高一物理牛顿第二定律6
- 格式:ppt
- 大小:388.00 KB
- 文档页数:19
牛顿第二定律一、牛顿第二定律1. 定律内容:物体的加速度a 跟物体所受的合外力F成正比,跟物体的质量m 成反比,加速度的方向跟合外力的方向相同.2. 公式:F 合=ma3. 关于牛顿第二定律的理解:3.1 因果性:力是物体产生加速度的原因,加速度是力作用在物体上所产生的一种效果;3.2 瞬时性:加速度与合外力在每个瞬时都有大小、方向上的对应关系,这种对应关系表现为:合外力恒定不变时,加速度也保持不变。
合外力变化时加速度也随之变化。
合外力为零时,加速度也为零;3.3 矢量性:牛顿第二定律公式是矢量式。
公式mF a 只表示加速度与合外力的大小关系.矢量式的含义在于加速度的方向与合外力的方向始终一致;3.4 同一性:加速度与合外力及质量的关系,是对同一个物体(或物体系)而言。
即 F与a 均是对同一个研究对象而言;3.5 相对性:牛顿第二定律只适用于惯性参照系(匀速或静止的参考系);3.6 独立性,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力正交分解,在正交的方向上分别应用牛顿第二定律的分量形式:F x =ma x ,F y =ma y 列方程;3.7 局限性:牛顿第二定律只适用于低速运动的宏观物体,不适用于高速运动的微观粒子;4. 牛顿第二定律确立了力和运动的关系【例1】下列对牛顿第二定律的表达式F =ma 及其变形公式的理解,正确的是( ).A .由F =ma 可知,物体受到的合外力与物体的质量成正比,与物体的加速度成反比.B .由m =F/a 可知,物体的质量与其受到的合外力成正比,与其运动的加速度成反比.C .由a =F/m 可知,物体的加速度与其受到的合外力成正比,与其质量成反比.D .由m =F/a 可知,物体的质量可以通过测出它的加速度和它所受的合外力而求得.【例2】静止在光滑水平面上的物体,受到一个水平拉力的作用,当力刚开始作用的瞬间,下列说法正确的是 ( )A.物体同时获得速度和加速度B.物体立即获得加速度,但速度仍为零C.物体立即获得速度,但加速度仍为零D.物体的速度和加速度都仍为零【例3】由牛顿第二定律可知,无论多么小的力都可以使物体产生加速度,但用较小的力去推地面上很重的物体时,物体仍静止,这是因为:A 推力小于摩擦力B 物体有加速度,但太小,不易被察觉C 推力小于物体的重力D 物体所受合外力为零2【例4】已知甲物体受到2N 的力作用时,产生的加速度为4m/s 2,乙物体受到3N 的力作用时,产生的加速度为6m/s 2,则甲、乙物体的质量之比m 甲 ,m 乙等于A .1:3B .2:3C .1:1D .3:2二、动力学的两类基本问题1. 已知受力情况求运动情况;2. 已知运动情况求受力情况3. 在这两类问题中,加速度是联系力和运动的桥梁,受力分析是解决问题的关键.【例5】一物体初速度 v 0=5 m/s ,沿着倾角 37°的斜面匀加速向下运动,若物体和斜面间的动摩擦因数为 0.25,求 3 秒末的速度(斜面足够长)( )A .12 m/sB .15 m/sC .17 m/sD .20 m/s【例6】用一水平恒力将质量为 250 kg 的木箱由静止开始沿水平地面推行 50 m ,历时 10s ,若物体受到阻力是物重的 0.1 倍,则外加的推力多大?(g 取 10 m/s2)【例7】水平桌面上质量为1kg 的物体受到2N 的水平拉力,产生1.5m/s 2的加速度。
高一物理什么是牛顿第二定律高一物理:牛顿第二定律在学习物理的过程中,我们经常会听到牛顿三大运动定律的名字。
其中,牛顿第二定律是非常重要的一个定律,它描述了物体受力时的运动状态。
那么,究竟什么是牛顿第二定律呢?本文将向您介绍牛顿第二定律的定义、公式及其应用。
一、牛顿第二定律的定义牛顿第二定律是描述物体受力时的运动状态的定律。
简而言之,它表达了物体受力与加速度之间的关系。
它的数学表达式为:F = ma其中,F代表物体所受的合力,m代表物体的质量,a代表物体的加速度。
这个公式说明了,物体所受的合力与物体的质量成正比,与物体的加速度成正比。
即,合力越大,物体的加速度越大;物体的质量越大,物体的加速度越小。
二、牛顿第二定律的公式及单位在牛顿第二定律的公式中,力的单位是牛顿(N),质量的单位是千克(kg),加速度的单位是米每秒平方(m/s²)。
因此,公式中的单位是符合国际标准的。
我们通常使用这些单位来进行物理计算。
在实际应用中,我们经常遇到各种不同的情况和问题。
下面,我们将结合一些典型的案例来理解和应用牛顿第二定律。
三、牛顿第二定律的应用举例1. 简单案例假设一个质量为2kg的物体受到了一个10N的力,我们可以使用牛顿第二定律来计算物体的加速度。
根据公式 F = ma,将已知数据代入,可以得到:10N = 2kg × a解方程可得,物体的加速度为5m/s²。
这个加速度说明了,这个物体在受到10N的力作用下,将以每秒5米的速度增加。
2. 自由落体牛顿第二定律的应用还可以用来解释自由落体运动。
自由落体是指在重力作用下,物体不受其他力的影响而自由下落的运动。
根据牛顿第二定律,我们可以得出重力与物体质量之间的关系:F = mg其中,m为物体的质量,g为重力加速度,约为9.8m/s²。
由此可见,重力的大小与物体的质量成正比。
质量越大的物体,受到的重力作用越大。
同时,利用牛顿第二定律还可以推导出自由落体运动的速度和位移关系。
第7单元牛顿第二定律及应用一、内容及其解析(一)内容本单元的内容如下本单元主要内容:牛顿第二定律的内容、理解和应用。
核心内容:牛顿第二定律的应用。
教学应该按照公式课的课型设计。
本单元设计15个课时完成教学。
(二)解析1、对核心内容的分析:牛顿第二定律具体地、定量地回答了物体的加速度与它所受外力的关系,以及加速度与物体自身的惯性——质量的关系,因而成为经典力学的基础和核心。
牛顿第二定律是高中物理知识点中的重中之重,是联系物体受力和运动的关键知识点。
牛顿第二定律这一单元的主要内容包括:定律的内容(F=ma)、对定律的理解(即牛顿第二定律的“四个性质”——矢量性、同一性、独立性、瞬时性)和定律的应用。
而牛顿第二定律的应用很自然地成为本单元的核心内容。
二、目标及其解析(一)目标1、单元目标:理解、掌握牛顿第二定律的内容及其应用2、课堂教学目标:第1-3课时:理解牛顿第二定律的内容。
第4-15课时:掌握牛顿第二定律的应用.(二)解析1 、理解牛顿第二定律的内容就是指要理解牛顿第二定律的“四个性质”。
即:矢量性、同一性、独立性、瞬时性,并会运用这些性质解决相关的问题(a与F在方向上的关系、瞬时加速度的求解等)。
2、掌握牛顿第二定律的应用就是指能利用牛顿第二定律解决以下十类问题:①动力学中的“两类基本问题”②“整体法”“隔离法”动力学中的应用③“正交分解法”动力学中的应用④探究a与F,m的关系的实验⑤“超重、失重”问题⑥动力学中的“图象问题”⑦在物体受力和运动情况分析中的应用⑧动力学中的“临界问题”⑨“假设法”在动力学中的应用⑩“传送带类问题”的研究三、教学问题诊断分析在本单元教学中可能遇到的主要困难是牛顿第二定律理解及其运用,尤其是运用牛顿第二定律解决两类动力学问题将会是本节内容训练的一个重点,只有突破了此重点才能针对不同的超、失重问题、连接体问题、图像问题、临界极值问题、瞬时性问题、传送带问题等一些列问题进行学习和运用。
高一物理必考知识点牛顿第二定律的应用高一物理必考知识点牛顿第二定律的应用牛顿第二定律是经典力学中的一个重要定律,也是高一物理学习的必考知识点之一。
本文将从牛顿第二定律的基本原理出发,介绍一些常见的应用场景及计算方法,并探讨其重要性。
一、牛顿第二定律的基本原理牛顿第二定律的表达式为F=ma,其中F 表示物体所受合力的大小,a 表示物体的加速度,m 表示物体的质量。
这个定律说明了力与物体的质量和加速度之间的关系。
当物体所受合力增大时,其加速度也会增大;当物体的质量增大时,其加速度会减小。
二、常见的牛顿第二定律应用场景及计算方法1. 平面运动中物体的加速度计算在平面运动中,当物体所受合力已知时,可以利用牛顿第二定律计算物体的加速度。
首先确定物体所受的合力,然后根据 F=ma 计算加速度。
2. 弹簧弹性伸缩力的计算弹簧的弹性伸缩力可以利用牛顿第二定律进行计算。
当物体受到垂直于弹簧伸缩方向的外力时,可以根据 F=ma 计算出物体所受的合力。
然后利用胡克定律 F=-kx(其中 k 表示弹簧的弹性系数,x 表示弹簧的伸缩量)计算出弹簧的弹性伸缩力。
3. 坡道上物体的加速度计算当物体置于斜坡上时,可以利用牛顿第二定律计算物体在坡道上的加速度。
首先确定物体所受的合力,然后根据 F=ma 计算加速度。
需要注意的是,斜坡上的合力包括物体自身重力以及由坡度引起的垂直于坡面的力。
4. 电梯内物体的加速度计算电梯内的物体受到的合力包括物体的重力以及电梯提供的力。
通过设置参考系,可以将问题简化为一个自由下落或上升的问题。
根据物体所受的合力确定加速度,然后利用牛顿第二定律计算出加速度的大小。
三、牛顿第二定律的重要性牛顿第二定律在解决物体运动问题中起着重要的作用。
通过运用牛顿第二定律,我们可以准确地计算物体的加速度,并进一步了解物体受力、受力方向以及运动状态的变化。
同时,牛顿第二定律也为其他物理定律的推导提供了基础。
牛顿第二定律应用广泛,不仅在经典力学中有重要地位,还在其他学科中也有广泛应用。
牛顿第二定律知识集结知识元牛顿第二定律知识讲解1.内容:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同.2.表达式:F合=ma.3.适用范围:(1)牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).(2)牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.4.对牛顿第二定律的进一步理解牛顿第二定律是动力学的核心内容,我们要从不同的角度,多层次、系统化地理解其内涵:F 量化了迫使物体运动状态发生变化的外部作用,m量化了物体“不愿改变运动状态”的基本特性(惯性),而a则描述了物体的运动状态(v)变化的快慢.明确了上述三个量的物理意义,就不难理解如下的关系了:a∝F,a∝m1.另外,牛顿第二定律给出的F合、m、a三者之间的瞬时关系,也是由力的作用效果的瞬时性特征所决定的.(1)矢量性:a与F合都是矢量,且方向总是相同.(2)瞬时性:a与F合同时产生、同时变化、同时消失,是瞬时对应的.(3)同体性:a与F合是对同一物体而言的两个物理量.(4)独立性:作用于物体上的每个力各自产生的加速度都遵循牛顿第二定律,而物体的合加速度则是每个力产生的加速度的矢量和,合加速度总是与合外力相对应.5.应用牛顿第二定律的解题步骤(1)通过审题灵活地选取研究对象,明确物理过程.(2)分析研究对象的受力情况和运动情况,必要时画好受力示意图和运动过程示意图,规定正方向.(3)根据牛顿第二定律和运动公式列方程求解.(列牛顿第二定律方程时可把力进行分解或合成处理,再列方程)(4)检查答案是否完整、合理,必要时需进行讨论.例题精讲牛顿第二定律例1.由F=ma可知()A.物体质量和加速度成反比B.因为有加速度才有力C.物体的加速度与物体受到的合外力方向一致D.物体的加速度与物体受到的合外力方向不一定相同例2.小明站在电梯里,当电梯以加速度5m/s2下降时,小明受到的支持力()A.小于重力,但不为零B.大于重力C.等于重力D.等于零例3.一轻质弹簧上端固定,下端挂一重物,平衡时弹簧伸长了5cm,再将重物向下拉2cm,然后放手,则在刚释放的瞬间重物的加速度大小是(弹簧始终在弹性限度内,g=10m/s2)()A.4m/s2B.6m/s2C.10m/s2D.14m/s2例4.一质量为m的人站在电梯中,电梯加速上升,加速度的大小为g,g为重力加速度.人对电梯底部的压力为()A.B.2mg C.mgD.当堂练习单选题练习1.如图所示将一小球从空中某一高度自由落下,当小球与正下方的轻弹簧接触时,小球将()A.立刻静止B.立刻开始做减速运动C.开始做匀速运动D.继续做加速运动练习2.如图所示的一种蹦床运动,图中水平虚线PQ是弹性蹦床的原始位置,A为运动员抵达的最高点,B为运动员刚抵达蹦床时刻时刻的位置,C为运动员的最低点,不考虑空气阻力,运动员从A下落到C的过程中速度最大的位置为()A.A点B.B点C.C点D.B、C之间练习3.如图所示,一根轻质弹簧竖直立在水平地面上,下端固定.一小球从高处自由落下,落到弹簧上端,将弹簧压缩至最低点.小球从开始压缩弹簧至最低点的过程中,小球的加速度和速度的变化情况是()A.加速度先变大后变小,速度先变大后变小B.加速度先变大后变小,速度先变小后变大C.加速度先变小后变大,速度先变大后变小D.加速度先变小后变大,速度先变小后变大练习4.“歼-20”是中国成都飞机工业(集团)有限责任公司为中国人民解放军研制的第四代双发重型隐形战斗机该机将担负中国未来对空、对海的主权维护任务.在某次起飞中,由静止开始加速,当加速度a不断减小至零时,飞机刚好起飞.关于起飞过程下列说法正确的是()A.飞机所受合力不变,速度增加越来越慢B.飞机所受合力减小,速度增加越来越快C.速度方向与加速度方向相同,速度增加越来越快D.速度方向与加速度方向相同,速度增加越来越慢小明站在电梯里,当电梯以加速度5m/s2下降时,小明受到的支持力()A.小于重力,但不为零B.大于重力C.等于重力D.等于零练习6.如图所示A、B两相同的木箱(质量不计)用细绳连接放在水平地面上,当两木箱内均装有质量为m的沙子时,用水平力F拉A木箱,使两木箱一起做匀加速直线运动,细绳恰好不被拉断。
高一物理第三节 牛顿第二定律人教版【同步教育信息】一. 本周教学内容: 第三节 牛顿第二定律二. 知识要点:理解加速度与力的关系,知道得出这种关系的实验,理解加速度与质量的关系,知道得出这种关系的实验,知道国际单位制中力的单位是怎样定义的。
理解牛顿第二定律的内容,知道牛顿第二定律表达式的确切含义。
会用牛顿第二定律公式进行计算。
三. 学习中注意点:1. 通过演示实验定量研究加速度a 与力F 及质量m 的关系: (1)研究方法:① 控制变量法,是研究多个物理量之间关系的一种常用方法,即在多因素的实验中,可先控制一些量不变,依次研究某一因素的影响,因加速度与力、质量都有关,所以采用控制变量法,先固定一个量如质量,使力变化,测加速度与力之间的关系,再固定力不变测加速度与质量的关系。
② 对每个实验是用比较物体的位移大小来比较它们的加速度a 的:力和质量可以直接测量出来,而加速度大小不能直接测量出来,通过两小车位移S 来比较它们加速度大小,两车t 相同,S a ∝,即2121S S a a =。
(2)实验条件,小车放在光滑的水平板上,细绳对小车施力方向水平,定滑轮光滑,砝码跟小车相比质量较小(10%以下),这时小车所受合力大小就是细绳对小车的拉力等于砝码盘及砝码重力之和。
(3)研究质量一定的条件下,加速度与力的关系:取两个质量相等的小车,用天平测出质量,用弹簧秤测出砝码及盘的重力(和),另一车上加不同的砝码,同时释放同时制动,用刻度尺量出两车位移(见表一) (4)研究力一定的情况下,加速度跟质量的关系:仍用前面的装置取相同的砝码增加一个小车的质量。
同时从静止释放。
测出相同时间内两车位移(见表二)(5)归纳总结:① 由表一得:122121==S S a a 1221=F F ∴2121a a F F = ② 由表二得:12212121211221m m a a m m S S a a ==== ③ 由2121F F a a =,得k a F a F 12211== 11kF a = 22kF a = 即kF a =(1)由1221m m a a = 11/m k a '= 22/m k a '= 即m k a '=(2)综合(1)和(2)式得:mFk a =(3)ma kF 1= 取国际单位制,1=k ma F =上式即为牛顿第二定律的表达式。