ﹣1,则f (log 35)=( )A .B .﹣C .4D .12.双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .4二、填空题13.已知f (x )=,则f[f (0)]= .14.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.15.已知数列{a n }中,2a n ,a n+1是方程x 2﹣3x+b n =0的两根,a 1=2,则b 5= .16.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .17.已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;…若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.18.若复数34sin (cos )i 55z αα=-+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.三、解答题19.已知全集U 为R ,集合A={x|0<x ≤2},B={x|x <﹣3,或x >1}求:(I )A ∩B ;(II )(C U A )∩(C U B );(III )C U (A ∪B ).20.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.21.在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1的直角坐标方程与曲线C2的普通方程;(Ⅱ)试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.22.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.Ⅰ若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;,整理得下表:,求这50天的日利润单位:元的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.23.(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF.(1)求证EF∥BC;(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.24.已知抛物线C:x2=2py(p>0),抛物线上一点Q(m,)到焦点的距离为1.(Ⅰ)求抛物线C的方程(Ⅱ)设过点M(0,2)的直线l与抛物线C交于A,B两点,且A点的横坐标为n(n∈N*)(ⅰ)记△AOB的面积为f(n),求f(n)的表达式(ⅱ)探究是否存在不同的点A,使对应不同的△AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由.太和区第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D2.【答案】B【解析】解:(h(x))′=x x[x′lnx+x(lnx)′]=x x(lnx+1),令h(x)′>0,解得:x>,令h(x)′<0,解得:0<x<,∴h(x)在(0,)递减,在(,+∞)递增,∴h()最小,故选:B.【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.3.【答案】D【解析】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.4.【答案】A【解析】试题分析:由方程1x-=,即221x-=22-++=,所x y(1)(1)1以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.5. 【答案】D【解析】解:由m ⊥平面α,直线l 满足l ⊥m ,且l ⊄α,所以l ∥α, 又n ⊥平面β,l ⊥n ,l ⊄β,所以l ∥β.由直线m ,n 为异面直线,且m ⊥平面α,n ⊥平面β,则α与β相交,否则,若α∥β则推出m ∥n , 与m ,n 异面矛盾.故α与β相交,且交线平行于l . 故选D .【点评】本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.6. 【答案】A【解析】解:抛物线f (x )=x 2+bx+3开口向上,以直线x=﹣为对称轴,若函数y=x 2+bx+3在[0,+∞)上单调递增函数,则﹣≤0,解得:b ≥0,故选:A .【点评】本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答.7. 【答案】D【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D . 8. 【答案】C【解析】由已知,圆1O 的标准方程为222(1)()(4)x y a a ++-=+,圆2O 的标准方程为222()()(2)x a y a a ++-=+,∵2->a ,要使两圆恒有公共点,则122||26O O a ≤≤+,即 62|1|2+≤-≤a a ,解得3≥a 或135-≤≤-a ,故答案选C9.【答案】A【解析】解:两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,所以=≠,解得a=﹣3,或a=1.故选:A.10.【答案】【解析】选C.由题意得log2(a+6)+2log26=9.即log2(a+6)=3,∴a+6=23=8,∴a=2,故选C.11.【答案】B【解析】解:∵f(x)是定义在R上周期为2的奇函数,∴f(log35)=f(log35﹣2)=f(log3),∵x∈(0,1)时,f(x)=3x﹣1∴f(log3)═﹣故选:B12.【答案】C【解析】解:双曲线4x2+ty2﹣4t=0可化为:∴∴双曲线4x2+ty2﹣4t=0的虚轴长等于故选C.二、填空题13.【答案】1.【解析】解:f(0)=0﹣1=﹣1,f[f(0)]=f(﹣1)=2﹣1=1,故答案为:1.【点评】本题考查了分段函数的简单应用.14.【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】正方体中,BC中点为E,CD中点为F,则截面为即截去一个三棱锥其体积为:所以该几何体的体积为:故答案为:15.【答案】﹣1054.【解析】解:∵2a n,a n+1是方程x2﹣3x+b n=0的两根,∴2a n+a n+1=3,2a n a n+1=b n,∵a1=2,∴a2=﹣1,同理可得a3=5,a4=﹣7,a5=17,a6=﹣31.则b5=2×17×(﹣31)=1054.故答案为:﹣1054.【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题.16.【答案】【解析】解:法1:取A1C1的中点D,连接DM,则DM∥C1B1,在在直三棱柱中,∠ACB=90°,∴DM⊥平面AA1C1C,则∠MAD是AM与平面AA1C1C所的成角,则DM=,AD===,则tan∠MAD=.法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则∵AC=BC=1,侧棱AA=,M为A1B1的中点,1∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量设AM 与平面AA 1C 1C 所成角为θ,则sin θ=||=则tan θ= 故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.17.【答案】10【解析】3m 的分解规律恰好为数列1,3,5,7,9,…中若干连续项之和,32为连续两项和,33为接下来三项和,故3m 的首个数为12+-m m .∵)(3+∈N m m 的分解中最小的数为91,∴9112=+-m m ,解得10=m .18.【答案】34-【解析】由题意知3sin 05α-=,且4cos 05α-≠,所以4cos 5α=-,则3tan 4α=-. 三、解答题19.【答案】【解析】解:如图:(I )A ∩B={x|1<x ≤2};(II )C U A={x|x ≤0或x >2},C U B={x|﹣3≤x ≤1}(C U A )∩(C U B )={x|﹣3≤x ≤0};(III )A ∪B={x|x <﹣3或x >0},C U (A ∪B )={x|﹣3≤x ≤0}.【点评】本题考查集合的运算问题,考查数形集合思想解题.属基本运算的考查.20.【答案】【解析】(Ⅰ)∵EC EF DE ⋅=2,DEF DEF ∠=∠ ∴DEF ∆∽CED ∆,∴C EDF ∠=∠……………………2分 又∵AP CD //,∴C P ∠=∠, ∴P EDF ∠=∠.(Ⅱ)由(Ⅰ)得P EDF ∠=∠,又PEA DEF ∠=∠,∴EDF ∆∽EPA ∆,∴EDEPEF EA =,∴EP EF ED EA ⋅=⋅,又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅. ∵EC EF DE ⋅=2,2,3==EF DE ,∴ 29=EC ,∵2:3:=BE CE ,∴3=BE ,解得427=EP .∴415=-=EB EP BP .∵PA 是⊙O 的切线,∴PC PB PA ⋅=2∴)29427(4152+⨯=PA ,解得4315=PA .……………………10分 21.【答案】【解析】解:(Ⅰ)由曲线C 1的极坐标方程为ρ(sin θ+cos θ)=1,可得它的直角坐标方程为x+y=1,根据曲线C 2的参数方程为(θ为参数),可得它的普通方程为+y 2=1.(Ⅱ)把曲线C 1与C 2是联立方程组,化简可得 5x 2﹣8x=0,显然△=64>0,故曲线C 1与C 2是相交于两个点.解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,﹣).【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.22.【答案】【解析】:Ⅰ当日需求量10n ≥时,利润为5010(10)3030200y n n =⨯+-⨯=+; 当需求量10n <时,利润50(10)1060100y n n n =⨯--⨯=-. 所以利润y 与日需求量n 的函数关系式为:30200,10,60100,10,n n n Ny n n n N+≥∈⎧=⎨-<∈⎩Ⅱ50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元.① 38094401150015530105605477.250⨯+⨯+⨯+⨯+⨯= ② 若利润在区间[400,550]内的概率为111510185025P ++==23.【答案】【解析】解:(1)证明:∵AE =AF , ∴∠AEF =∠AFE .又B ,C ,F ,E 四点共圆, ∴∠ABC =∠AFE ,∴∠AEF =∠ACB ,又∠AEF =∠AFE ,∴EF ∥BC . (2)由(1)与∠B =60°知△ABC 为正三角形, 又EB =EF =2, ∴AF =FC =2,设DE =x ,DF =y ,则AD =2-y , 在△AED 中,由余弦定理得 DE 2=AE 2+AD 2-2AD ·AE cos A .即x 2=(2-y )2+22-2(2-y )·2×12,∴x 2-y 2=4-2y ,①由切割线定理得DE 2=DF ·DC , 即x 2=y (y +2), ∴x 2-y 2=2y ,②由①②联解得y =1,x =3,∴ED = 3. 24.【答案】【解析】解:(Ⅰ)依题意得|QF|=y Q +=+=1,解得p=1,∴抛物线C 的方程为x 2=2y ;(Ⅱ)(ⅰ)∵直线l 与抛物线C 交于A 、B 两点,∴直线l的斜率存在,设A(x1,y1),B(x2,y2),直线l的方程为:y=kx+2,联立方程组,化简得:x2﹣2kx﹣4=0,此时△=(﹣2k)2﹣4×1×(﹣4)=4(k2+4)>0,由韦达定理,得:x1+x2=2k,x1x2=﹣4,∴S△AOB=|OM|•|x1﹣x2|=×2==2(*)又∵A点横坐标为n,∴点A坐标为A(n,),又直线过点M(0,2),故k==﹣,将上式代入(*)式,可得:f(n)=2=2=2=n+(n∈N*);(ⅱ)结论:当A点坐标为(1,)或(4,8)时,对应不同的△AOB的面积相等.理由如下:设存在不同的点A m(m,),A n(n,)(m≠n,m、n∈N*),使对应不同的△AOB的面积相等,则f(m)=f(n),即m+=n+,化简得:m﹣n=﹣=,又∵m≠n,即m﹣n≠0,∴1=,即mn=4,解得m=1,n=4或m=4,n=1,此时A点坐标为(1,),(4,8).【点评】本题考查抛物线的定义及其标准方程、直线与抛物线的位置关系、函数的性质等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程的思想、数形结合思想、化归与转化思想,注意解题方法的积累,属于中档题.。
人教版高二上学期期中考试数学试题(一) (本卷满分150分,考试时间120分钟)测试范围:选择性必修第一册:第一章、第二章、第三章一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知两个非零向量)(111z y x a ,,=,)(222z y x b ,,=,则这两个向量在一条直线上的充要条件是( )。
A 、||||b b a a ::= B 、212121z z y y x x == C 、0212121=++z z y y x x D 、存在非零实数k ,使b k a =2.已知焦点在x 轴上的双曲线的焦距为32,焦点到渐近线的距离为2,则双曲线的方程为( )。
A 、1222=-y xB 、1222=-y xC 、1222=-x y D 、1222=-x y3.若直线m my x +=+2与圆012222=+--+y x y x 相交,则实数m 的取值范围为( )。
A 、)(∞+-∞, B 、)0(,-∞ C 、)0(∞+, D 、)0()0(∞+-∞,, 4.点)24(-,P 与圆422=+y x 上任一点连线的中点的轨迹方程是( )。
A 、1)1()2(22=++-y x B 、4)1()2(22=++-y x C 、1)1()2(22=-++y x D 、4)2()4(22=-++y x5.若P 、Q 分别为直线01243=-+y x 与0586=++y x 上任意一点,则||PQ 的最小值为( )。
A 、59 B 、1029 C 、518 D 、5296.已知椭圆C :12222=+b y a x (0>>b a )的左焦点1F ,过点1F 作倾斜角为 30的直线与圆222b y x =+相交的弦长为b 3,则椭圆的离心率为( )。
A 、21 B 、22 C 、43 D 、237.已知点1F 是抛物线C :py x 22=的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F 、2F 为焦点的双曲线上,则双曲线的离心率为( )。
高二(上)期中数学试卷第Ⅰ卷(选择题)一、选择题(每小题4分,共12小题,共48分)1.已知数列{n a }的通项公式是n a =252+n n (n ∈*N ),则数列的第5项为( ) A.110 B.16 C.15 D.12 2.在△ABC 中,a b c 、、分别是三内角A B C 、、的对边, ︒=︒=45,75C A ,2b =,则此三角形的最小边长为( )A .46B .322C .362D . 42 3(理).在等差数列{n a }中,已知,21=a ,1332=+a a 则654a a a ++等于( )A.40B.42C.43D.453(文).已知等差数列a n 中,a 2+a 4=6,则a 1+a 2+a 3+a 4+a 5=( ) A . 30 B . 15 C . D .4. 下列说法中正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b ,则a <bD .若a <b ,则a <b5. 在ABC ∆中,A,B,C 的对边分别为a,b,c ,已知bc c b a ++=222,则A 等于( )A. 120B. 60C. 45D. 306.已知等差数列{}n a 的前n 项和为n S ,若5418a a -=,则8S 等于( )A .36B .54C .72D .187(理). 不等式0442>-+-x x 的解集是( )A.RB.ΦC.),0(+∞D.)0,(-∞7(文).不等式x (2﹣x )≤0的解集为( )A . {x|0≤x≤2}B . {x|x≤0,或x≥2}C . {x|x≤2}D .{x|x≥0} 8. 在等比数列{n a }中,若2101-=⋅a a ,则74a a ⋅的值为( )A.-4B.-2C.4D.29. 已知等比数列{a n }的公比为2,前4项的和是1,则前8项的和为( )A .15B .17C .19D .2110.在一座20m 高的观测台测得对面一水塔塔顶得仰角为 60,塔底的俯角为 45,那么这座水塔的高度是( )mA.)331(20+ B.)26(20+ C.)26(10+ D. )31(20+ 11(理). 下列函数中最小值为4的是 ( )A. x x y 4+= B.x x y sin 4sin += (0﹤x ﹤π) C. x x y -⋅+=343 D.10log 4lg x x y += 11(文).设x >1,则x+的最小值是( ) A . 4 B . 5 C . 6 D . 712.设x ,y ∈R 且,则z=x+2y 的最小值等于( )A . 2B . 3C . 5D .9第Ⅱ卷(非选择题)二、填空题(每小题4分,共4小题,共16分)13(理).在等差数列{}n a 中,11=a ,2=d ,9=n S ,则项数n=13(文).在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=14.在等比数列{a n }中,若a 3=2,a 6=2,则公比q= .15. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B+cos B =2,则角A 的大小为________16.若角α、β满足,则α﹣β的取值范围是三、解答题(共5小题,共56分)17. (理、10分)在ABC ∆中,A B 、为锐角,角A B C 、、所对的边分别为a b c 、、,且21a b -=-,510sin ,sin 510A B == (1)求b a ,的值;(2)求角C 和边c 的值。
高二上学期期中考试数学试题(带答案)高二上学期期中考试数学试题(带答案)注:题号后(A)表示1-7班必做,(B)表示8班必做。
)完卷时间:120分钟,总分:150分)一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设$a,b,c\in R$,且$a>b$,则()A.$ac>bc$B.$\frac{1}{a}<\frac{1}{b}$C.$a^2>b^2$D.$a^3>b^3$2.已知数列$\{a_n\}$是公差为2的等差数列,且$a_1,a_2,a_5$成等比数列,则$a_2=$()A.$-2$B.$-3$C.$2$D.$3$3.已知集合$A=\{x\in R|x^2-4x-12<0\},B=\{x\in R|x<2\}$,则$A\cap B=$()A.$\{x|x<6\}$B.$\{x|-2<x<2\}$C.$\{x|x>-2\}$D.$\{x|2\leq x<6\}$4.若变量$x,y$满足约束条件$\begin{cases}x+y\leq 4\\x\geq 1\end{cases}$,则$z=2x+y$的最大值和最小值分别为()A.4和3B.4和2C.3和2D.2和55.已知等比数列$\{a_n\}$的前三项依次为$a-1,a+1,a+4$,则$a_n=$A.$4\cdot (\frac{3}{2})^{n-1}$B.$4\cdot (\frac{2}{3})^{n-1}$C.$4\cdot (\frac{3}{2})^{n-2}$D.$4\cdot (\frac{2}{3})^{n-2}$6.在$\triangle ABC$中,边$a,b,c$的对角分别为$A,B,C$,且$\sin^2 A+\sin^2 C-\sin A\sin C=\sin^2 B$。
本试卷分选择题和非选择题两部分,共4页,总分值为150分。
考试用时120分钟。
本卷须知:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B 铅笔将自己的学号填涂在答题卡上。
2、选择题每题选出答案后,有2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。
3、非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4、考生必须保持答题卡的整洁和平整。
第一部分选择题(共40分) 【一】选择题:本大题共8小题,每题5分,在每题给同的四个选项中,只有一项为哪一项符合题目要求的。
1.集合A={x |x 2-x -2<0},B={x |-1<x <1},那么A. A ⊂≠BB. B ⊂≠AC.A=BD.A ∩B=∅ 2.在一组样本数据〔x 1,y 1〕,〔x 2,y 2〕,…,〔x n ,y n 〕〔n ≥2,x 1,x 2,…,x n 不全相等〕的散点图中,假设所有样本点〔x i ,y i 〕(i =1,2,…,n )都在直线y =12x +1上,那么这组样本数据的样本相关系数为A.-1B. 0C.12D.13.正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,假设点〔x ,y 〕在△ABC 内部,那么z=-x+y 的取值范围是 A. (1-3,2) B. (0,2) C. (3-1,2) D. (0,1+3)4.设F 1、F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角形,那么E 的离心率为〔 〕 A.12 B. 23 C.34 D.45 5.〝〞的含义是〔 〕A. a ,b 不全为0B. a ,b 全不为0C. a ,b 至少一个为0D. a 不为0且b 为0,或b 不为0且a 为06.如图,网格纸上小正方形的边长为1,粗线画出的 是某几何体的三视图,那么此几何体的体积为〔 〕 A.6 B.9 C.12 D.187.ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,那么φ=( ) A.π4 B.π3 C.π2 D.3π48.数列{}n a 满足11a =,21114n n a a ++=,记数列{}2n a 前n 项的和为S n ,假设2130n n tS S +-≤对任意的*n N ∈ 恒成立,那么正整数t 的最小值为 〔 〕 A 、10B 、9C 、8D 、7第二部分 非选择题(共110分)【二】填空题:本大题共6个小题,每题5分,共计30分。
安徽省太和中学2016级高二上学期期中教学质量检测数学(理科) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若x 是不为零的实数,则命题[]0,1m ∀∈,12mx x+≥的否定形式是( )A .[]0,1m ∀∈,12mx x +<B .[]0,1m ∃∈,12mx x+≥C .()(),01,m ∃∈-∞+∞U ,12mx x +≥D .[]0,1m ∃∈,12mx x +<2.在A B C ∆中,角,,A B C 的对边分别为,,a b c ,若60A =︒,a =则sin C c=( )A .1 B.3C.12D .143.已知数列{}n a 中,13a =,()*12n n a a n +=+∈N ,则此数列的前10项和10S =( ) A .140 B .120 C .80 D .604.命题“[]1,2x ∀∈,20x a -≤”为真命题的一个充分不必要条件是( ) A .4a ≥ B .4a ≤ C .5a ≥ D .5a ≤ 5.设点(),P x y ,其中,x y ∈N ,满足3x y +≤的点P 的个数为( ) A .10 B .9 C .3 D .无数个6.已知,22,33x x x ++是等比数列的前三项,则该数列第四项的值是( ) A .-27 B .12 C .272D .272-7.已知实数,x y 满足不等式组10,0,0,x y x y a -≥⎧⎪≥⎨⎪+-≤⎩若11y z x -=+的最大值为1,则正数a 的值为( ) A .12B .1C .2D .48.由命题“存在x ∈R ,使1e 0x m --≤”是假命题,得m 的取值范围是(),a -∞,则实数a的值是( )A .2B .eC .1D .1e9.当()1,2x ∈时,不等式220x m x ++≥恒成立,则m 的取值范围是( )A .()3,-+∞B .()-+∞C .[)3,-+∞D .)⎡-+∞⎣10.在A B C ∆中,120B A C ∠=︒,A D 为角A 的平分线,2A C =,4A B =,则A D 的长是( ) A .43B .43或2 C .1或2 D .8311.设命题1:012x p x-<-;命题()()2:2110q x a x a a -+++≤.若p 是非q 的必要不充分条件,则实数a 的取值范围是( ) A .()1,0,2⎛⎫-∞+∞⎪⎝⎭U B .(]1,0,2⎡⎫-∞+∞⎪⎢⎣⎭U C .10,2⎛⎫ ⎪⎝⎭ D .10,2⎡⎤⎢⎥⎣⎦12.若锐角三角形三个内角的度数成等差数列,且最大边与最小边长度之比为m ,则m 的取值范围是( )A .()0,2B .(]0,2C .[)1,2D .(]1,2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在A B C ∆中,2b =,3c =,且ta n A =,则A B C ∆的面积为 . 14.已知命题“[]1,2x ∃∈,使220x x a ++≥”为真命题,则a 的取值范围是 .15.已知公差不为零的等差数列{}n a 的前8项和为8,且22221739a a a a +=+,则{}n a 的通项公式n a = .16.在A B C ∆中,角,,A B C 的对边分别为,,a b c ,tan :tan :tan 1:2:3A B C =,则b c= .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1)设数列{}n a 满足10a =且111111n na a +-=--,求{}n a 的通项公式;(2)数列{}n a 的前n 项和32nn S =+,求数列{}n a 的通项公式.18.已知命题():0,p x ∃∈+∞,2210x m x -+<;命题q :关于x 的不等式210m x m x -+>的解集为R .若p q ∨为真,p q ∧为假,求实数m 的取值范围. 19.在A B C ∆中,角,,A B C 的对边分别为,,a b c ,且()sin sin sin C A B -+()sin sin sin sin sin C A B A B +-=.(1)求角C 的大小; (2)若c =a b +的最大值.20.如图所示,一辆汽车从A 市出发沿海岸一条直公路以100k m /h 的速度向东匀速行驶,汽车开动时,在A 市南偏东30°方向距A 市600k m 的海上B 处有一快艇与汽车同时出发,要把一份稿件送给这辆汽车的司机.问快艇至少以多大的速度,以什么样的航向行驶才能最快把稿件送到司机手中?21.已知函数()22f x a x x c =++的最低点为()1,2--. (1)求不等式()7f x >的解集;(2)若对任意[]2,4x ∈,不等式()2f x t x -≤-恒成立,求实数t 的取值范围.22.已知各项均为正数的数列{}n a 满足22112n n n n a a a a +-=+,且24324a a a +=+,其中*n ∈N .(1)求数列{}n a 的通项公式; (2)设()*11n n b a n λ-=-∈N,数列{}nb 的前n 项之和为1n n SS +>,若对任意的()f x ,总有()f x ,求实数λ的取值范围.安徽省太和中学2016级高二上学期期中教学质量检测·数学(理科)参考答案、提示及评分细则一、选择题1-5:DDBCA 6-10:DDCDA 11、12:DC 二、填空题13..[)8,-+∞ 15.102n - 163三、解答题 17.解:(1)∵111111n na a +-=--,∴数列11na -是公差为1的等差数列,∴()1111111nn n a a =+-⨯=--.∴()*1n n a n n-=∈N .(2)当1n =时,111325a S ==+=;当2n ≥时,()132n n n n a S S -=-=+()11322n n ---+=.∴15,1,2, 2.n n n a n -=⎧=⎨≥⎩18.解:“()0,x ∃∈+∞,2210x m x -+<”等价于“存在正数x 使12m x x>+成立”.∵0x >,∴当1x =时,1x x+取最小值2,∴22m >,即1m >.因此p 为真命题时,1m >.对于命题q ,因为关于x 的不等式210m x m x -+>的解集为R ,所以0m =或20,40m mm >⎧⎨∆=-<⎩解得04m ≤<,因此q 为真命题时,04m ≤<.又∵p q ∨为真,p q ∧为假,∴p 与q 一真一假. 若p 真q 假,则1,04,m m m >⎧⎨<≥⎩或解得4m ≥;若p 假q 真,则1,04,m m ≤⎧⎨≤<⎩解得01m ≤≤.综上所述,若p q ∨为真,p q ∧为假,则实数m 的取值范围是[][)0,14,+∞U .19.解:(1)在A B C ∆中,由()()sin sin sin sin sin sin sin sin C A B C A B A B -++-= 以及正弦定理得()()c a b c a b a b -++-=.()22c a b a b --=,222a b ca b +-=,∴2221c o s 22a b cC a b+-==.∵0180C ︒<<︒,∴60C =︒.(2)∵c =60C =︒,由正弦定理得2s in s in s in a b c ABC===,∴2sin a A =,2sin b B =.∴2sin 2sin 2sin a b A B A +=+=+()2sin 1202sin s sin A A A A ︒-=++()3sin s 30A A A =+=+︒.又∵0120A ︒<<︒,∴60A =︒时,a b +取最大值20.解:如图所示,设快艇以k m /h v 的速度从B 处出发,沿B C 方向,t 小时后与汽车在C 处相遇.在A B C ∆中,60B A C ∠=︒,600A B =,100A C t =,B C vt =,由余弦定理2222co s 60B C A C A B A B A C =+-⋅︒, ∴()2222110060026001002v t t t =+-⨯⨯⋅,整理得:223600006000010000v tt=-+221111360000275001212t t ⎡⎤⎛⎫=-⋅⋅++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦211360000750012t ⎛⎫=-+ ⎪⎝⎭.当()12h t =时,2m a x 7500v =,∴5v =∴快艇至少以5m /h 的速度行驶时才能最快把稿件送到司机手中.当5m /h v =时,在A B C ∆中,600A B =,100121200A C =⨯=,51260B C ==∴222A B B C A C +=,∴90A B C ∠=︒.故快艇至少以5m /h 的速度,以北偏东60°的方向(与A B 垂直)航行才能最快把稿件送达司机手中.21.解:(1)依题意,得212a-=-,①()122fa c -=-+=-,②由①②解得,1a =,1c =-. ∴()221f x x x =+-.则原不等式可化为2280x x +->,解得4x <-或2x >. 故不等式()7f x >的解集为()(),42,-∞-+∞U .(2)由()[]()22,4f x t x x -≤-∈,得()2122x t x -+-≤-,即1x t -≤-+≤,则1x t x -≤-≤+即22111112424t ⎛⎫⎛⎫--≤-≤- ⎪⎪⎝⎭⎝⎭.∵[]2,4x∈,∴21124⎛⎫-⎪⎝⎭的最小值是211224⎛⎫-=+⎪⎝⎭21124⎛⎫-⎪⎝⎭的最大值是211224⎛⎫-=⎪⎝⎭.∴212t≤-≤+33t≤≤+故实数t的取值范围是3,3⎡+⎣.22.解:(1)由22112n n n na a a a++=+⋅得()()1120n n n na a a a+++-=,∵0na>,∴1n na a++≠,∴12nnaa+=,∴数列{}na是以2为公比的等比数列.设数列{}na的首项为1a,又24324a a a+=+,∴12a=,112n nna a q-==.(2)由(1)知2nna=,∴11121nn nb aλλ--=-=-,则数列{}nb的前n项和为()()2121nnS nλλ-=-=-()21n n--.由1n nS S+>,可得()()()121121n nn nλλ+--+>--,即12nλ>. ∵对任意的*n∈N,总有1n nS S+>,∴m a x1122λ⎛⎫>=⎪⎝⎭,∴实数λ的取值范围是1,2⎛⎫+∞⎪⎝⎭.。
太和二中高二上学期期终考试数学试卷(文)请把答案写在答题纸上!一、选择题:(10×5分=50分)1. 设p 、q 是两个命题,则“p 或q 为真,p 且q 为假”的充要条件是( )(A )p 、q 中至少有一个为真 (B )p 、q 中至少有一个为假 (C )p 、q 中有且只有一个为真 (D )p 为真,q 为假2.抛物线24(0)y ax a =<的焦点坐标是( )(A )(a , 0) (B )(-a , 0) (C )(0, a ) (D )(0, -a ) 3. 已知命题p :a x b N x =∈∃,,则( )(A ):p ⌝ a x b N x ≠∈∃, (B ) :p ⌝ a x b N x =∈∀, (C ):p ⌝a x b N x ≠∈∀, (D ) :p ⌝a x b N x =∉∃, 4. 10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12, 设其平均数为a ,中位数为b ,众数为c ,则有( )A . c b a >>B .a c b >>C .b a c >>D .a b c >> 5.抛物线x y 42=上一点A 的横坐标为4,则点A 与抛物线焦点的距离为( )(A ) 2 (B )3 (C )4 (D )5 6.若抛物线22y px =的焦点与椭圆22162xy+=的右焦点重合,则p 的值为( )(A )2- (B )2(C )4- (D )47. 某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人, 现抽取30人进行分层抽样,则各职称人数分别为( )A .5,10,15B .3,9,18C .3,10,17D .5,9,168.“9>k ”是“方程19422=-+-kyk x表示双曲线”的( ).(A )充分不必要条件 (B )必要不充分条件 (C )既不充分也不必要条件 (D )充要条件 9. 要了解全市高一学生身高在某一范围的学生所占 比例的大小,需知道相应样本的( )A. 平均数B. 方差C. 众数D. 频率分布 10. 如右程序框图,输出的结果为 ( ) A .1 B .2 C .4 D .16二、填空题:(5×5分=25分) 11. 设P 为双曲线1422=-yx上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是 。
太和二中高二上学期期终考试 数学试卷(理)请把答案写在答题纸上!一、选择题:(10×5分=50分)1. 设p 、q 是两个命题,则“p 或q 为真,p 且q 为假”的充要条件是( )(A )p 、q 中至少有一个为真 (B )p 、q 中至少有一个为假 (C )p 、q 中有且只有一个为真 (D )p 为真,q 为假2. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。
若=,AD b =,c AA =1则下列向量中与相等的向量是( )(A )++-2121 (B )c b a ++2121(C )+--2121 (D )+-21213. 已知命题p :x N x =∈∃,,则( )(A ):p ⌝ x N x ≠∈∃, (B ) :p ⌝ x N x =∈∀, (C ):p ⌝x N x ≠∈∀, (D ) :p ⌝x N x =∉∃, 4.已知向量)0,1,1(=a ,)2,0,1(-=b ,,且b a k +与b a -2互相垂直,则k =( )(A )1 (B )15 (C )35 (D )755. 已知抛物线的焦点在直线x -2y -4=0上,则此抛物线的标准方程是( ) A .y 2=16x B .x 2=-8yC .y 2=16x ,或x 2=-8yD .y 2=16x ,或x 2=8y6.已知,b 均为单位向量,它们的夹角为︒60那么|3+|等于( )(A )7 (B )10 (C )13 (D )4C17. 已知P 为Rt △ABC 所在平面外一点,且P A =PB =PC ,D 为斜边AB 的中点,则直 线PD 与平面ABC ( )A .垂直B .斜交C .成600角D .与两直角边长有关8.“9>k ”是“方程19422=-+-ky k x 表示双曲线”的( ). (A )充分不必要条件 (B )必要不充分条件(C )既不充分也不必要条件 (D )充要条件9. 已知12F F 、是椭圆的两个焦点.满足1MF ·2MF =0的点M 总在椭圆内部,则椭圆离心率的取值范围是( ) A .(0,1) B .(0,21] C .(0,22) D .(22,1) 10. 设抛物线y 2 = 8x 的准线与x 轴交点Q,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是 ( ) A. [-21,21] B. [-2 , 2 ] C. [-1 , 1 ] D. [-4 , 4 ]二、填空题:(5×5=25分)11. 在空间直角坐标系中,已知点P (1,2,3),过P 作平面yOz 的垂线PQ ,则 垂足Q 的坐标为_____。
安徽省太和中学2016级高二上学期期中教学质量检测数学(理科) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若x 是不为零的实数,则命题[]0,1m ∀∈,12m x x+≥的否定形式是( ) A .[]0,1m ∀∈,12m x x +< B .[]0,1m ∃∈,12mx x+≥C .()(),01,m ∃∈-∞+∞U ,12m x x+≥ D .[]0,1m ∃∈,12m x x+< 2.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若60A =︒,a =则s i n Cc=( )A .1 B.3 C.12 D .143.已知数列{}n a 中,13a =,()*12n n a a n +=+∈N ,则此数列的前10项和10S =( ) A .140 B .120 C .80 D .604.命题“[]1,2x ∀∈,20x a -≤”为真命题的一个充分不必要条件是( )A .4a ≥B .4a ≤C .5a ≥D .5a ≤ 5.设点(),P x y ,其中,x y ∈N ,满足3x y +≤的点P 的个数为( ) A .10 B .9 C .3 D .无数个6.已知,22,33x x x ++是等比数列的前三项,则该数列第四项的值是( ) A .-27 B .12 C .272 D .272- 7.已知实数,x y 满足不等式组10,0,0,x y x y a -≥⎧⎪≥⎨⎪+-≤⎩若11y z x -=+的最大值为1,则正数a 的值为( ) A .12B .1C .2D .48.由命题“存在x ∈R ,使1e 0x m --≤”是假命题,得m 的取值范围是(),a -∞,则实数a的值是( )A .2B .eC .1D .1e9.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( )A .()3,-+∞B .()-+∞ C .[)3,-+∞ D .)⎡-+∞⎣10.在ABC ∆中,120BAC ∠=︒,AD 为角A 的平分线,2AC =,4AB =,则AD 的长是( )A .43 B .43或2 C .1或2 D .8311.设命题1:012x p x-<-;命题()()2:2110q x a x a a -+++≤.若p 是非q 的必要不充分条件,则实数a 的取值范围是( )A .()1,0,2⎛⎫-∞+∞⎪⎝⎭U B .(]1,0,2⎡⎫-∞+∞⎪⎢⎣⎭U C .10,2⎛⎫ ⎪⎝⎭ D .10,2⎡⎤⎢⎥⎣⎦12.若锐角三角形三个内角的度数成等差数列,且最大边与最小边长度之比为m ,则m 的取值范围是( )A .()0,2B .(]0,2C .[)1,2D .(]1,2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在ABC ∆中,2b =,3c =,且tan A =,则ABC ∆的面积为 . 14.已知命题“[]1,2x ∃∈,使220x x a ++≥”为真命题,则a 的取值范围是 .15.已知公差不为零的等差数列{}n a 的前8项和为8,且22221739a a a a +=+,则{}n a 的通项公式n a = .16.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,tan :tan :tan 1:2:3A B C =,则bc= . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1)设数列{}n a 满足10a =且111111n na a +-=--,求{}n a 的通项公式;(2)数列{}n a 的前n 项和32nn S =+,求数列{}n a 的通项公式.18.已知命题():0,p x ∃∈+∞,2210x mx -+<;命题q :关于x 的不等式210mx mx -+>的解集为R .若p q ∨为真,p q ∧为假,求实数m 的取值范围. 19.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且()sin sin sin C A B -+()sin sin sin sin sin C A B A B +-=.(1)求角C 的大小;(2)若c =a b +的最大值.20.如图所示,一辆汽车从A 市出发沿海岸一条直公路以100km/h 的速度向东匀速行驶,汽车开动时,在A 市南偏东30°方向距A 市600km 的海上B 处有一快艇与汽车同时出发,要把一份稿件送给这辆汽车的司机.问快艇至少以多大的速度,以什么样的航向行驶才能最快把稿件送到司机手中?21.已知函数()22f x ax x c =++的最低点为()1,2--.(1)求不等式()7f x >的解集;(2)若对任意[]2,4x ∈,不等式()2f x t x -≤-恒成立,求实数t 的取值范围.22.已知各项均为正数的数列{}n a 满足22112n n n n a a a a +-=+,且24324a a a +=+,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)设()*11n n b a n λ-=-∈N ,数列{}n b 的前n 项之和为1n n S S +>,若对任意的()f x ,总有()f x ,求实数λ的取值范围.安徽省太和中学2016级高二上学期期中教学质量检测·数学(理科)参考答案、提示及评分细则一、选择题1-5:DDBCA 6-10:DDCDA 11、12:DC 二、填空题13..[)8,-+∞ 15.102n - 16三、解答题 17.解:(1)∵111111n na a +-=--,∴数列11na -是公差为1的等差数列, ∴()1111111n n n a a =+-⨯=--. ∴()*1n n a n n-=∈N . (2)当1n =时,111325a S ==+=;当2n ≥时,()132nn n n a S S -=-=+()11322n n ---+=.∴15,1,2, 2.n n n a n -=⎧=⎨≥⎩18.解:“()0,x ∃∈+∞,2210x mx -+<”等价于“存在正数x 使12m x x>+成立”. ∵0x >,∴当1x =时,1x x+取最小值2,∴22m >,即1m >. 因此p 为真命题时,1m >.对于命题q ,因为关于x 的不等式210mx mx -+>的解集为R , 所以0m =或20,40m m m >⎧⎨∆=-<⎩解得04m ≤<,因此q 为真命题时,04m ≤<.又∵p q ∨为真,p q ∧为假,∴p 与q 一真一假. 若p 真q 假,则1,04,m m m >⎧⎨<≥⎩或解得4m ≥;若p 假q 真,则1,04,m m ≤⎧⎨≤<⎩解得01m ≤≤.综上所述,若p q ∨为真,p q ∧为假,则实数m 的取值范围是[][)0,14,+∞U .19.解:(1)在ABC ∆中,由()()sin sin sin sin sin sin sin sin C A B C A B A B -++-= 以及正弦定理得()()c a b c a b ab -++-=.()22c a b ab --=,222a b c ab +-=,∴2221cos 22a b c C ab +-==. ∵0180C ︒<<︒,∴60C =︒.(2)∵c =60C =︒, 由正弦定理得2sin sin sin a b cA B C===,∴2sin a A =,2sin b B =.∴2sin 2sin 2sin a b A B A +=+=+()2sin 1202sin sin A A A A ︒-=+()3sin 30A A A ==+︒.又∵0120A ︒<<︒,∴60A =︒时,a b +取最大值20.解:如图所示,设快艇以km/h v 的速度从B 处出发,沿BC 方向,t 小时后与汽车在C 处相遇.在ABC ∆中,60BAC ∠=︒,600AB =,100AC t =,BC vt =,由余弦定理2222cos60BC AC AB AB AC =+-⋅︒, ∴()2222110060026001002v t t t =+-⨯⨯⋅, 整理得:223600006000010000v t t=-+ 221111360000275001212t t ⎡⎤⎛⎫=-⋅⋅++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦211360000750012t ⎛⎫=-+ ⎪⎝⎭.当()12h t =时,2max 7500v =,∴v =∴快艇至少以的速度行驶时才能最快把稿件送到司机手中.当v =时,在ABC ∆中,600AB =,100121200AC =⨯=,12BC ==∴222AB BC AC +=,∴90ABC ∠=︒.故快艇至少以的速度,以北偏东60°的方向(与AB 垂直)航行才能最快把稿件送达司机手中.21.解:(1)依题意,得212a-=-,① ()122f a c -=-+=-,②由①②解得,1a =,1c =-. ∴()221f x x x =+-.则原不等式可化为2280x x +->,解得4x <-或2x >. 故不等式()7f x >的解集为()(),42,-∞-+∞U .(2)由()[]()22,4f x t x x -≤-∈,得()2122x t x -+-≤-,即1x t ≤-+≤,则1x t x -≤-≤+即22111112424t ⎫⎫-≤-≤-⎪⎪⎭⎭.∵[]2,4x ∈,∴21124⎫-⎪⎭的最小值是211224⎫-=+⎪⎭21124⎫-⎪⎭的最大值是211224⎫-=⎪⎭.∴212t ≤-≤33t ≤≤+故实数t的取值范围是3,3⎡⎣.22.解:(1)由22112n n n n a a a a ++=+⋅得()()1120n n n n a a a a +++-=,∵0n a >,∴10n n a a ++≠,∴12n na a +=, ∴数列{}n a 是以2为公比的等比数列.设数列{}n a 的首项为1a ,又24324a a a +=+,∴12a =,112n nn a a q -==.(2)由(1)知2n n a =,∴11121n n n b a λλ--=-=-,则数列{}n b 的前n 项和为()()2121n n S n λλ-=-=-()21n n --.由1n n S S +>,可得()()()121121n nn n λλ+--+>--,即12nλ>. ∵对任意的*n ∈N ,总有1n n S S +>,∴max1122λ⎛⎫>=⎪⎝⎭, ∴实数λ的取值范围是1,2⎛⎫+∞⎪⎝⎭.。